Power and Efficiency in Living Systems
Abstract
:1. Introduction
2. Covariation between Power and Efficiency in Physical Systems
3. Covariation between Power and Efficiency in Living Systems
3.1. Empirical Patterns
3.2. Theoretical Explanations
3.3. Covariation of Power and Efficiency in Biological Processes Involving Resource (Energy) Uptake versus Use
4. Allometric Scaling of Power and Efficiency in Living Systems
5. Power and Evolutionary Fitness
5.1. Theory of Universal Evolution of Maximal Power
5.2. Factors Preventing the Attainment of Maximal Power
5.2.1. Intrinsic Factors
5.2.2. Extrinsic Factors
5.3. The Diversification of Reproductive Power: Some Preliminary Thoughts
6. Efficiency and Evolutionary Adaptation
7. Covariation between Power (Fitness) and Efficiency (Adaptation) Revisited
7.1. Fitness as Power and Adaptation as Efficiency
7.2. Natural Selection May Favor Both Power and Efficiency of Resource Use Systems
7.3. Natural Selection May Favor Power–Efficiency Trade-Offs in Resource Supply Systems
7.3.1. Possible Factors Causing Power–Efficiency Trade-Offs in Resource Acquisition
Factor | Effect | Sources |
---|---|---|
Food quantity | High food: high power; low efficiency Low food: low power; high efficiency | [3,8,9,22,162,228,260,261] |
Food quality | High quality: high power; low efficiency Low quality: low power; high efficiency | [264] |
Niche breadth | Generalist: high power; low efficiency Specialist: low power; high efficiency | [265,266,267,268,269,270,271] |
Population stability | Stable (K-selected): low power; high efficiency Unstable (r-selected): high power; low efficiency | [211,212,213,266] |
7.3.2. Possible Trade-Offs between Power and Efficiency along a Body Size Spectrum and within Specific Clades
7.4. Trade-Offs between Power and Efficiency: A Case Study Based on White-Footed Mice (Peromyscus)
7.5. Geography of Power and Efficiency
7.6. Temporal Variation in Power and Efficiency
7.6.1. Daily Variation in Power Production
7.6.2. Seasonal Variation in Power Production
7.6.3. Variation in Power Production over a Lifetime
7.6.4. Variation in Power Production over Ecological (Successional) Time
7.6.5. Variation in Power Production over Geological Time
7.7. Synthesis
8. Applications of a Power/Efficiency Perspective to Nutrient/Water Uptake/Use, Functional Performance, and Information Processing
8.1. Power (Rate) and Efficiency of Nutrient/Water Uptake and Use
8.2. Power (Rate) and Effectiveness of Functional Performance
8.2.1. Deleterious Effects of Speed
8.2.2. Effects of Division of Labor on Power and Efficiency
8.2.3. Functional View of Power and Efficiency in Endothermic Animals
8.3. Rate and Accuracy of Information Acquisition and Use
9. Practical Applications
10. Conclusions
- Although proponents of “maximum power theory” have claimed that the humped relationships of power versus efficiency observed in some physical systems (i.e., maximum power at intermediate efficiency) should also occur in living systems, I argue that the humped relationships of efficiency versus power observed in other physical systems (i.e., maximum efficiency at intermediate power) may also be usefully applied (perhaps more so) to living systems with realistic modifications (e.g., selectively imposed limits on power production; also see conclusion #3 below). Converse relationships between power and efficiency, entailing the “maximum power principle” (MPP) versus the “maximum efficiency principle” (MEP), also deserve attention.
- Negative correlations (trade-offs) between power and efficiency often occur in resource supply systems (e.g., speed versus efficiency of acquisition of environmental resources and their assimilation into the body), whereas positive synergistic correlations between power and efficiency often occur in resource use systems (e.g., speed versus efficiency of growth, reproduction, and muscular work). Positive covariation between the speed and efficiency of productive work can be explained, at least in part, by rate-related increases in the proportion of energy used for productive work versus maintenance (idling costs) of the resource use system.
- Living systems do not universally show maximization of power at the detriment of efficiency. Many intrinsic (physical/biological) and extrinsic (ecological) factors limit power production. As a result, many organisms spend much of their time doing nothing. Positive asymptotic covariation between productive power and efficiency may often occur because natural selection has weeded out living systems that are too speedy, which entails deleterious effects of increased injury, developmental/behavioral mistakes, enhanced aging, increased exposure to predators or other environmental hazards, and/or resource wastage.
- Natural selection may favor either power or efficiency depending on resource quantity/quality, niche breadth, and population stability. Increased productive power is often favored when resources are abundant, organisms are ecological generalists, and populations and habitats are unstable, whereas efficiency of resource acquisition for production is often enhanced when resources are scarce, organisms are ecological specialists, and populations and habitats are relatively stable.
- At the whole species level, ‘fitness’ can be usefully indexed as power production, whereas ‘adaptation’ can be usefully indexed as efficiency of resource acquisition for production. These energetic definitions have the important advantages of being measurable, non-tautological, and comparable among different species. This approach is examined by focusing on variation in power and efficiency along a body size spectrum and among related species in specific clades. I suggest that abundant microscopic organisms subject to high mortality rates have been selected for high productive power (species-level fitness), whereas less abundant macroscopic organisms subject to relatively high resource limitation have been selected for high efficiency of resource acquisition for production (species-level adaptiveness). This power/efficiency size spectrum dovetails nicely with classical r- and K-selection theory. My approach is also supported by a case study of North American white-footed mice (Peromyscus species), where widespread generalist species that often occupy disturbed/unstable habitats promoting r-selection exhibit high productive power (fitness) at both the individual and species (regional/global) levels, whereas geographically restricted specialist species that occupy relatively stable habitats that promote K-selection appear to exhibit high efficiency of resource acquisition for production (adaptiveness at the local population level).
- Productive power and efficiency often increase synergistically with increases in resource abundance both in space and time. Both primary production and the trophic transfer efficiency from primary to secondary production increase along environmental gradients of increasing temperature and water availability. Daily and seasonal changes in resource availability/accessibility are also typically associated with synergistic changes in productive power and efficiency at the individual, population, and ecosystem levels. However, daily/seasonal temperature changes may have varying effects on covariation between productive power and efficiency, depending on the relative thermal sensitivities of production versus maintenance (respiration). Rapid growth during early ontogenetic stages is positively associated with enhanced growth efficiencies. Other features of life cycles (including complex life cycles) may also relate to covariation between productive power and efficiency. However, the ecological succession of terrestrial plant communities appears to involve temporal trade-offs between power and efficiency. Pioneering r-selected species have relatively high mass-specific production rates, whereas climax K-selected species appear to be more efficient at capturing and retaining energy and nutrients. Similar patterns appear to have occurred over geological time, as ecological communities evolved from only having microbes with high species-level productive power to also having macroscopic organisms with relatively high species-level efficiency of resource acquisition for production. By contrast, some scientists have suggested that over geological time, organisms have evolved increased power at the expense of decreased efficiency. Recently evolved endothermic animals are often cited as examples of high-powered, but inefficient, ‘energy-leaking’ living systems. I challenge this view by pointing out that endothermy entails increases in two kinds of useful output, biomass production that enhances reproductive success and heat production (and retention) that amplifies metabolic power and thermal niche breadth. Many biologists have considered heat as merely a metabolic waste that reduces productive efficiency, but endotherms retain much heat for useful purposes. When considering both these useful outputs, endotherms are not necessarily less efficient than ectotherms. Indeed, highly active endotherms may have higher efficiencies of resource exploitation than ectotherms of equivalent size. Furthermore, I argue that the economical ‘recycling’ of heat dissipated from various work processes—including digestion, production, and locomotion—to support regulation of high body temperatures, especially in the cold (called ‘thermal substitution’, a form of ‘resource association’), may have been a preadaptation for the evolution of endothermy itself.
- A power/efficiency perspective may not only be useful from an energetic viewpoint, but also in relation to the nutrient/water uptake/use, functional performance, and information processing of living systems. New general theory of the metabolic, stoichiometric, functional, and informational organization of living systems may benefit from considering power/efficiency covariation of each of these components and their interactions.
- A power/efficiency perspective may also have many practical applications of benefit to human society.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Atkins, P. The Laws of Thermodynamics: A Very Short Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Baltimore, MD, USA, 1925. [Google Scholar]
- Brody, S. Bioenergetics and Growth with Special Reference to the Efficiency Complex in Domestic Animals; Macmillan: New York, NY, USA, 1945. [Google Scholar]
- Odum, H.T.; Pinkerton, R.C. Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 1955, 43, 331–343. [Google Scholar]
- Odum, H.T. Environment, Power, and Society; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Smith, C.C. When and how much to reproduce: The trade-off between power and efficiency. Am. Zool. 1976, 16, 763–774. [Google Scholar] [CrossRef]
- Hall, C.A.S.; McWhirter, T. Maximum power in evolution, ecology and economics. Philos. Trans. R. Soc. A 2023, 381, 20220290. [Google Scholar] [CrossRef] [PubMed]
- Lotka, A.J. Contribution to the energetics of evolution. Proc. Natl. Acad. Sci. USA 1922, 8, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Van Valen, L. Energy and evolution. Evol. Theory 1976, 1, 179–229. [Google Scholar]
- Van Valen, L. Evolution as a zero-sum game for energy. Evol. Theory 1980, 4, 289–300. [Google Scholar]
- Brown, J.H.; Marquet, P.A.; Taper, M.L. Evolution of body size: Consequences of an energetic definition of fitness. Am. Nat. 1993, 142, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.L.; Hall, C.A.S.; Lugo, A.E. A test of the maximum power hypothesis along an elevational gradient in the Luquillo Mountains of Puerto Rico. Ecol. Bull. 2013, 54, 233–243. [Google Scholar]
- Brown, J.H.; Hall, C.A.S.; Sibly, R.M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2018, 2, 262–268. [Google Scholar] [CrossRef]
- Burger, R.J.; Hou, C.; Hall, C.A.S.; Brown, J.H. Universal rules of life: Metabolic rates, biological times and the equal fitness paradigm. Ecol. Lett. 2021, 24, 1262–1281. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Burger, J.R.; Hou, C.; Hall, C.A.S. The pace of life: Metabolic energy, biological time, and life history. Integr. Comp. Biol. 2022, 62, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.A. Human adaptation and energetic efficiency. Hum. Ecol. 1979, 7, 53–74. [Google Scholar] [CrossRef]
- Bock, W.J. The definition and recognition of biological adaptation. Am. Zool. 1980, 20, 217–227. [Google Scholar] [CrossRef]
- Watt, W.B. Power and efficiency as indexes of fitness in metabolic organization. Am. Nat. 1986, 127, 629–653. [Google Scholar] [CrossRef]
- Hall, C.A.S. Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Hooker, J.N. Optimal driving for single-vehicle fuel economy. Transp. Res. A 1988, 22, 183–201. [Google Scholar] [CrossRef]
- Gnaiger, E. Heat dissipation and energetic efficiency in animal anoxibiosis: Economy contra power. J. Exp. Zool. 1983, 228, 471–490. [Google Scholar] [CrossRef]
- Gnaiger, E. Optimum efficiency of energy transformation and the evolution of catabolic pathways. Funct. Ecol. 1992, 6, 234–241. [Google Scholar]
- Richman, S. The transformation of energy by Daphnia pulex. Ecol. Monogr. 1958, 28, 273–291. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a powerful model to study integrative physiology: Efficiency, economy, and power relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lauder, G.V. Energetics of collective movement in vertebrates. J. Exp. Biol. 2023, 226, jeb245617. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Efficiencies, size of organisms, and community structure. Ecology 1956, 37, 592–597. [Google Scholar] [CrossRef]
- Lacroix, G.; Lescher-Moutoué, F.; Bertolo, A. Biomass and production of plankton in shallow and deep lakes: Are there general patterns? Ann. Limnol. 1999, 35, 111–122. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Anishchenko, O.V.; Makhutova, O.N.; Kolmakov, V.I.; Kalachova, G.S.; Kolmakova, A.A.; Dubovskaya, O.P. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 2011, 165, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Karpowicz, M.; Feniova, I.; Gladyshev, M.I.; Ejsmont-Karabin, J.; Górniak, A.; Sushchik, N.N.; Anishchenko, O.V.; Dzialowski, A.R. Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions. Ecol. Evol. 2021, 11, 8201–8214. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Springs. In Reference Module in Earth Systems and Environmental Sciences; Elias, S.A., Ed.; Elsevier: Waltham, MA, USA, 2014; pp. 1–78. [Google Scholar]
- Odum, H.T. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 1957, 27, 55–112. [Google Scholar] [CrossRef]
- Teal, J.M. Community metabolism in a temperate cold spring. Ecol. Monogr. 1957, 27, 283–302. [Google Scholar] [CrossRef]
- Tilly, L.J. The structure and dynamics of Cone Spring. Ecol. Monogr. 1968, 38, 169–197. [Google Scholar] [CrossRef]
- Naiman, R.J. Primary production, standing stock, and export of organic matter in a Mohave Desert thermal stream. Limnol. Oceanogr. 1976, 21, 60–73. [Google Scholar] [CrossRef]
- Boël, M.; Romestaing, C.; Voituron, Y.; Roussel, D. Allometry of mitochondrial efficiency is set by metabolic intensity. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191693. [Google Scholar]
- Boël, M.; Romestaing, C.; Duchamp, C.; Veyrunes, F.; Renaud, S.; Roussel, D.; Voituron, Y. Improved mitochondrial coupling as a response to high mass-specific metabolic rate in extremely small mammals. J. Exp. Biol. 2020, 223, jeb215558. [Google Scholar]
- Barbe, J.; Watson, J.; Roussel, D.; Voituron, Y. The allometry of mitochondrial efficiency is tissue-dependent: A comparison between skeletal and cardiac muscles of birds. J. Exp. Biol. 2023, 226, jeb-246299. [Google Scholar] [CrossRef] [PubMed]
- Del Giorgio, P.A.; Cole, J.J. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 1998, 29, 503–541. [Google Scholar] [CrossRef]
- Maitra, A.; Dill, K.A. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, A. The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia 1981, 85, 117–128. [Google Scholar] [CrossRef]
- Kleiber, M. The Fire of Life: An Introduction to Animal Energetics; John Wiley & Sons: New York, NY, USA, 1961. [Google Scholar]
- Stiven, A.E. The relationship between size, budding rate, and growth efficiency in three species of hydra. Res. Pop. Ecol. 1965, 7, 1–15. [Google Scholar] [CrossRef]
- Schiemer, F. Comparative aspects of food dependence and energetics of freeliving nematodes. Oikos 1983, 41, 32–42. [Google Scholar] [CrossRef]
- Droop, M.R.; Scott, J.M. Steady-state energetics of a planktonic herbivore. J. Mar. Biol. Assoc. UK 1978, 58, 749–772. [Google Scholar] [CrossRef]
- Bayne, B.L.; Svensson, S.; Nell, J.A. The physiological basis for faster growth in the Sydney rock oyster, Saccostrea commercialis. Biol. Bull. 1999, 197, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Ansell, A.D. Experimental studies of a benthic predator-prey relationship. II. Energetics of growth and reproduction, and food-conversion efficiencies, in long-term cultures of the gastropod drill Polinices alderi (Forbes) feeding on the bivalve Tellina tenuis da Costa. J. Exp. Mar. Biol. Ecol. 1982, 61, 1–29. [Google Scholar] [CrossRef]
- Lawrence, J.M. Echinodermata. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 2, pp. 229–321. [Google Scholar]
- Rollo, C.D. A test of the principle of allocation using two sympatric species of cockroaches. Ecology 1986, 67, 616–628. [Google Scholar] [CrossRef]
- Muthukrishnan, J.; Pandian, T.J. Insecta. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 1, pp. 373–511. [Google Scholar]
- Biette, R.M.; Geen, G.H. Growth of underyearling sockeye salmon (Oncorhynchus nerka) under constant and cyclic temperatures in relation to live zooplankton ration size. Can. J. Fish. Aquat. Sci. 1980, 37, 203–210. [Google Scholar] [CrossRef]
- Pandian, T.J. Fish. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 2, pp. 357–465. [Google Scholar]
- Russell, N.R.; Fish, J.D.; Wootton, R.J. Feeding and growth of juvenile sea bass: The effect of ration and temperature on growth rate and efficiency. J. Fish Biol. 1996, 49, 206–220. [Google Scholar] [CrossRef]
- Norin, T.; Clark, T.D. Fish face a trade-off between ‘eating big’ for growth efficiency and ‘eating small’ to retain aerobic capacity. Biol. Lett. 2017, 13, 20170298. [Google Scholar] [CrossRef]
- Brisbin, I.L. Bioenergetics of the breeding cycle of the ring dove. Auk 1969, 86, 54–74. [Google Scholar] [CrossRef]
- Canolty, N.L.; Koong, L.J. Utilization of energy for maintenance and for fat and lean gains by mice selected for rapid postweaning growth rate. J. Nutr. 1976, 106, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Constraints on the offspring production efficiency of Peromyscus and other rodents. Funct. Ecol. 1990, 4, 223–231. [Google Scholar] [CrossRef]
- Waring, R.H. Estimating forest growth and efficiency in relation to canopy leaf area. Adv. Ecol. Res. 1983, 13, 327–354. [Google Scholar]
- Golley, F.B. Secondary productivity in terrestrial communities. Am. Zool. 1968, 8, 53–59. [Google Scholar] [CrossRef]
- Humphreys, W.F. Production and respiration in animal populations. J. Anim. Ecol. 1979, 48, 427–453. [Google Scholar] [CrossRef]
- Webb, W.L.; Lauenroth, W.K.; Szarek, S.R.; Kinerson, R.S. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the United States. Ecology 1983, 64, 134–151. [Google Scholar] [CrossRef]
- Waring, R.H.; Landsberg, J.J.; Williams, M. Net primary production of forests: A constant fraction of gross primary production? Tree Physiol. 1998, 18, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Collalti, A.; Prentice, I.C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 2019, 39, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, J.J.; Waring, R.H.; Williams, M. The assessment of NPP/GPP ratio. Tree Physiol. 2020, 40, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Global patterns of ecological efficiency at the biome-level. Oikos 1991, 61, 439–440. [Google Scholar] [CrossRef]
- Armengol, L.; Calbet, A.; Franchy, G.; Rodríguez-Santos, A.; Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 2019, 9, 2044. [Google Scholar] [CrossRef] [PubMed]
- Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 1999, 154, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; MacMillan: New York, NY, USA, 1975. [Google Scholar]
- McClare, C.W.F. Chemical machines, Maxwell’s demon, and living organisms. J. Theor. Biol. 1971, 30, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.W. The Rainbow and the Worm: The Physics of Organisms, 3rd ed.; World Scientific Publishing: Singapore, 2008. [Google Scholar]
- Ho, M.W.; Ulanowicz, R. Sustainable systems as organisms? BioSystems 2005, 82, 39–51. [Google Scholar] [CrossRef]
- Lupton, H.; Hill, A.V. An analysis of the effects of speed on the mechanical efficiency of human muscular movement. J. Physiol. 1923, 57, 337. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, S. The efficiency of bicycle-pedalling, as affected by speed and load. J. Physiol. 1929, 67, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Benedict, F.G.; Cathcart, E.P. Muscular Work: A Metabolic Study with Special Reference to the Efficiency of the Human Body as a Machine; Carnegie Institution of Washington: Washington, DC, USA, 1913. [Google Scholar]
- Hill, A.V. The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol. 1922, 56, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wootton, R.J. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.): The effect of ration and temperature on growth rate and efficiency. J. Fish Biol. 1988, 33, 763–773. [Google Scholar] [CrossRef]
- Widdows, J. Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Assoc. UK 1978, 58, 125–142. [Google Scholar] [CrossRef]
- Stuart, V. Absorbed ration, respiratory costs and resultant scope for growth in the mussel Aulacomya ater (Molina) fed on a diet of kelp detritus of different ages. Mar. Biol. Lett. 1982, 3, 289–306. [Google Scholar]
- Sinclair, T.R.; Horie, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Eiler, A.; Langenheder, S.; Bertilsson, S.; Tranvik, L.J. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl. Environ. Microbiol. 2003, 69, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.J.; Bayne, B.L. Some relationships between growth, metabolism and food in the mussel Mytilus edulis. Mar. Biol. 1974, 27, 317–326. [Google Scholar] [CrossRef]
- Calow, P. Conversion efficiencies in heterotrophic organisms. Biol. Rev. 1977, 52, 385–409. [Google Scholar] [CrossRef]
- Allen, J.R.M.; Wootton, R.J. The effect of ration and temperature on the growth of the three-spined stickleback, Gasterosteus aculeatus L. J. Fish Biol. 1982, 20, 409–422. [Google Scholar] [CrossRef]
- Griffiths, C.L.; Griffiths, R.J. Bivalvia. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 2, pp. 1–88. [Google Scholar]
- Pilarska, J. Eco-physiological studies on Brachionus rubens Ehrb (Rotatoria) III. Energy balances. Pol. Arch. Hydrobiol. 1977, 24, 343–354. [Google Scholar]
- Hodapp, D.; Hillebrand, H.; Striebel, M. “Unifying” the concept of resource use efficiency in ecology. Front. Ecol. Evol. 2019, 6, 233. [Google Scholar] [CrossRef]
- Navarro, J.M.; Winter, J.E. Ingestion rate, assimilation efficiency and energy balance in Mytilus chilensis in relation to body size and different algal concentrations. Mar. Biol. 1982, 67, 255–266. [Google Scholar] [CrossRef]
- Sharma, P.C.; Pant, M.C. An energy budget for Simocephalus vetulus (OF Muller) (Crustacea: Cladocera). Hydrobiologia 1984, 111, 37–42. [Google Scholar] [CrossRef]
- Sibly, R.M.; Calow, P. Physiological Ecology of Animals: An Evolutionary Approach; Blackwell Scientific Publications: London, UK, 1986. [Google Scholar]
- Seale, D.B. Amphibia. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 2, pp. 467–552. [Google Scholar]
- Afik, D.; Karasov, W.H. The trade-offs between digestion rate and efficiency in warblers and their ecological implications. Ecology 1995, 76, 2247–2257. [Google Scholar] [CrossRef]
- Sibly, R.M. Strategy of digestion and defecation. In Physiological Ecology: An Evolutionary Approach to Resource Use; Townsend, C.R., Calow, P., Eds.; Sinauer Associates: Sunderland, MA, USA, 1981; pp. 109–139. [Google Scholar]
- Raubenheimer, D.; Simpson, S.J. Nutrient transfer functions: The site of integration between feeding behaviour and nutritional physiology. Chemoecology 1998, 8, 61–68. [Google Scholar] [CrossRef]
- Karasov, W.H.; Martínez del Rio, C. Physiological Ecology: How Animals Process Energy, Nutrient, and Toxins; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Hilton, G.M.; Houston, D.C.; Barton, N.W.H.; Furness, R.W.; Ruxton, G.D. Ecological constraints on digestive physiology in carnivorous and piscivorous birds. J. Exp. Zool. A Ecol. Genet. Physiol. 1999, 283, 365–376. [Google Scholar] [CrossRef]
- Hilton, G.M.; Furness, R.W.; Houston, D.C. A comparative study of digestion in North Atlantic seabirds. J. Avian Biol. 2000, 31, 36–46. [Google Scholar] [CrossRef]
- Lawton, J.H. Feeding and food energy assimilation in larvae of the damselfly Pyrrhosoma nymphula (Sulz.) (Odonata: Zygoptera). J. Anim. Ecol. 1970, 39, 669–689. [Google Scholar] [CrossRef]
- Muthukrishnan, J.; Delvi, M.R. Effect of ration levels on food utilisation in the grasshopper Poecilocerus pictus. Oecologia 1974, 16, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Hanski, I. Food consumption, assimilation and metabolic rate in six species of shrew (Sorex and Neomyx). Ann. Zool. Fenn. 1984, 21, 157–165. [Google Scholar]
- Nordhaus, I.; Wolff, M. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): Food choice, food quality and assimilation efficiency. Mar. Biol. 2007, 151, 1665–1681. [Google Scholar] [CrossRef]
- Glazier, D.S. Scaling species interactions: Implications for community ecology and biological scaling theory. Acad. Biol. 2023, 1, 1–20. [Google Scholar] [CrossRef]
- Glazier, D.S. Does death drive the scaling of life? Biol. Rev. 2024. in review. [Google Scholar]
- Glazier, D.S.; Calow, P. Energy allocation rules in Daphnia magna: Clonal and age differences in the effects of food limitation. Oecologia 1992, 90, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Scriber, J.M.; Slansky, F., Jr. The nutritional ecology of immature insects. Annu. Rev. Entomol. 1981, 26, 183–211. [Google Scholar] [CrossRef]
- Straile, D. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnol. Oceanogr. 1997, 42, 1375–1385. [Google Scholar] [CrossRef]
- Glazier, D.S. Temperature affects food-chain length and macroinvertebrate species richness in spring ecosystems. Freshw. Sci. 2012, 31, 575–585. [Google Scholar] [CrossRef]
- Karpowicz, M.; Ejsmont-Karabin, J.; Kozłowska, J.; Feniova, I.; Dzialowski, A.R. Zooplankton community responses to oxygen stress. Water 2020, 12, 706. [Google Scholar] [CrossRef]
- Karpowicz, M.; Grabowska, M.; Ejsmont-Karabin, J.; Ochocka, A. Humic lakes with inefficient and efficient transfer of matter in planktonic food webs. Sci. Rep. 2023, 13, 7913. [Google Scholar] [CrossRef]
- Heusner, A.A. Size and power in mammals. J. Exp. Biol. 1991, 160, 25–54. [Google Scholar] [CrossRef]
- Marden, J.H.; Allen, L.R. Molecules, muscles, and machines: Universal performance characteristics of motors. Proc. Natl. Acad. Sci. USA 2002, 99, 4161–4166. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.M. Models and the scaling of energy costs for locomotion. J. Exp. Biol. 2005, 208, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Ahlborn, B.K. Zoological Physics: Quantitative Models of Body Design, Actions, and Physical Limitations of Animals; Springer: Berlin, Germany, 2004. [Google Scholar]
- Bejan, A. The Physics of Life: The Evolution of Everything; St. Martin’s Press: New York, NY, USA, 2016. [Google Scholar]
- Bejan, A.; Almerbati, A.; Lorente, S. Economies of scale: The physics basis. J. Appl. Phys. 2017, 121, 044907. [Google Scholar] [CrossRef]
- Kempes, C.P.; Wolpert, D.; Cohen, Z.; Pérez-Mercader, J. The thermodynamic efficiency of computations made in cells across the range of life. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160343. [Google Scholar] [CrossRef] [PubMed]
- West, G. Scale: The Universal Laws of Life, Growth, and Death in Organisms, Cities, and Companies; Penguin Books: New York, NY, USA, 2017. [Google Scholar]
- Lindstedt, S.L.; Boyce, M.S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 1985, 125, 873–878. [Google Scholar] [CrossRef]
- Millar, J.S.; Hickling, G.J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 1990, 4, 5–12. [Google Scholar] [CrossRef]
- Bartholomew, G.A. Body temperature and energy metabolism. In Animal Physiology: Principles and Adaptations, 4th ed.; Gordon, M.S., Ed.; Macmillan: New York, NY, USA, 1982; pp. 333–406. [Google Scholar]
- Bonner, J.T. Why Size Matters: From Bacteria to Whales; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Glazier, D.S. Metabolic scaling in complex living systems. Systems 2014, 2, 451–540. [Google Scholar] [CrossRef]
- Glazier, D.S. Rediscovering and reviving old observations and explanations of metabolic scaling in living systems. Systems 2018, 6, 4. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.F. Do performance–safety tradeoffs cause hypometric metabolic scaling in animals? Trends Ecol. Evol. 2017, 32, 653–664. [Google Scholar] [CrossRef]
- Glazier, D.S. Variable metabolic scaling breaks the law: From ‘Newtonian’ to ‘Darwinian’ approaches. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221605. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc. R. Soc. B Biol. Sci. 2008, 275, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. J. Comp. Physiol. B 2009, 179, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 2010, 85, 111–138. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Scaling of metabolic scaling within physical limits. Systems 2014, 2, 425–450. [Google Scholar] [CrossRef]
- Peters, R.H. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Hendriks, A.J. Allometric scaling of rate, age and density parameters in ecological models. Oikos 1999, 86, 293–310. [Google Scholar] [CrossRef]
- DeLong, J.P.; Okie, J.G.; Moses, M.E.; Sibly, R.M.; Brown, J.H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 2010, 107, 12941–12945. [Google Scholar] [CrossRef] [PubMed]
- Hatton, I.A.; Dobson, A.P.; Storch, D.; Galbraith, E.D.; Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl. Acad. Sci. USA 2019, 116, 21616–21622. [Google Scholar] [CrossRef] [PubMed]
- Wieser, W. Cost of growth in cells and organisms: General rules and comparative aspects. Biol. Rev. 1994, 69, 1–33. [Google Scholar] [CrossRef]
- Ziółko, M.; Kozłowski, J. Evolution of body size: An optimization model. Math. Biosci. 1983, 64, 127–143. [Google Scholar] [CrossRef]
- Calow, P. Resource utilization and reproduction. In Physiological Ecology; An Evolutionary Approach to Resource Use; Townsend, C.R., Calow, P., Eds.; Sinauer Associates: Sunderland, MA, USA, 1981; pp. 245–270. [Google Scholar]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Boltzmann, L. Populare Schriften; Barth: Leipzig, Germany, 1905. [Google Scholar]
- Vermeij, G.J. The evolutionary interaction among species: Selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 1994, 25, 219–236. [Google Scholar] [CrossRef]
- Milewski, A.V.; Mills, A.J. Does life consistently maximise energy intensity? Biol. Rev. 2010, 85, 859–879. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Müller, D.W.; Codron, D. Within-niche pace of life acceleration as a fundamental evolutionary principle: A mammal pilot test case. Evol. Ecol. Res. 2019, 20, 385–401. [Google Scholar]
- Brown, J.H. Macroecology; University of Chicago Press: Chicago, IL, USA, 1995. [Google Scholar]
- Perrin, N.; Sibly, R.M. Dynamic models of energy allocation and investment. Annu. Rev. Ecol. Syst. 1993, 24, 379–410. [Google Scholar] [CrossRef]
- Pianka, E.R. Evolutionary Ecology, 7th ed.; eBook, 2011. [Google Scholar]
- Humphries, M.M.; McCann, K.S. Metabolic ecology. J. Anim. Ecol. 2014, 83, 7–19. [Google Scholar] [CrossRef]
- Sebens, K.P.; Sarà, G.; Carrington, E. Estimation of fitness from energetics and life-history data: An example using mussels. Ecol. Evol. 2018, 8, 5279–5290. [Google Scholar] [CrossRef]
- Fisher, R.A. The Genetical Theory of Natural Selection; Clarendon Press: Oxford, UK, 1930. [Google Scholar]
- Law, R. Optimal life histories under age-specific predation. Am. Nat. 1979, 114, 339–417. [Google Scholar] [CrossRef]
- Kutschera, U.; Niklas, K.J. Darwin-Wallace Demons: Survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biol. 2015, 17, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Burton, T.; Killen, S.S.; Armstrong, J.D.; Metcalfe, N.B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B Biol. Sci. 2011, 278, 3465–3473. [Google Scholar] [CrossRef]
- Glazier, D.S. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol. Rev. 2015, 90, 377–407. [Google Scholar] [CrossRef]
- Pettersen, A.K.; Marshall, D.J.; White, C.R. Understanding variation in metabolic rate. J. Exp. Biol. 2018, 221, jeb166876. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.A.; Delean, S.; Cassey, P.; White, C.R. Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J. Comp. Physiol. B 2021, 191, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.L.; McKechnie, A.E.; Vézina, F. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms. J. Comp. Physiol. B 2017, 187, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- De Magalhães, J.P.; Costa, J.; Church, G.M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Stark, G.; Pincheira-Donoso, D.; Meiri, S. No evidence for the ‘rate-of-living’ theory across the tetrapod tree of life. Glob. Ecol. Biogeogr. 2020, 29, 857–884. [Google Scholar] [CrossRef]
- Glazier, D.S. The relevance of time in biological scaling. Biology 2023, 12, 1084. [Google Scholar] [CrossRef]
- Somjee, U. Positive allometry of sexually selected traits: Do metabolic maintenance costs play an important role? BioEssays 2021, 43, 2000183. [Google Scholar] [CrossRef] [PubMed]
- Somjee, U.; Powell, E.C.; Hickey, A.J.; Harrison, J.F.; Painting, C.J. Exaggerated sexually selected weapons maintained with disproportionately low metabolic costs in a single species with extreme size variation. Funct. Ecol. 2021, 35, 2282–2293. [Google Scholar] [CrossRef]
- Dinh, J.P. Large and exaggerated sexually selected weapons comprise high proportions of metabolically inexpensive exoskeleton. Biol. Lett. 2022, 18, 20210550. [Google Scholar] [CrossRef] [PubMed]
- Somjee, U.; Shankar, A.; Falk, J.J. Can sex-specific metabolic rates provide insight into patterns of metabolic scaling? Integr. Comp. Biol. 2022, 62, 1460–1470. [Google Scholar] [CrossRef]
- Sciubba, E. What did Lotka really say? A critical reassessment of the “maximum power principle”. Ecol. Model. 2011, 222, 1347–1353. [Google Scholar] [CrossRef]
- Karasov, W.H. Energetics, physiology and vertebrate ecology. Trends Ecol. Evol. 1986, 1, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals: Ecological implications. Trends Ecol. Evol. 1992, 7, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.A.; Diamond, J. Limits to dietary nutrient and intestinal nutrients uptakes in lactating mice. Physiol. Zool. 1994, 67, 282–303. [Google Scholar] [CrossRef]
- Hammond, K.A.; Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 1997, 386, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Bacigalupe, L.D.; Bozinovic, F. Design, limitations and sustained metabolic rate: Lessons from small mammals. J. Exp. Biol. 2002, 205, 2963–2970. [Google Scholar] [CrossRef] [PubMed]
- McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics; Cornell University Press: Ithaca, NY, USA, 2002. [Google Scholar]
- Naya, D.E.; Bacigalupe, L.D. Metabolic constraints to resource allocation. In Resource Allocation Theory Applied to Farm Animals; Rauw, W.M., Ed.; CAB International: Wallingford, UK, 2009; pp. 61–71. [Google Scholar]
- Piersma, T.; van Gils, J.A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Sadowska, J.; Gębczyński, A.K.; Konarzewski, M. Larger guts and faster growth in mice selected for high basal metabolic rate. Biol. Lett. 2021, 17, 20210244. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, R.E. Adaptation, constraint, and compromise in avian postnatal development. Biol. Rev. 1979, 54, 269–290. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.A.; Lloyd, K.K.; Diamond, J. Is mammary output capacity limiting to lactational performance in mice? J. Exp. Biol. 1996, 199, 337–349. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West et al.’s model. Funct. Ecol. 2003, 17, 384–393. [Google Scholar] [CrossRef]
- Speakman, J.R.; Król, E. Limits to sustained energy intake. XIII. Recent progress and future perspectives. J. Exp. Biol. 2011, 214, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.B.; Li, L.; Wang, L.P.; Chi, Q.S.; Hambly, C.; Wang, D.H.; Speakman, J.R. Limits to sustained energy intake. XIX. A test of the heat dissipation limitation hypothesis in Mongolian gerbils (Meriones unguiculatus). J. Exp. Biol. 2013, 216, 3358–3368. [Google Scholar] [CrossRef] [PubMed]
- Eklund, J.; Bradford, G.E. Longevity and lifetime body weight in mice selected for rapid growth. Nature 1977, 265, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Calow, P. The cost of reproduction–a physiological approach. Biol. Rev. 1979, 54, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Calow, P.; Townsend, C.R. Resource utilization in growth. In Physiological Ecology; An Evolutionary Approach to Resource Use; Townsend, C.R., Calow, P., Eds.; Sinauer Associates: Sunderland, MA, USA, 1981; pp. 220–244. [Google Scholar]
- Hirshfield, M.F. An experimental analysis of reproductive effort and cost in the Japanese medaka, Oryzias latipes. Ecology 1980, 61, 282–292. [Google Scholar] [CrossRef]
- Gittleman, J.L.; Thompson, S.D. Energy allocation in mammalian reproduction. Am. Zool. 1988, 28, 863–875. [Google Scholar] [CrossRef]
- Roff, D.A. The Evolution of Life Histories: Theory and Analysis; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Arendt, J.D. Adaptive intrinsic growth rates: An integration across taxa. Q. Rev. Biol. 1997, 72, 149–177. [Google Scholar] [CrossRef]
- Zera, A.J.; Harshman, L.G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 2001, 32, 95–126. [Google Scholar] [CrossRef]
- Speakman, J.R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 375–398. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Resource allocation patterns. In Resource Allocation Theory Applied to Farm Animals; Rauw, W.M., Ed.; CAB International: Wallingford, UK, 2009; pp. 22–43. [Google Scholar]
- Dmitriew, C.M. The evolution of growth trajectories: What limits growth rate? Biol. Rev. 2011, 86, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, S.A.L.M.; Lika, K. Resource allocation to reproduction in animals. Biol. Rev. 2014, 89, 849–859. [Google Scholar] [CrossRef]
- Ng’oma, E.; Perinchery, A.M.; King, E.G. How to get the most bang for your buck: The evolution and physiology of nutrition-dependent resource allocation strategies. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170445. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H.; McGrosky, A. Balancing growth, reproduction, maintenance, and activity in evolved energy economies. Curr. Biol. 2022, 32, R709–R719. [Google Scholar] [CrossRef] [PubMed]
- Król, E.; Speakman, J.R. Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. J. Exp. Biol. 2003, 206, 4255–4266. [Google Scholar] [CrossRef] [PubMed]
- Król, E.; Murphy, M.; Speakman, J.R. Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. J. Exp. Biol. 2007, 210, 4233–4243. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 2010, 79, 726–746. [Google Scholar] [CrossRef] [PubMed]
- Nord, A.; Nilsson, J.Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 2019, 33, 250–259. [Google Scholar] [CrossRef]
- Sadowska, J.; Gȩbczyński, A.K.; Lewoc, M.; Konarzewski, M. Not that hot after all: No limits to heat dissipation in lactating mice selected for high or low BMR. J. Exp. Biol. 2019, 222, jeb204669. [Google Scholar] [CrossRef] [PubMed]
- Ohrnberger, S.A.; Hambly, C.; Speakman, J.R.; Valencak, T.G. Limits to sustained energy intake. XXXII. Hot again: Dorsal shaving increases energy intake and milk output in golden hamsters (Mesocricetus auratus). J. Exp. Biol. 2020, 223, jeb230383. [Google Scholar] [CrossRef] [PubMed]
- Case, T.J. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 1978, 53, 243–282. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Trickovic, B.; Kempes, C.P. Evolutionary scaling of maximum growth rate with organism size. Sci. Rep. 2022, 12, 22586. [Google Scholar] [CrossRef] [PubMed]
- Calow, P. Life Cycles: An Evolutionary Approach to the Physiology of Reproduction, Development and Aging; Chapman and Hall: London, UK, 1978. [Google Scholar]
- Leamy, L.; Atchley, W. Directional selection and developmental stability: Evidence from fluctuating asymmetry of morphometric characters in rats. Growth 1985, 49, 8–18. [Google Scholar] [PubMed]
- Speakman, J.R.; Selman, C.; McLaren, J.S.; Harper, E.J. Living fast, dying when? The link between aging and energetics. J. Nutr. 2002, 132, 1583S–1597S. [Google Scholar] [CrossRef] [PubMed]
- Nussey, D.H.; Pemberton, J.M.; Pilkington, J.G.; Blount, J.D. Life history correlates of oxidative damage in a free-living mammal population. Funct. Ecol. 2009, 23, 809–817. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Embryo development and ageing in birds and mammals. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, R.E. Life-history connections to rates of aging in terrestrial vertebrates. Proc. Natl. Acad. Sci. USA 2010, 107, 10314–10319. [Google Scholar] [CrossRef] [PubMed]
- Lack, D. The Natural Regulation of Animal Numbers; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Glazier, D.S. Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 1992, 73, 910–926. [Google Scholar] [CrossRef]
- McNab, B.K. Food habits, energetics, and the population biology of mammals. Am. Nat. 1980, 116, 106–124. [Google Scholar] [CrossRef]
- Glazier, D.S. Is fatter fitter? Body storage and reproduction in ten populations of the freshwater amphipod Gammarus minus. Oecologia 2000, 122, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R. The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 2000, 30, 177–297. [Google Scholar]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Pianka, E.R. On r-and K-selection. Am. Nat. 1970, 104, 592–597. [Google Scholar] [CrossRef]
- Southwood, T.R.E. Bionomic strategies and population parameters. In Theoretical Ecology: Principles and Applications, 2nd ed.; May, R.M., Ed.; Sinauer Associates: Sunderland, MA, USA, 1981; pp. 30–52. [Google Scholar]
- Winemiller, K.O.; Rose, K.A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 1992, 49, 2196–2218. [Google Scholar] [CrossRef]
- Adler, G.H.; Levins, R. The island syndrome in rodent populations. Q. Rev. Biol. 1994, 69, 473–490. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.L.; Dill, L.M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 1990, 68, 619–640. [Google Scholar] [CrossRef]
- Glazier, D.S.; Butler, E.M.; Lombardi, S.A.; Deptola, T.J.; Reese, A.J.; Satterthwaite, E.V. Ecological effects on metabolic scaling: Amphipod responses to fish predators in freshwater springs. Ecol. Monogr. 2011, 81, 599–618. [Google Scholar] [CrossRef]
- Glazier, D.S.; Borrelli, J.J.; Hoffman, C.L. Effects of fish predators on the mass-related energetics of a keystone freshwater crustacean. Biology 2020, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Forbes, M.R. Parasitism and host reproductive effort. Oikos 1993, 67, 444–450. [Google Scholar] [CrossRef]
- Sheldon, B.C.; Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 1996, 11, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Rauw, W.M. Immune response from a resource allocation perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Hempel, P. Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Hvas, M.; Bui, S. Energetic costs of ectoparasite infection in Atlantic salmon. J. Exp. Biol. 2022, 225, jeb243300. [Google Scholar] [CrossRef]
- Glazier, D.S. An Energetic and Ecological Basis for Different Reproductive Rates in Five Species of Peromyscus (mice). Ph.D. Dissertation, Cornell University, Ithaca, NY, USA, 1979. [Google Scholar]
- Glazier, D.S. The Energy Flow Principle and the Evolution of Different Litter Sizes in Five Species of Peromyscus Mice. In Proceedings of the Second International Congress of Systematic and Evolutionary Biology (Abstracts), University of British Columbia, Vancouver, BC, Canada, 17–24 July 1980; p. 212. [Google Scholar]
- Cody, M.L. A general theory of clutch size. Evolution 1966, 20, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Trade-offs between reproductive and somatic (storage) investments in animals: A comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 1999, 13, 539–555. [Google Scholar] [CrossRef]
- Brown, M.T. The maximum power principle. In Elgar Encyclopedia of Ecological Economics; Rosa, E.P., Ramos-Martín, J., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 363–367. [Google Scholar]
- Kozłowski, J. Energetic definition of fitness? Yes, but not that one. Am. Nat. 1996, 147, 1087–1091. [Google Scholar] [CrossRef]
- Kozłowski, J. Theoretical and empirical status of Brown, Marquet and Taper’s model of species-size distribution. Funct. Ecol. 2002, 16, 540–542. [Google Scholar] [CrossRef]
- Jones, K.E.; Purvis, A. An optimum body size for mammals? Comparative evidence from bats. Funct. Ecol. 1997, 11, 751–756. [Google Scholar] [CrossRef]
- Perrin, N. On body size, and energy and fitness. Funct. Ecol. 1998, 12, 500–502. [Google Scholar] [CrossRef]
- Symonds, M.R.E. Insectivore life histories: Further evidence against an optimum body size for mammals. Funct. Ecol. 1999, 13, 508–513. [Google Scholar] [CrossRef]
- Bokma, F. Evolution of body size: Limitations of an energetic definition of fitness. Funct. Ecol. 2001, 15, 696–699. [Google Scholar] [CrossRef]
- Glazier, D.S. Does death drive the scaling of life? In Scaling in Biology; Enquist, B.J., Kempes, C.P., O’Connor, M.I., Eds.; Santa Fe Institute Press: Santa Fe, NM, USA, 2024; in review. [Google Scholar]
- Peterson, I.; Wroblewski, J.S. Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 1984, 41, 1117–1120. [Google Scholar] [CrossRef]
- McGurk, M.D. Natural mortality of marine pelagic fish eggs and larvae: Role of spatial patchiness. Mar. Ecol. Prog. Ser. 1986, 34, 227–242. [Google Scholar] [CrossRef]
- Hirst, A.G.; Kiørboe, T. Mortality of marine planktonic copepods: Global rates and patterns. Mar. Ecol. Progr. Ser. 2002, 230, 195–209. [Google Scholar] [CrossRef]
- McCoy, M.W.; Gillooly, J.F. Predicting natural mortality rates of plants and animals. Ecol Lett. 2008, 11, 710–716. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Clutch size in birds: Outcome of opposing predator and prey adaptations. Science 1970, 168, 599–600. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, R.E.; Cox, G.W. Taxon cycles in the West Indian avifauna. Am. Nat. 1972, 106, 195–219. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Cox, G.W. Stage of taxon cycle, habitat distribution, and population density in the avifauna of the West Indies. Am. Nat. 1978, 112, 875–895. [Google Scholar] [CrossRef]
- Glazier, D.S. Ecological shifts and the evolution of geographically restricted species of North American Peromyscus (mice). J. Biogeogr. 1980, 7, 63–83. [Google Scholar] [CrossRef]
- Ricklefs, R.E. A biogeographical perspective on ecological systems: Some personal reflections. J. Biogeogr. 2011, 38, 2045–2056. [Google Scholar] [CrossRef]
- Wieser, W. A new look at energy conversion in ectothermic and endothermic animals. Oecologia 1985, 66, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Pianka, E.R. Natural selection of optimal reproductive tactics. Am. Zool. 1976, 16, 775–784. [Google Scholar] [CrossRef]
- Williams, G.C. Natural Selection: Domains, Levels, and Challenges; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Martin, C. Waste not, want not. Curr. Biol. 2022, 32, R589–R590. [Google Scholar] [CrossRef] [PubMed]
- Slobodkin, L.B. On the inconstancy of ecological efficiency and the form of ecological theories. Trans. Conn. Acad. Sci. 1972, 44, 291–305. [Google Scholar]
- Parry, G.D. The influence of the cost of growth on ectotherm metabolism. J. Theor. Biol. 1983, 101, 453–477. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A. Energy flow in growth and production. Trends Ecol. Evol. 2019, 34, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.E. Relationships between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology 1968, 49, 755–759. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Miller, G.L. Ecology; Freeman: New York, NY, USA, 2000. [Google Scholar]
- Williams, G.C. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought; Princeton University Press: Princeton, NJ, USA, 1966. [Google Scholar]
- Campbell, M. Adaptation and fitness. Stud. Hist. Philos. Sci. A 1983, 14, 59–65. [Google Scholar] [CrossRef]
- Michod, R.E. On fitness and adaptedness and their role in evolutionary explanation. J. Hist. Biol. 1986, 19, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Blanquart, F.; Kaltz, O.; Nuismer, S.L.; Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 2013, 16, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Thoday, J.M. Components of fitness. Symp. Soc. Exp. Biol. 1953, 7, 95–113. [Google Scholar]
- Kim, K.; Lasker, H.R. Allometry of resource capture in colonial cnidarians and constraints on modular growth. Funct. Ecol. 1998, 12, 646–654. [Google Scholar] [CrossRef]
- Gnaiger, E. Optimum efficiencies of energy transformation in anoxic metabolism. The strategies of power and economy. In Evolutionary Physiological Ecology; Calow, P., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 7–36. [Google Scholar]
- Vermeij, G.J. Nature: An Economic History; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Szarski, H. Cell size and the concept of wasteful and frugal evolutionary strategies. J. Theor. Biol. 1983, 105, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kozłowski, J.; Konarzewski, M.; Czarnoleski, M. Coevolution of body size and metabolic rate in vertebrates: A life-history perspective. Biol. Rev. 2020, 95, 1393–1417. [Google Scholar] [CrossRef]
- Hall, S.R.; Becker, C.R.; Duffy, M.A.; Cáceres, C.E. A power–efficiency trade-off in resource use alters epidemiological relationships. Ecology 2012, 93, 645–656. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R.H.; Pianka, E.R. On optimal use of patchy environment. Am. Nat. 1966, 100, 603–609. [Google Scholar] [CrossRef]
- MacArthur, R.H. Geographical Ecology: Patterns in the Distribution of Species; Harper & Row: New York, NY, USA, 1972. [Google Scholar]
- Futuyma, D.J.; Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 1988, 19, 207–233. [Google Scholar] [CrossRef]
- Wilson, D.S.; Yoshimura, J. On the coexistence of specialists and generalists. Am. Nat. 1994, 144, 692–707. [Google Scholar] [CrossRef]
- Caley, M.J.; Munday, P.L. Growth trades off with habitat specialization. Proc. R. Soc. B Biol. Sci. 2003, 270 (Suppl. 2), S175–S177. [Google Scholar] [CrossRef]
- Verberk, W.C.; Van Der Velde, G.; Esselink, H. Explaining abundance–occupancy relationships in specialists and generalists: A case study on aquatic macroinvertebrates in standing waters. J. Anim. Ecol. 2010, 79, 589–601. [Google Scholar] [CrossRef]
- Sudta, C.; Salcido, D.M.; Forister, M.L.; Walla, T.R.; Villamarín-Cortez, S.; Dyer, L.A. Jack-of-all-trades paradigm meets long-term data: Generalist herbivores are more widespread and locally less abundant. Ecol. Lett. 2022, 25, 948–957. [Google Scholar] [CrossRef]
- Remold, S. Understanding specialism when the jack of all trades can be the master of all. Proc. R. Soc. B Biol. Sci. 2012, 279, 4861–4869. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.P.; Montiel, J.; Shay, J.E.; Stephens, M.R.; Slatyer, R.A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Syst. 2017, 48, 183–206. [Google Scholar] [CrossRef]
- Strickler, K. Specialization and foraging efficiency of solitary bees. Ecology 1979, 60, 998–1009. [Google Scholar] [CrossRef]
- Yamada, S.B.; Boulding, E.G. Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J. Exp. Mar. Biol. Ecol. 1998, 220, 191–211. [Google Scholar] [CrossRef]
- Michálek, O.; Petráková, L.; Pekár, S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 2017, 7, 2756–2766. [Google Scholar] [CrossRef] [PubMed]
- García, L.F.; Viera, C.; Pekár, S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 2018, 105, 30. [Google Scholar] [CrossRef] [PubMed]
- Pompozzi, G.; García, L.F.; Petráková, L.; Pekár, S. Distinct feeding strategies of generalist and specialist spiders. Ecol. Entomol. 2019, 44, 129–139. [Google Scholar] [CrossRef]
- Bernays, E.A.; Funk, D.J. Specialists make faster decisions than generalists: Experiments with aphids. Proc. R. Soc. B Biol. Sci. 1999, 266, 151–156. [Google Scholar] [CrossRef]
- Bernays, E.A.; Singer, M.S.; Rodrigues, D. Foraging in nature: Foraging efficiency and attentiveness in caterpillars with different diet breadths. Ecol. Entomol. 2004, 29, 389–397. [Google Scholar] [CrossRef]
- Egan, S.P.; Funk, D.J. Individual advantages to ecological specialization: Insights on cognitive constraints from three conspecific taxa. Proc. R. Soc. B Biol. Sci. 2006, 273, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Huckins, C.J.F. Functional linkages among morphology, feeding performance, diet and competitive ability in molluscivorous sunfish. Ecology 1997, 78, 2401–2414. [Google Scholar] [CrossRef]
- Jones, M.; Mandelik, Y.; Dayan, T. Coexistence of temporally partitioned spiny mice: Roles of habitat structure and foraging behavior. Ecology 2001, 82, 2164–2176. [Google Scholar] [CrossRef]
- Britt, E.; Bennet, A.F. The energetic advantages of slug specialization in Garter snakes (Genus Thamnophis). Physiol. Biochem. Zool. 2008, 81, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Terraube, J.; Arroyo, B.; Madders, M.; Mougeot, F. Diet specialisation and foraging efficiency under fluctuating vole abundance: A comparison between generalist and specialist avian predators. Oikos 2011, 120, 234–244. [Google Scholar] [CrossRef]
- Korpimäki, E.; Hongisto, K.; Masoero, G.; Laaksonen, T. The difference between generalist and specialist: The effects of wide fluctuations in main food abundance on numbers and reproduction of two co-existing predators. J. Avian Biol. 2020, 51, e02508. [Google Scholar] [CrossRef]
- Mykrä, H.; Heino, J. Decreased habitat specialization in macroinvertebrate assemblages in anthropogenically disturbed streams. Ecol. Complex. 2017, 31, 181–188. [Google Scholar] [CrossRef]
- Brown, J.H. On the relationship between abundance and distribution of species. Am. Nat. 1984, 124, 255–279. [Google Scholar] [CrossRef]
- Novosolov, M.; Rodda, G.H.; North, A.C.; Butchart, S.H.; Tallowin, O.J.; Gainsbury, A.M.; Meiri, S. Population density–range size relationship revisited. Glob. Ecol. Biogeogr. 2017, 26, 1088–1097. [Google Scholar] [CrossRef]
- Sporbert, M.; Keil, P.; Seidler, G.; Bruelheide, H.; Jandt, U.; Aćić, S.; Biurrun, I.; Campos, J.A.; Čarni, A.; Chytrý, M.; et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J. Biogeogr. 2020, 47, 2210–2222. [Google Scholar] [CrossRef]
- Ten Caten, C.; Holian, L.; Dallas, T. Weak but consistent abundance–occupancy relationships across taxa, space and time. Glob. Ecol. Biogeogr. 2022, 31, 968–977. [Google Scholar] [CrossRef]
- Roughgarden, J. Density-dependent natural selection. Ecology 1971, 52, 453–468. [Google Scholar] [CrossRef]
- Mueller, L.D. Density-dependent natural selection does not increase efficiency. Evol. Ecol. 1990, 4, 290–297. [Google Scholar] [CrossRef]
- Joshi, A.; Mueller, L.D. Density-dependent natural selection in Drosophila: Trade-offs between larval food acquisition and utilization. Evol. Ecol. 1996, 10, 463–474. [Google Scholar] [CrossRef]
- Reznick, D.; Bryant, M.J.; Bashey, F. r-and K-selection revisited: The role of population regulation in life-history evolution. Ecology 2002, 83, 1509–1520. [Google Scholar] [CrossRef]
- Hamilton, W.J., III. Reproductive adaptations of the red tree mouse. J. Mamm. 1962, 43, 486–504. [Google Scholar] [CrossRef]
- Vaughan, T.A.; Czaplewski, N.J. Reproduction in Stephens’ woodrat: The wages of folivory. J. Mamm. 1985, 66, 429–443. [Google Scholar] [CrossRef]
- Glazier, D.S. Temporal variability of abundance and the distribution of species. Oikos 1986, 47, 309–314. [Google Scholar] [CrossRef]
- Ebenhard, T. Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc. 1991, 42, 105–121. [Google Scholar] [CrossRef]
- Kitahara, M.; Fujii, K. Biodiversity and community structure of temperate butterfly species within a gradient of human disturbance: An analysis based on the concept of generalist vs. specialist strategies. Popul. Ecol. 1994, 36, 187–199. [Google Scholar] [CrossRef]
- Griffiths, D. Pattern and process in the ecological biogeography of European freshwater fish. J. Anim. Ecol. 2006, 75, 734–751. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; Julliard, R.; Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 2008, 117, 507–514. [Google Scholar] [CrossRef]
- Börschig, C.; Klein, A.M.; von Wehrden, H.; Krauss, J. Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl. Ecol. 2013, 14, 547–554. [Google Scholar] [CrossRef]
- Carscadden, K.A.; Emery, N.C.; Arnillas, C.A.; Cadotte, M.W.; Afkhami, M.E.; Gravel, D.; Livingstone, S.W.; Wiens, J.J. Niche breadth: Causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 2020, 95, 179–214. [Google Scholar] [CrossRef]
- Chen, Y.J.; Leung, P.M.; Wood, J.L.; Bay, S.K.; Hugenholtz, P.; Kessler, A.J.; Shelley, G.; Waite, D.W.; Franks, A.E.; Cook, P.L.; et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021, 15, 2986–3004. [Google Scholar] [CrossRef] [PubMed]
- Stuart-Smith, R.D.; Mellin, C.; Bates, A.E.; Edgar, G.J. Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nat. Ecol. Evol. 2021, 5, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Gibson, L.; Amir, Z.; Chanthorn, W.; Ahmad, A.H.; Jansen, P.A.; Mendes, C.P.; Onuma, M.; Peres, C.A.; Luskin, M.S. The rise of hyperabundant native generalists threatens both humans and nature. Biol. Rev. 2023, 98, 1829–1844. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, D.P.; Simberloff, D. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. Am. Nat. 2002, 159, 606–623. [Google Scholar] [CrossRef] [PubMed]
- Jaenike, J. Resource predictability and niche breadth in the Drosophila quinaria species group. Evolution 1978, 32, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Lacy, R.C. Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol. Entomol. 1984, 9, 43–54. [Google Scholar] [CrossRef]
- Jaenike, J. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 1990, 21, 243–273. [Google Scholar] [CrossRef]
- Thompson, J.N. The Coevolutionary Process; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Pekár, S.; Toft, S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae). Biol. Rev. 2015, 90, 744–761. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.B. The Serengeti Rules: The Quest to Discover How Life Works and Why It Matters; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Sinclair, A.R.E.; Mduma, S.; Brashares, J.S. Patterns of predation in a diverse predator–prey system. Nature 2003, 425, 288–290. [Google Scholar] [CrossRef]
- Hopcraft, J.G.C.; Olff, H.; Sinclair, A.R.E. Herbivores, resources and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 2010, 25, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Fenchel, T. Intrinsic rate of natural increase: The relationship with body size. Oecologia 1974, 14, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Blueweiss, L.; Fox, H.; Kudzma, V.; Nakashima, D.; Peters, R.; Sams, S. Relationships between body size and some life history parameters. Oecologia 1978, 37, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Charnov, E.L. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Finlay, B.J.; Esteban, G.F.; Olmo, J.L.; Tyler, P.A. Global distribution of free-living microbial species. Ecography 1999, 22, 138–144. [Google Scholar] [CrossRef]
- Finlay, B.J. Global dispersal of free-living microbial eukaryote species. Science 2002, 296, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Finlay, B.J.; Fenchel, T. Cosmopolitan metapopulations of free-living eukaryotes. Protist 2004, 155, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fenchel, T.; Finlay, B.J. The ubiquity of small species: Patterns of local and global diversity. Bioscience 2004, 54, 777–784. [Google Scholar] [CrossRef]
- Fontaneto, D. Long-distance passive dispersal in microscopic aquatic animals. Mov. Ecol. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Azovsky, A.I.; Chertoprud, E.S.; Garlitska, L.A.; Mazei, Y.A.; Tikhonenkov, D.V. Does size really matter in biogeography? Patterns and drivers of global distribution of marine micro-and meiofauna. J. Biogeogr. 2020, 47, 1180–1192. [Google Scholar] [CrossRef]
- Ptatscheck, C.; Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 2020, 847, 3519–3547. [Google Scholar] [CrossRef]
- Fontaneto, D. (Ed.) Biogeography of Microscopic Organisms: Is Everything Small Everywhere? Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Fontaneto, D.; Hortal, J. At least some protist species are not ubiquitous. Mol. Ecol. 2013, 22, 5053–5055. [Google Scholar] [CrossRef] [PubMed]
- Fenchel, T. Biogeography for bacteria. Science 2003, 301, 925–926. [Google Scholar] [CrossRef] [PubMed]
- Foissner, W. Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta Protozool. 2006, 45, 111–136. [Google Scholar]
- Martiny, J.B.H.; Bohannan, B.J.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Horner-Devine, M.C.; Kane, M.; Krumins, J.A.; Kuske, C.R.; et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 2006, 4, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Fenchel, T.; Finlay, B.J.; Esteban, G.F. Cosmopolitan metapopulations? Protist 2019, 170, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Schmalhausen, I.I. Factors of Evolution: The Theory of Stabilizing Selection; Blakiston Company: Philadelphia, PA, USA, 1949. [Google Scholar]
- Bonner, J.T. Randomness in Evolution; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Schramski, J.R.; Gattie, D.K.; Brown, J.H. Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind. Proc. Natl. Acad. Sci. USA 2015, 112, 9511–9517. [Google Scholar] [CrossRef] [PubMed]
- Desmond, H.; Ramsey, G. (Eds.) Human Success: Evolutionary Origins and Human Implications; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Konno, K. Extremely high relative growth rate makes the cabbage white, Pieris rapae, a global pest with highly abundant and migratory nature. Sci. Rep. 2023, 13, 9697. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Gaston, K.J.; Band, S.R. Range size, dispersal and niche breadth in the herbaceous flora of central England. J. Ecol. 1999, 87, 150–155. [Google Scholar] [CrossRef]
- Morin, X.; Lechowicz, M.J. Niche breadth and range area in North American trees. Ecography 2013, 36, 300–312. [Google Scholar] [CrossRef]
- Slatyer, R.A.; Hirst, M.; Sexton, J.P. Niche breadth predicts geographical range size: A general ecological pattern. Ecol. Lett. 2013, 16, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.N.; Angert, A.L. The evolution of environmental tolerance and range size: A comparison of geographically restricted and widespread Mimulus. Evolution 2014, 68, 2917–2931. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Groen, T.A.; Wang, T.; Skidmore, A.K.; Huang, J.; Ma, K. Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. Int. J. Geogr. Inf. Sci. 2017, 31, 190–212. [Google Scholar] [CrossRef]
- Kambach, S.; Lenoir, J.; Decocq, G.; Welk, E.; Seidler, G.; Dullinger, S.; Gégout, J.C.; Guisan, A.; Pauli, H.; Svenning, J.C.; et al. Of niches and distributions: Range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 2019, 42, 467–477. [Google Scholar] [CrossRef]
- Sheth, S.N.; Morueta-Holme, N.; Angert, A.L. Determinants of geographic range size in plants. New Phytol. 2020, 226, 650–665. [Google Scholar] [CrossRef] [PubMed]
- Le Feuvre, M.C.; Dempster, T.; Shelley, J.J.; Davis, A.M.; Swearer, S.E. Range restriction leads to narrower ecological niches and greater extinction risk in Australian freshwater fish. Biodivers. Conserv. 2021, 30, 2955–2976. [Google Scholar] [CrossRef]
- Olsen, K.; Svenning, J.C.; Balslev, H. Niche breadth predicts geographical range size and northern range shift in European dragonfly species (Odonata). Diversity 2022, 14, 719. [Google Scholar] [CrossRef]
- Evans, A.; Jacquemyn, H. Range size and niche breadth as predictors of climate-induced habitat change in Epipactis (Orchidaceae). Front. Ecol. Evol. 2022, 10, 894616. [Google Scholar] [CrossRef]
- Jacquemyn, H.; De Coensel, B.; Evans, A.; Wang, D.; Merckx, V.S. The relationship between phylogeny, range size, niche breadth and niche overlap in European orchids (Orchidaceae). J. Biogeogr. 2024, 51, 409–421. [Google Scholar] [CrossRef]
- Gaston, K.J.; Spicer, J.I. The relationship between range size and niche breadth: A test using five species of Gammarus (Amphipoda). Glob. Ecol. Biogeogr. 2001, 10, 179–188. [Google Scholar] [CrossRef]
- Gaston, K.J. The Structure and Dynamics of Geographic Ranges; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Cardillo, M.; Dinnage, R.; McAlister, W. The relationship between environmental niche breadth and geographic range size across plant species. J. Biogeogr. 2019, 46, 97–109. [Google Scholar] [CrossRef]
- Cai, Q.; Welk, E.; Ji, C.; Fang, W.; Sabatini, F.M.; Zhu, J.; Zhu, J.; Tang, Z.; Attorre, F.; Campos, J.A.; et al. The relationship between niche breadth and range size of beech (Fagus) species worldwide. J. Biogeogr. 2021, 48, 1240–1253. [Google Scholar] [CrossRef]
- DeLong, J.P. The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 2008, 117, 1329–1336. [Google Scholar] [CrossRef]
- Liow, L.H. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Glob. Ecol. Biogeogr. 2007, 16, 117–128. [Google Scholar] [CrossRef]
- Payne, J.L.; Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl. Acad. Sci. USA 2007, 104, 10506–10511. [Google Scholar] [PubMed]
- Powell, M.G. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 2007, 33, 530–546. [Google Scholar] [CrossRef]
- Heim, N.A.; Peters, S.E. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 2011, 6, e18946. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.J. How species longevity, intraspecific morphological variation, and geographic range size are related: A comparison using Late Cambrian trilobites. Evolution 2011, 65, 3253–3273. [Google Scholar] [CrossRef]
- Newsome, T.M.; Wolf, C.; Nimmo, D.G.; Kopf, R.K.; Ritchie, E.G.; Smith, F.A.; Ripple, W.J. Constraints on vertebrate range size predict extinction risk. Glob. Ecol. Biogeogr. 2020, 29, 76–86. [Google Scholar] [CrossRef]
- Glazier, D.S. Toward a predictive theory of speciation: The ecology of isolate selection. J. Theor. Biol. 1987, 126, 323–333. [Google Scholar] [CrossRef]
- Wilson, E.O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 1961, 95, 169–193. [Google Scholar]
- Economo, E.P.; Sarnat, E.M.; Janda, M.; Clouse, R.; Klimov, P.B.; Fischer, G.; Blanchard, B.D.; Ramirez, L.N.; Andersen, A.N.; Berman, M.; et al. Breaking out of biogeographical modules: Range expansion and taxon cycles in the hyperdiverse ant genus Pheidole. J. Biogeogr. 2015, 42, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Sriswasdi, S.; Yang, C.C.; Iwasaki, W. Generalist species drive microbial dispersion and evolution. Nat. Commun. 2017, 8, 1162. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S.; Eckert, S.E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 2002, 29, 81–92. [Google Scholar] [CrossRef]
- Raia, P.; Carotenuto, F.; Passaro, F.; Fulgione, D.; Fortelius, M. Ecological specialization in fossil mammals explains Cope’s rule. Am. Nat. 2012, 179, 328–337. [Google Scholar] [CrossRef]
- Carleton, M.D. Systematics and evolution. In Advances in the Study of Peromyscus; Kirkland, G.L., Jr., Layne, J.N., Eds.; Texas Tech University Press: Lubbock, TX, USA, 1989; pp. 7–141. [Google Scholar]
- Miller, J.R.; Engstrom, M.D. The relationships of major lineages within Peromyscine rodents: A molecular phylogenetic hypothesis and systematic reappraisal. J. Mammal. 2008, 89, 1279–1295. [Google Scholar] [CrossRef]
- Platt, R.N.; Amman, B.R.; Keith, M.S.; Thompson, C.W.; Bradley, R.D. What is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification. J. Mammal. 2015, 96, 708–719. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.S.; Barve, N.; Flenniken, J.; Guralnick, R.P. Evolution of litter size in North America’s most common small mammal: An informatics-based approach. J. Mammal. 2019, 100, 365–381. [Google Scholar] [CrossRef]
- Boria, R.A.; Blois, J.L. Phylogeography within the Peromyscus maniculatus species group: Understanding past distribution of genetic diversity and areas of refugia in western North America. Mol. Phylogenet. Evol. 2023, 180, 107701. [Google Scholar] [CrossRef]
- Baker, R.H. Habitats and distribution. In Biology of Peromyscus (Rodentia); King, J.A., Ed.; Special Publication No. 2; American Society of Mammalogists: Fort Collins, CO, USA, 1968; pp. 98–126. [Google Scholar]
- Modi, W.S. Reproductive tactics among deer mice of the genus Peromyscus. Can. J. Zool. 1984, 62, 2576–2581. [Google Scholar] [CrossRef]
- Martin, L.B.; Weil, Z.M.; Nelson, R.J. Immune defense and reproductive pace of life in Peromyscus mice. Ecology 2007, 88, 2516–2528. [Google Scholar] [CrossRef]
- Wilsterman, K.; Cunningham, K. Evolution in reproductive tempo and investment across the Peromyscus radiation. J. Exp. Zool. A Ecol. Integr. Physiol. 2023, 339, 13–27. [Google Scholar] [CrossRef]
- Glazier, D.S. Energetics of litter size in five species of Peromyscus with generalizations for other mammals. J. Mammal. 1985, 66, 629–642. [Google Scholar] [CrossRef]
- Glazier, D.S. Relationship between metabolic rate and energy expenditure for lactation in Peromyscus. Comp. Biochem. Physiol. A Physiol. 1985, 80, 587–590. [Google Scholar] [CrossRef]
- MacMillen, R.E.; Garland, T., Jr. Adaptive physiology. In Advances in the Study of Peromyscus; Kirkland, G.L., Jr., Layne, J.N., Eds.; Texas Tech University Press: Lubbock, TX, USA, 1989; pp. 143–168. [Google Scholar]
- Mueller, P.; Diamond, J. Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast. Proc. Natl. Acad. Sci. USA 2001, 98, 12550–12554. [Google Scholar] [CrossRef] [PubMed]
- McCabe, T.T.; Blanchard, B.D. Three Species of Peromyscus; Rood Associates: Santa Barbara, CA, USA, 1950. [Google Scholar]
- Chew, R.M.; Chew, A.E. Energy relationships of the mammals of a desert shrub (Larrea tridentata) community. Ecol. Monogr. 1970, 40, 2–21. [Google Scholar] [CrossRef]
- Sheppe, W. Systematic and ecological relations of Peromyscus oreas and P. maniculatus. Proc. Am. Philos. Soc. 1961, 105, 421–446. [Google Scholar]
- McCarley, H. Distributional relationships of sympatric populations of Peromyscus leucopus and P. gossypinus. Ecology 1963, 44, 784–788. [Google Scholar] [CrossRef]
- Bronson, F.H. Mammalian reproduction: An ecological perspective. Biol. Reprod. 1985, 32, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Mugaas, J.N.; Seidensticker, J.; Mahlke-Johnson, K.P. Metabolic adaptation to climate and distribution of the raccoon Procyon lotor and other Procyonidae. Smithson. Contr. Zool. 1993, 542, 1–34. [Google Scholar] [CrossRef]
- French, A.R. Physiological ecology of the Heteromyidae: Economics of energy and water utilization. In Biology of the Heteromyidae; Genoways, H.H., Brown, J.H., Eds.; American Society of Mammalogists: Fort Collins, CO, USA, 1993; pp. 509–538. [Google Scholar]
- Wunder, B.A. Energetics and thermoregulation. In Biology of New World Microtus; Tamarin, R.H., Ed.; American Society of Mammalogists: Fort Collins, CO, USA, 1985; pp. 812–844. [Google Scholar]
- Sadowska, J.; Gębczyński, A.K.; Konarzewski, M. Basal metabolic rate is positively correlated with parental investment in laboratory mice. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122576. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, J.; Gębczyński, A.K.; Paszko, K.; Konarzewski, M. Milk output and composition in mice divergently selected for basal metabolic rate. J. Exp. Biol. 2015, 218, 249–254. [Google Scholar] [PubMed]
- Agosta, S.J.; Bernardo, J.; Ceballos, G.; Steele, M.A. A macrophysiological analysis of energetic constraints on geographic range size in mammals. PLoS ONE 2013, 8, e72731. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.P.; Feldman, C.R.; Araújo, M.B. Mass-independent maximal metabolic rate predicts geographic range size of placental mammals. Funct. Ecol. 2018, 32, 1194–1202. [Google Scholar] [CrossRef]
- Boratyński, Z. Energetic constraints on mammalian distribution areas. J. Anim. Ecol. 2021, 90, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Van der Veken, S.; Bellemare, J.; Verheyen, K.; Hermy, M. Life-history traits are correlated with geographical distribution patterns of western European forest herb species. J. Biogeogr. 2007, 34, 1723–1735. [Google Scholar] [CrossRef]
- Duncan, R.P.; Blackburn, T.M.; Veltman, C.J. Determinants of geographical range sizes: A test using introduced New Zealand birds. J. Anim. Ecol. 1999, 68, 963–975. [Google Scholar] [CrossRef]
- Carter, B.E.; Alroy, J. The macroecology of community energy use in terrestrial vertebrates. Front. Biogeogr. 2022, 14, e56553. [Google Scholar] [CrossRef]
- Gillman, L.N.; Wright, S.D.; Cusens, J.; McBride, P.D.; Malhi, Y.; Whittaker, R.J. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 2015, 24, 107–117. [Google Scholar] [CrossRef]
- Chen, M.; Rafique, R.; Asrar, G.R.; Bond-Lamberty, B.; Ciais, P.; Zhao, F.; Reyer, C.P.; Ostberg, S.; Chang, J.; Ito, A.; et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 2017, 12, 105005. [Google Scholar] [CrossRef]
- Banbury Morgan, R.; Herrmann, V.; Kunert, N.; Bond-Lamberty, B.; Muller-Landau, H.C.; Anderson-Teixeira, K.J. Global patterns of forest autotrophic carbon fluxes. Glob. Change Biol. 2021, 27, 2840–2855. [Google Scholar] [CrossRef]
- Collalti, A.; Ibrom, A.; Stockmarr, A.; Cescatti, A.; Alkama, R.; Fernández-Martínez, M.; Matteucci, G.; Sitch, S.; Friedlingstein, P.; Ciais, P.; et al. Forest production efficiency increases with growth temperature. Nat. Commun. 2020, 11, 5322. [Google Scholar] [CrossRef] [PubMed]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Wetzel, W.C.; Inouye, B.D.; Hahn, P.G.; Whitehead, S.R.; Underwood, N. Variability in plant–herbivore interactions. Annu. Rev. Ecol. Syst. 2023, 54, 451–474. [Google Scholar] [CrossRef]
- Biswas, J. Metabolic efficiency and regulation of body weight: A comparison between life in hypogean and epigean ecosystems. Int. J. Speleol. 1991, 20, 15–22. [Google Scholar] [CrossRef]
- Poulson, T.L. Morphological and physiological correlates of evolutionary reduction of metabolic rate among amblyopsid cave fishes. In The Biology of Hypogean Fishes; Romero, A., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 239–249. [Google Scholar]
- Maderspacher, F. White, fat and blind—Economy and evolution in caves. Curr. Biol. 2022, 32, R591–R596. [Google Scholar] [CrossRef]
- Xu, Y.; Jing, Y.; Zhou, J.; Long, R.; Meng, J.; Yang, Y.; Luo, Y. Age, growth, and energy storage of the subterranean fish Triplophysa rosa (Cypriniformes: Nemacheilidae) from Chongqing, China. BMC Ecol. Evol. 2023, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Geiman, C.O.; Long, E.S. Allometric brain reduction in an insular, dwarfed population of black-tailed deer. J. Mamm. Evol. 2023, 30, 673–681. [Google Scholar] [CrossRef]
- Terborgh, J. The ‘island syndrome’ is an alternative state. J. Biogeogr. 2023, 50, 467–475. [Google Scholar] [CrossRef]
- Currie, D.J. Energy and large-scale patterns of animal-and plant-species richness. Am. Nat. 1991, 137, 27–49. [Google Scholar] [CrossRef]
- Bohdalková, E.; Toszogyova, A.; Šímová, I.; Storch, D. Universality in biodiversity patterns: Variation in species–temperature and species–productivity relationships reveals a prominent role of productivity in diversity gradients. Ecography 2021, 44, 1366–1378. [Google Scholar] [CrossRef]
- Palmer, J.D. The Living Clock: The Orchestrator of Biological Rhythms; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Oswald, I. Sleep as a restorative process: Human clues. Progr. Brain Res. 1980, 53, 279–288. [Google Scholar]
- Lima, S.L.; Rattenborg, N.C.; Lesku, J.A.; Amlaner, C.J. Sleeping under the risk of predation. Anim. Behav. 2005, 70, 723–736. [Google Scholar] [CrossRef]
- Siegel, J.M. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 2009, 10, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Aulsebrook, A.E.; Kelly, M.L.; Tisdale, R.K. Evolution of sleep and adaptive sleeplessness. Handb. Behav. Neurosci. 2019, 30, 299–316. [Google Scholar]
- Wichlinski, L.J. Adaptive solutions to the problem of vulnerability during sleep. Evol. Psychol. Sci. 2022, 8, 442–477. [Google Scholar] [CrossRef]
- Berger, R.J.; Phillips, N.H. Energy conservation and sleep. Behav. Brain Res. 1995, 69, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.L.; Collins, S.P.; Lesku, J.A.; Hemmi, J.M.; Collin, S.P.; Radford, C.A. Energy conservation characterizes sleep in sharks. Biol. Lett. 2022, 18, 20210259. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Schmidt, M.H. Energetic costs and benefits of sleep. Curr. Biol. 2022, 32, R656–R661. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Sleep function: An evolutionary perspective. Lancet Neurol. 2022, 21, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J.; Else, P.L. Mechanisms underlying the cost of living in animals. Annu. Rev. Physiol. 2000, 62, 207–235. [Google Scholar] [CrossRef] [PubMed]
- Elton, C. Animal Ecology; Macmillan: New York, NY, USA, 1935. [Google Scholar]
- Herbers, J.M. Time resources and laziness in animals. Oecologia 1981, 49, 252–262. [Google Scholar] [CrossRef]
- Turbill, C.; Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. R. Soc. B Biol. Sci. 2018, 285, 20182370. [Google Scholar] [CrossRef] [PubMed]
- Geiser, F. Ecological Physiology of Daily Torpor and Hibernation; Springer: Berlin, Germany, 2021. [Google Scholar]
- Giroud, S.; Habold, C.; Nespolo, R.F.; Mejías, C.; Terrien, J.; Logan, S.M.; Henning, R.H.; Storey, K.B. The torpid state: Recent advances in metabolic adaptations and protective mechanisms. Front. Physiol. 2021, 11, 623665. [Google Scholar] [CrossRef] [PubMed]
- Jastroch, M.; Giroud, S.; Barrett, P.; Geiser, F.; Heldmaier, G.; Herwig, A. Seasonal control of mammalian energy balance: Recent advances in the understanding of daily torpor and hibernation. J. Neuroendocrinol. 2016, 28, jne12437. [Google Scholar] [CrossRef] [PubMed]
- Hrvatin, S.; Sun, S.; Wilcox, O.F.; Yao, H.; Lavin-Peter, A.J.; Cicconet, M.; Assad, E.G.; Palmer, M.E.; Aronson, S.; Banks, A.S.; et al. Neurons that regulate mouse torpor. Nature 2020, 583, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Primary production in flowing waters. Limnol. Oceanogr. 1956, 1, 102–117. [Google Scholar] [CrossRef]
- Hoellein, T.J.; Bruesewitz, D.A.; Richardson, D.C. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 2013, 58, 2089–2100. [Google Scholar] [CrossRef]
- Humphries, M.M.; Thomas, D.W.; Kramer, D.L. Torpor and digestion in food-storing hibernators. Physiol. Biochem. Zool. 2001, 74, 283–292. [Google Scholar] [CrossRef]
- Bourdeau, P.F. Seasonal variations of the photosynthetic efficiency of evergreen conifers. Ecology 1959, 40, 63–67. [Google Scholar] [CrossRef]
- Pollet, B.; Steppe, K.; Dambre, P.; Van Labeke, M.C.; Lemeur, R. Seasonal variation of photosynthesis and photosynthetic efficiency in Phalaenopsis. Photosynthetica 2010, 48, 580–588. [Google Scholar] [CrossRef]
- Jordan, C.F.; Murphy, P.G. A latitudinal gradient of wood and litter production, and its implication regarding competition and species diversity in trees. Am. Midl. Nat. 1978, 99, 415–434. [Google Scholar] [CrossRef]
- Smith, T.P.; Clegg, T.; Bell, T.; Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 2021, 24, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Lemée, R.; Rochelle-Newall, E.; Van Wambeke, F.; Pizay, M.D.; Rinaldi, P.; Gattuso, J.P. Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat. Microb. Ecol. 2002, 29, 227–237. [Google Scholar] [CrossRef]
- Reinthaler, T.; Herndl, G.J. Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea. Aquat. Microb. Ecol. 2005, 39, 7–16. [Google Scholar] [CrossRef]
- Baetge, N.; Behrenfeld, M.J.; Fox, J.; Halsey, K.H.; Mojica, K.D.; Novoa, A.; Stephens, B.M.; Carlson, C.A. The seasonal flux and fate of dissolved organic carbon through bacterioplankton in the Western North Atlantic. Front. Microbiol. 2021, 12, 669883. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Del Giorgio, P.A.; Kemp, W.M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 2006, 43, 243–254. [Google Scholar] [CrossRef]
- Singh, J.S.; Yadava, P.S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 1974, 44, 351–376. [Google Scholar] [CrossRef]
- Turner, D.P.; Urbanski, S.; Bremer, D.; Wofsy, S.C.; Meyers, T.; Gower, S.T.; Gregory, M. A cross-biome comparison of daily light use efficiency for gross primary production. Glob. Change Biol. 2003, 9, 383–395. [Google Scholar] [CrossRef]
- Wehr, R.; Munger, J.W.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Davidson, E.A.; Wofsy, S.C.; Saleska, S.R. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 2016, 534, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Gaedke, U. Ecosystem analysis based on biomass size distributions: A case study of a plankton community in a large lake. Limnol. Oceanogr. 1993, 38, 112–127. [Google Scholar] [CrossRef]
- Gaedke, U.; Straile, D. Seasonal changes of trophic transfer efficiencies in a plankton food web derived from biomass size distributions and network analysis. Ecol. Model. 1994, 75, 435–445. [Google Scholar] [CrossRef]
- Carefoot, T.H. Gastropoda. In Animal Energetics; Pandian, T.J., Vernberg, F.J., Eds.; Academic Press: San Diego, CA, USA, 1987; Volume 2, pp. 89–172. [Google Scholar]
- Almeda, R.; Augustin, C.B.; Alcaraz, M.; Calbet, A.; Saiz, E. Feeding rates and gross growth efficiencies of larval developmental stages of Oithona davisae (Copepoda, Cyclopoida). J. Exp. Mar. Biol. Ecol. 2010, 387, 24–35. [Google Scholar] [CrossRef]
- Rombough, P. The energetics of embryonic growth. Respir. Physiol. Neurobiol. 2011, 178, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.W.; Long, J.N. Age-related decline in forest growth: An emergent property. For. Ecol. Manag. 2001, 144, 175–181. [Google Scholar] [CrossRef]
- Marshall, D.J.; Pettersen, A.K.; Bode, M.; White, C.R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 2020, 4, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, A.K.; Nord, A.; While, G.M.; Uller, T. How do fluctuating temperatures alter the cost of development? Funct. Ecol. 2024, 38, 114–125. [Google Scholar] [CrossRef]
- Glazier, D.S. Reproductive efficiency and the timing of gestation and lactation in rodents. Am. Nat. 1990, 135, 269–277. [Google Scholar] [CrossRef]
- Künkele, J. Energetics of gestation relative to lactation in a precocial rodent, the guinea pig (Cavia porcellus). J. Zool. 2000, 250, 533–539. [Google Scholar] [CrossRef]
- Nicoll, M.E.; Thompson, S.D. Basal metabolic rates and energetics of reproduction in therian mammals: Marsupials and placentals compared. Symp. Zool. Soc. Lond. 1987, 57, 7–27. [Google Scholar]
- Low, B.S. Environmental uncertainty and the parental strategies of marsupials and placentals. Am. Nat. 1978, 112, 197–213. [Google Scholar] [CrossRef]
- Emmons, L.H. Observations on litter size and development of some African rainforest squirrels. Biotropica 1979, 11, 207–213. [Google Scholar] [CrossRef]
- Lillegraven, J.A.; Thompson, S.D.; McNab, B.K.; Patton, J.L. The origin of eutherian mammals. Biol. J. Linn. Soc. 1987, 32, 281–336. [Google Scholar] [CrossRef]
- Kam, M.; Khokhlova, I.S.; Degen, A.A. Partitioning of metabolizable energy intake in sucking altricial and precocial rodent pups. J. Zool. 2006, 269, 502–505. [Google Scholar] [CrossRef]
- Wilbur, H.M. Complex life cycles. Annu. Rev. Ecol. Syst. 1980, 11, 67–93. [Google Scholar] [CrossRef]
- Werner, E.E. Size, scaling, and the evolution of complex life cycles. In Size-Structured Populations: Ecology and Evolution; Ebenman, B., Persson, L., Eds.; Springer: Berlin, Germany, 1988; pp. 60–81. [Google Scholar]
- Cole, L.C. The population consequences of life history phenomena. Q. Rev. Biol. 1954, 29, 103–137. [Google Scholar] [CrossRef]
- Odum, E.P. The strategy of ecosystem development: An understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Jordan, C.F. Evolution from a Thermodynamic Perspective: Implications for Species Conservation and Agricultural Sustainability; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Poorter, L.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.G.; Lohbeck, M.; Martínez-Ramos, M.; Matsuo, T.; Meave, J.A.; et al. Successional theories. Biol. Rev. 2023, 98, 2049–2077. [Google Scholar] [CrossRef] [PubMed]
- Ghedini, G.; Loreau, M.; Marshall, D.J. Community efficiency during succession. Ecology 2020, 101, 1–11. [Google Scholar] [CrossRef]
- Zotin, A.I.; Konoplev, V.A. Direction of the evolutionary progress of organisms. In Thermodynamic Bases of Biological Processes. Physiological Reactions and Adaptations; Lamprecht, I., Zotin, A.I., Eds.; Walter de Gruyter: Berlin, Germany, 1978; pp. 341–347. [Google Scholar]
- Zotin, A.I.; Lamprecht, I. Aspects of bioenergetics and civilization. J. Theor. Biol. 1996, 180, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Vermeij, G.J. On escalation. Annu. Rev. Earth Planet. Sci. 2013, 41, 1–19. [Google Scholar] [CrossRef]
- Braakman, R.; Follows, M.J.; Chisholm, S.W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl. Acad. Sci. USA 2017, 114, E3091–E3100. [Google Scholar] [CrossRef] [PubMed]
- Zotin, A.A. Energetic macroevolution of vertebrates. Biol. Bull. 2018, 45, 299–309. [Google Scholar] [CrossRef]
- Gavrilov, V.M.; Golubeva, T.B.; Bushuev, A.V. Evolution of metabolic scaling among the tetrapod: Effect of phylogeny, the geologic time of class formation, and uniformity of species within a class. Integr. Zool. 2022, 17, 904–917. [Google Scholar] [CrossRef]
- Gavrilov, V.M.; Golubeva, T.B.; Warrack, G.; Bushuev, A.V. Metabolic scaling in birds and mammals: How taxon divergence time, phylogeny, and metabolic rate affect the relationship between scaling exponents and intercepts. Biology 2022, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Bambach, R.K. Seafood through time: Changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 1993, 19, 372–397. [Google Scholar] [CrossRef]
- Allmon, W.D.; Martin, R.E. Seafood through time revisited: The Phanerozoic increase in marine trophic resources and its macroevolutionary consequences. Paleobiology 2014, 40, 256–287. [Google Scholar] [CrossRef]
- Antell, G.T.; Saupe, E.E. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr. Biol. 2021, 31, R1237–R1251. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Schmidt, L.; Meineke, E.K.; Currano, E.D. Insect herbivory within modern forests is greater than fossil localities. Proc. Natl. Acad. Sci. USA 2022, 119, e2202852119. [Google Scholar] [CrossRef] [PubMed]
- Crockford, P.W.; On, Y.M.B.; Ward, L.M.; Milo, R.; Halevy, I. The geologic history of primary productivity. Curr. Biol. 2023, 33, 4741–4750. [Google Scholar] [CrossRef] [PubMed]
- Chaisson, E.J. Cosmic Evolution: The Rise of Complexity in Nature; Harvard University Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Chaisson, E.J. Energy rate density as a complexity metric and evolutionary driver. Complexity 2011, 16, 27–40. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Nefiodov, A.V.; Li, B.L. Life’s energy and information: Contrasting evolution of volume-versus surface-specific rates of energy consumption. Entropy 2020, 22, 1025. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Self-organization and maximum empower. In Maximum Power: The Ideas and Applications of H. T. Odum; Hall, C.A.S., Ed.; University Press of Colorado: Denver, CO, USA, 1995; pp. 311–330. [Google Scholar]
- Vermeij, G.J. The Evolution of Power: A New Understanding of the History of Life; Princeton University Press: Princeton, NJ, USA, 2023. [Google Scholar]
- Por, F.D. Animal Achievement. A Unifying Theory of Zoology; Balaban Publishers: Rehovot, Israel, 1994. [Google Scholar]
- Signor, P.W. Biodiversity in geological time. Am. Zool. 1994, 34, 23–32. [Google Scholar] [CrossRef]
- McNab, B.K. Extreme Measures: The Ecological Energetics of Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Pough, F.H. The advantages of ectothermy for tetrapods. Am. Nat. 1980, 115, 92–112. [Google Scholar] [CrossRef]
- Phillipson, J. Bioenergetic options and phylogeny. In Physiological Ecology; An Evolutionary Approach to Resource Use; Townsend, C.R., Calow, P., Eds.; Sinauer Associates: Sunderland, MA, USA, 1981; pp. 20–45. [Google Scholar]
- Bennett, A.F.; Ruben, J.A. Endothermy and activity in vertebrates. Science 1979, 206, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.G. Parental care: The key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 2000, 155, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.G. Parental care, destabilizing selection, and the evolution of tetrapod endothermy. Physiology 2020, 35, 160–176. [Google Scholar] [CrossRef] [PubMed]
- Koteja, P. Energy assimilation, parental care and the evolution of endothermy. Proc. R. Society B Biol. Sci. 2000, 267, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Grigg, G.C.; Beard, L.A.; Augee, M.L. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 2004, 77, 982–997. [Google Scholar] [CrossRef]
- Clarke, A.; Pörtner, H.O. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. 2010, 85, 703–727. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, G.J. Reptile thermogenesis and the origins of endothermy. Zoology 2016, 119, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Nowack, J.; Giroud, S.; Arnold, W.; Ruf, T. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front. Physiol. 2017, 8, 889. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, B.G. Fires of Life; Yale University Press: New Haven, CT, USA, 2019. [Google Scholar]
- Seebacher, F. Is endothermy an evolutionary by-product? Trends Ecol. Evol. 2020, 35, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Grigg, G.; Nowack, J.; Bicudo, J.E.P.W.; Bal, N.C.; Woodward, H.N.; Seymour, R.S. Whole-body endothermy: Ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol. Rev. 2022, 97, 766–801. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, B. Why have some animals evolved to regulate a high body temperature? Am. Nat. 1977, 111, 623–640. [Google Scholar] [CrossRef]
- van der Meer, J. Production efficiency differences between poikilotherms and homeotherms have little to do with metabolic rate. Ecol. Lett. 2021, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hamann, O. On vegetation recovery, goats and giant tortoises on Pinta Island, Galápagos, Ecuador. Biodivers. Conserv. 1993, 2, 138–151. [Google Scholar] [CrossRef]
- Campbell, K.; Donlan, C.J. Feral goat eradications on islands. Conserv. Biol. 2005, 19, 1362–1374. [Google Scholar] [CrossRef]
- Hamilton, J.; Coe, M. Feeding, digestion and assimilation of a population of giant tortoises (Geochelone gigantea (Sehweigger)) on Aldabra atoll. J. Arid Environ. 1982, 5, 127–144. [Google Scholar] [CrossRef]
- Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 1991, 22, 477–503. [Google Scholar] [CrossRef]
- Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 1999, 27, 463–493. [Google Scholar] [CrossRef]
- Jessop, T.S.; Ariefiandy, A.; Forsyth, D.M.; Purwandana, D.; White, C.R.; Benu, Y.J.; Madsen, T.; Harlow, H.J.; Letnic, M. Komodo dragons are not ecological analogs of apex mammalian predators. Ecology 2020, 101, e02970. [Google Scholar] [CrossRef] [PubMed]
- Franz, R.; Hummel, J.; Müller, D.W.; Bauert, M.; Hatt, J.M.; Clauss, M. Herbivorous reptiles and body mass: Effects on food intake, digesta retention, digestibility and gut capacity, and a comparison with mammals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 158, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Rubner, M. Über Kompensation und Summation von funktionellen Leistungen des Körpers. Sitz. Königl. Preuss. Akad. Wiss. 1910, 16, 316–324. [Google Scholar]
- Wieser, W. Energy allocation by addition and by compensation: An old principle revisited. In Energy Transformations in Cells and Organisms; Wieser, W.l., Gnaiger, E., Eds.; Thieme Verlag Stuttgart: New York, NY, USA, 1989. [Google Scholar]
- Krockenberger, A. Meeting the energy demands of reproduction in female koalas, Phascolarctos cinereus: Evidence for energetic compensation. J. Comp. Physiol. B 2003, 173, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.S. Rodents. In Comparative Physiology of Thermoregulation; Whittow, G.C., Ed.; Academic Press: New York: NY, USA, 1971; pp. 1–149. [Google Scholar]
- Chappell, M.A.; Bachman, G.C.; Hammond, K.A. The heat increment of feeding in house wren chicks: Magnitude, duration, and substitution for thermostatic costs. J. Comp. Physiol. B 1997, 167, 313–318. [Google Scholar] [CrossRef]
- Bruinzeel, L.W.; Piersma, T. Cost reduction in the cold: Heat generated by terrestrial locomotion partly substitutes for thermoregulation costs in Knot Calidris canutus. Ibis 1998, 140, 323–328. [Google Scholar] [CrossRef]
- Kaseloo, P.A.; Lovvorn, J.R. Substitution of heat from exercise and digestion by ducks diving for mussels at varying depths and temperatures. J. Comp. Physiol. B 2006, 176, 265–275. [Google Scholar] [CrossRef]
- Humphries, M.M.; Careau, V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr. Comp. Biol. 2011, 51, 419–431. [Google Scholar] [CrossRef]
- González-Medina, E.; Cabello-Vergel, J.; Playà-Montmany, N.; Villegas, A.; Parejo, M.; Abad-Gómez, J.M.; Sánchez-Guzmán, J.M.; Masero, J.A. Going to sleep with a full belly: Thermal substitution by specific dynamic action in shorebirds. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 244, 110689. [Google Scholar] [CrossRef]
- Maloney, C.; Careau, V. Individual variation in heat substitution: Is activity in the cold energetically cheaper for some individuals than others? J. Exp. Biol. 2022, 225, jeb244186. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.M.; Ekman, J.; Houston, A.I. The effect of thermoregulatory substitution on optimal energy reserves of small birds in winter. Oikos 2004, 105, 192–196. [Google Scholar] [CrossRef]
- Hohtola, E. Shivering thermogenesis in birds and mammals. In Life in the Cold: Evolution, Mechanisms, Adaptation, and Application; Barnes, B.M., Carey, H.V., Eds.; Institute of Arctic Biology, University of Alaska: Fairbanks, AK, USA, 2004; pp. 241–252. [Google Scholar]
- Legendre, L.J.; Davesne, D. The evolution of mechanisms involved in vertebrate endothermy. Philos. Trans. R. Soc. B 2020, 375, 20190136. [Google Scholar] [CrossRef]
- Wieser, W. Low production “efficiency” of homeotherm populations: A misunderstanding. Oecologia 1984, 61, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Sibly, R.M. Life history. In Metabolic Ecology: A Scaling Approach; Sibly, R.M., Brown, J.H., Kodric-Brown, A., Eds.; Wiley-Blackwell: Chichester, UK, 2012; pp. 57–66. [Google Scholar]
- Brown, W.L., Jr. General adaptation and evolution. Syst. Zool. 1958, 7, 157–168. [Google Scholar] [CrossRef]
- Darlington, P.J., Jr. Area, climate, and evolution. Evolution 1959, 13, 488–510. [Google Scholar] [CrossRef]
- Peng, Y.; Prentice, I.C.; Bloomfield, K.J.; Campioli, M.; Guo, Z.; Sun, Y.; Tian, D.; Wang, X.; Vicca, S.; Stocker, B.D. Global terrestrial nitrogen uptake and nitrogen use efficiency. J. Ecol. 2023, 111, 2676–2693. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NY, USA, 2002. [Google Scholar]
- Gimenez, C.; Connor, D.J.; Rueda, F. Canopy development, photosynthesis and radiation-use efficiency in sunflower in response to nitrogen. Field Crops Res. 1994, 38, 15–27. [Google Scholar] [CrossRef]
- Allen, C.B.; Will, R.E.; Jacobson, M.A. Production efficiency and radiation use efficiency of four tree species receiving irrigation and fertilization. For. Sci. 2005, 51, 556–569. [Google Scholar] [CrossRef]
- Harrington, R.A.; Fownes, J.H.; Vitousek, P.M. Production and resource use efficiencies in N-and P-limited tropical forests: A comparison of responses to long-term fertilization. Ecosystems 2001, 4, 646–657. [Google Scholar] [CrossRef]
- Belovsky, G.E. Diet optimization in a generalist herbivore: The moose. Theor. Pop. Biol. 1978, 14, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Owen-Smith, N.; Novellie, P. What should a clever ungulate eat? Am. Nat. 1982, 119, 151–178. [Google Scholar] [CrossRef]
- Van Wieren, S.E. Do large herbivores select a diet that maximizes short-term energy intake rate? For. Ecol. Manag. 1996, 88, 149–156. [Google Scholar] [CrossRef]
- Simpson, S.J.; Sibly, R.M.; Lee, K.P.; Behmer, S.T.; Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 2004, 68, 1299–1311. [Google Scholar] [CrossRef]
- Blumstein, D.M.; MacManes, M.D. When the tap runs dry: The physiological effects of acute experimental dehydration in Peromyscus eremicus. J. Exp. Biol. 2023, 226, jeb246386. [Google Scholar] [CrossRef] [PubMed]
- Degen, A.A. Ecophysiology of Small Desert Mammals; Springer: Berlin, Germany, 1997. [Google Scholar]
- Rocha, J.L.; Godinho, R.; Brito, J.C.; Nielsen, R. Life in deserts: The genetic basis of mammalian desert adaptation. Trends Ecol. Evol. 2021, 36, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A.; Farley, R.D. Population biology of a desert scorpion: Survivorship, microhabitat, and the evolution of life history strategy. Ecology 1980, 61, 620–629. [Google Scholar] [CrossRef]
- McCormick, S.J.; Polis, G.A. Prey, predators and parasites. In The Biology of Scorpions; G.A. Polis, Ed.; Stanford University Press: Stanford, CA, USA, 1990; pp. 294–320. [Google Scholar]
- Polis, G.A.; Yamashita, T. The ecology and importance of predaceous arthropods in desert communities. In The Ecology of Desert Communities; Polis, G.A., Ed.; University of Arizona Press: Tucson, AZ, USA, 1991; pp. 180–222. [Google Scholar]
- Lighton, J.R.; Brownell, P.H.; Joos, B.; Turner, R.J. Low metabolic rate in scorpions: Implications for population biomass and cannibalism. J. Exp. Biol. 2001, 204, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Gefen, E. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern. Physiol. Biochem. Zool. 2011, 84, 68–76. [Google Scholar] [CrossRef]
- Lawson, T.; Vialet-Chabrand, S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Griebel, A.; Bennett, L.T.; Metzen, D.; Pendall, E.; Lane, P.N.; Arndt, S.K. Trading water for carbon: Maintaining photosynthesis at the cost of increased water loss during high temperatures in a temperate forest. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005239. [Google Scholar] [CrossRef]
- Bertucci-Richter, E.M.; Parrott, B.B. The rate of epigenetic drift scales with maximum lifespan across mammals. Nat. Comm. 2023, 14, 7731. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Kahnt, E.; Ehrlein, J.; Hermanns, W.; Brem, G.; Wanke, R. Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: Lessons from transgenic animal models. Mech. Ageing Dev. 1993, 68, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Bartke, A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 2003, 78, 210–216. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Bertrand, S.; Devevey, G.; Prost, J.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol. Lett. 2004, 7, 363–368. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Bertrand, S.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Funct. Ecol. 2007, 21, 873–879. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Alonso-Alvarez, C. Oxidative stress as a life-history constraint: The role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010, 24, 984–996. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Monaghan, P. Does reproduction cause oxidative stress? An open question. Trends Ecol. Evol. 2013, 28, 347–350. [Google Scholar] [CrossRef]
- Speakman, J.R.; Blount, J.D.; Bronikowski, A.M.; Buffenstein, R.; Isaksson, C.; Kirkwood, T.B.; Monaghan, P.; Ozanne, S.E.; Beaulieu, M.; Briga, M.; et al. Oxidative stress and life histories: Unresolved issues and current needs. Ecol. Evol. 2015, 5, 5745–5757. [Google Scholar] [CrossRef] [PubMed]
- Van Mechelen, W. Running injuries: A review of the epidemiological literature. Sports Med. 1992, 14, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Kessler, D.F. Running FASTER: Changing running technique to reduce stress injuries. Int. J. Athl. Ther. Train. 2020, 25, 49–53. [Google Scholar] [CrossRef]
- MacKay, D.G. The problems of flexibility, fluency, and speed–accuracy trade-off in skilled behavior. Psychol. Rev. 1982, 89, 483–506. [Google Scholar] [CrossRef]
- Chittka, L.; Skorupski, P.; Raine, N.E. Speed–accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 2009, 24, 400–407. [Google Scholar] [CrossRef]
- David, M.; Gillingham, M.A.; Salignon, M.; Laskowski, K.L.; Giraldeau, L.A. Speed–accuracy trade-off and its consequences in a scramble competition context. Anim. Behav. 2014, 90, 255–262. [Google Scholar] [CrossRef]
- Bartke, A. Somatotropic axis, pace of life and aging. Front. Endocrinol. 2022, 13, 916139. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.C.; Colbath, J.; Talmadge, R.J.; Garland, T., Jr. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS ONE 2022, 17, e0278186. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Clare, A. The division of labor and economic development. J. Dev. Econ. 1996, 49, 3–32. [Google Scholar] [CrossRef]
- Dumville, J.C.; Torano, F.A. Division of labor, efficient? Empirical evidence to support the argument. SAM Adv. Manag. J. 1997, 62, 16–21. [Google Scholar]
- Waibel, M.; Floreano, D.; Magnenat, S.; Keller, L. Division of labour and colony efficiency in social insects: Effects of interactions between genetic architecture, colony kin structure and rate of perturbations. Proc. R. Soc. B Biol. Sci. 2006, 273, 1815–1823. [Google Scholar] [CrossRef]
- Rueffler, C.; Hermisson, J.; Wagner, G.P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. USA 2012, 109, E326–E335. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.A.; West, S.A. Division of labour and the evolution of extreme specialization. Nat. Ecol. Evol. 2018, 2, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Traxler, M.F.; Rozen, D.E. Ecological drivers of division of labour in Streptomyces. Curr. Opin. Microbiol. 2022, 67, 102148. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, E. When does division of labor lead to increased system output? J. Theor. Biol. 2007, 247, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Stueffer, J.F.; De Kroon, H.; During, H.J. Exploitation of environmental hetergeneity by spatial division of labor in a clonal plant. Funct. Ecol. 1996, 10, 328–334. [Google Scholar] [CrossRef]
- Hutchings, M.J.; Wijesinghe, D.K. Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol. Evol. 1997, 12, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Makarieva, A.M.; Gorshkov, V.G.; Li, B.L.; Chown, S.L.; Reich, P.B.; Gavrilov, V.M. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. USA 2008, 105, 16994–16999. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; Enquist, B.J. Organismal size, metabolism and the evolution of complexity in metazoans. Evol. Ecol. Res. 2005, 7, 681–696. [Google Scholar]
- Negroni, M.A.; LeBoeuf, A.C. Metabolic division of labor in social insects. Curr. Opin. Insect Sci. 2023, 59, 101085. [Google Scholar] [CrossRef] [PubMed]
- Geist, V. An ecological and behavioural explanation of mammalian characteristics and their implication to therapsid evolution. Z. Säugetierkd. 1972, 37, 1–15. [Google Scholar]
- McFarland, W.N.; Pough, F.H.; Cade, T.J.; Heiser, J.B. Vertebrate Life; Macmillan: New York, NY, USA, 1979. [Google Scholar]
- Kemp, T.S. The origin of mammalian endothermy: A paradigm for the evolution of complex biological structure. Zool. J. Linn. Soc. 2006, 147, 473–488. [Google Scholar] [CrossRef]
- Feldhamer, G.A.; Merritt, J.F.; Krajewski, C.; Rachlow, J.L.; Stewart, K.M. Mammalogy: Adaptation, Diversity, Ecology, 5th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2020. [Google Scholar]
- Lovmar, M.; Ehrenberg, M. Rate, accuracy and cost of ribosomes in bacterial cells. Biochimie 2006, 88, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Lovmar, M.; Ehrenberg, M. Rate and accuracy of bacterial protein synthesis revisited. Curr. Opin. Microbiol. 2008, 11, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Zhang, J.; Ehrenberg, M. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proc. Natl. Acad. Sci. USA 2012, 109, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, I.; Pohl, C.; Mittelstaet, J.; Konevega, A.L.; Rodnina, M.V. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2979–2986. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Kolomeisky, A.B.; Igoshin, O.A. Elucidating interplay of speed and accuracy in biological error correction. Proc. Natl. Acad. Sci. USA 2017, 114, 5183–5188. [Google Scholar] [CrossRef] [PubMed]
- Rinberg, D.; Koulakov, A.; Gelperin, A. Speed-accuracy tradeoff in olfaction. Neuron 2006, 51, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Bogacz, R.; Wagenmakers, E.J.; Forstmann, B.U.; Nieuwenhuis, S. The neural basis of the speed–accuracy tradeoff. Trends Neurosci. 2010, 33, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Heitz, R.P.; Schall, J.D. Neural mechanisms of speed-accuracy tradeoff. Neuron 2012, 76, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Bogacz, R. Speed-accuracy tradeoff. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer: New York, NY, USA, 2022; pp. 3225–3228. [Google Scholar]
- Bernays, E.A. The value of being a resource specialist: Behavioral support for a neural hypothesis. Am. Nat. 1998, 151, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Jerison, H.J. Evolution of the Brain and Intelligence; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Gregory, T.R. Genome size evolution in animals. In The Evolution of the Genome; Gregory, T.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 3–87. [Google Scholar]
- West, G.B.; Brown, J.H. The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 2005, 208, 1575–1592. [Google Scholar] [CrossRef] [PubMed]
- Glazier, D.S. Genome size covaries more positively with propagule size than adult size: New insights into an old problem. Biology 2021, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Healy, K.; McNally, L.; Ruxton, G.D.; Cooper, N.; Jackson, A.L. Metabolic rate and body size are linked with perception of temporal information. Anim. Behav. 2013, 86, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Brett, J.R.; Groves, T.D.D. Physiological energetics. In Fish Physiology; Hoar, W.S., Randall, D.J., Brett, J.R., Eds.; Academic Press: New York, NY, USA, 1979; Volume 6, pp. 279–352. [Google Scholar]
- Knights, B. Energetics and fish farming. In Fish Energetics: New Perspectives; Tytler, P., Calow, P., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 309–340. [Google Scholar]
- Hancz, C. Feed efficiency, nutrient sensing and feeding stimulation in aquaculture: A review. Acta Agrar. Kaposváriensis 2020, 24, 35–54. [Google Scholar] [CrossRef]
- Loomis, R.S.; Williams, W.A. Maximum crop productivity: An estimate. Crop Sci. 1963, 3, 67–72. [Google Scholar] [CrossRef]
- Penning de Vries, F.W.T.; van Laar, H.H.; Chardon, M.C.M. Bioenergetics of growth of seeds, fruits, and storage organs. In Potential Production of Crops in Different Environments; Smith, W.H., Ed.; International Rice Research Institute: Los Baflos, Philippines, 1983; pp. 37–59. [Google Scholar]
- Ksenzhek, O.S.; Volkov, A.G. Plant Energetics; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Diepenbrock, W. Energy balance in crop production. J. Agric. Sci. Technol. B 2012, 2, 527–533. [Google Scholar]
- Sarkar, D.; Sankar, A.; Devika, O.S.; Singh, S.; Shikha; Parihar, M.; Rakshit, A.; Sayyed, R.Z.; Gafur, A.; Ansari, M.J.; et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci. Rep. 2021, 11, 15680. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Sun, H.; Qi, Z.; Liu, X. Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics analysis. Chemosphere 2021, 265, 129151. [Google Scholar] [CrossRef]
- Saeed, M.U.; Hussain, N.; Sumrin, A.; Shahbaz, A.; Noor, S.; Bilal, M.; Aleya, L.; Iqbal, H.M. Microbial bioremediation strategies with wastewater treatment potentialities—A review. Sci. Total Environ. 2022, 818, 151754. [Google Scholar] [CrossRef]
- Ramya, M.; Kumar, P.S. A review on recent advancements in bioenergy production using microbial fuel cells. Chemosphere 2022, 288, 132512. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.R.; Ahmad, A.; Lochab, S.; Raghuram, N. Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 2008, 94, 1394–1403. [Google Scholar]
- Steinwand, M.A.; Ronald, P.C. Crop biotechnology and the future of food. Nat. Food 2020, 1, 273–283. [Google Scholar] [CrossRef]
- Cronin, J.; Sleivert, G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005, 35, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.A.; Cleveland, C.J.; Kaufmann, R. Energy and Resource Quality: The Ecology of the Economic Process; Wiley Interscience: New York, NY, USA, 1986. [Google Scholar]
- Costanza, R.; Cumberland, J.H.; Daly, H.; Goodland, R.; Norgaard, R.B. An Introduction to Ecological Economics; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Barneche, D.R.; Hulatt, C.J.; Dossena, M.; Padfield, D.; Woodward, G.; Trimmer, M.; Yvon-Durocher, G. Warming impairs trophic transfer efficiency in a long-term field experiment. Nature 2021, 592, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Eddy, T.D.; Bernhardt, J.R.; Blanchard, J.L.; Cheung, W.W.; Colléter, M.; Du Pontavice, H.; Fulton, E.A.; Gascuel, D.; Kearney, K.A.; Petrik, C.M.; et al. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 2021, 36, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Baruch, E.M.; Harms, T.K.; Ruhi, A.; Lu, M.; Gaines-Sewell, L.; Sabo, J.L. Food web efficiency in desert streams. Limnol. Oceanogr. 2023, 68, 723–734. [Google Scholar] [CrossRef]
- Seebacher, F.; Bamford, S.M. Warming and pollution interact to alter energy transfer efficiency, performance and fitness across generations in zebrafish (Danio rerio). Sci. Total Environ. 2023, 912, 168942. [Google Scholar] [CrossRef] [PubMed]
- Sousa, T.; Domingos, T.; Kooijman, S.A.L.M. From empirical patterns to theory: A formal metabolic theory of life. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Fridley, J.D. Plant energetics and the synthesis of population and ecosystem ecology. J. Ecol. 2017, 105, 95–110. [Google Scholar] [CrossRef]
- Jusup, M.; Sousa, T.; Domingos, T.; Labinac, V.; Marn, N.; Wang, Z.; Klanjšček, T. Physics of metabolic organization. Phys. Life Rev. 2017, 20, 1–39. [Google Scholar] [CrossRef]
Factor | Effect | Sources |
---|---|---|
Intrinsic factors Energy-uptake capacity Energy-processing capacity Resource (energy) allocation Heat dissipation Biological regulation Deleterious effects | Central limits on energy assimilation by gut Peripheral limits on energy use by specific tissues, organs, functions, or processes Competing demands by other functions (e.g., maintenance, repair, and defenses) Overheating limits power production (e.g., growth, reproduction, and muscular work) Regulation of power production below maximal possible Increased risk of injury, illness, or developmental error; enhanced aging; genetic mutations and random genetic drift | [94,163,164,165,166,167,168,169,170,171] [94,164,166,167,168,169,170,172,173,174,175,176] [89,94,136,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191] [42,168,175,176,192,193,194,195,196,197] [4,94,151,179,190,198] [4,89,94,178,181,185,199,200,201,202,203,204,205] |
Extrinsic factors Food (energy) supply Competition Predators Parasites | Limited food (energy) supply in environment Competitors reduce amount of accessible food, nutrients, or light Fear of predators reduces foraging activity Pathogens and parasites divert energy resources that could have been used for production | [4,24,94,103,168,179,180,184,188,190,197,206,207,208,209,210] [184,211,212,213,214,215] [170,188,216,217,218] [219,220,221,222,223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glazier, D.S. Power and Efficiency in Living Systems. Sci 2024, 6, 28. https://doi.org/10.3390/sci6020028
Glazier DS. Power and Efficiency in Living Systems. Sci. 2024; 6(2):28. https://doi.org/10.3390/sci6020028
Chicago/Turabian StyleGlazier, Douglas S. 2024. "Power and Efficiency in Living Systems" Sci 6, no. 2: 28. https://doi.org/10.3390/sci6020028
APA StyleGlazier, D. S. (2024). Power and Efficiency in Living Systems. Sci, 6(2), 28. https://doi.org/10.3390/sci6020028