# Two-Dimensional Model for Consolidation-Induced Solute Transport in an Unsaturated Porous Medium

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model

#### 2.1. Two-Dimensional Consolidation Model

#### 2.2. Two-Dimensional Solute Transport Model

#### 2.3. Special Case 1: Two-Dimensional Saturated Porous Model

#### 2.4. Special Case 2: One-Dimensional Unsaturated Porous Model

#### 2.5. Special Case 3: One-Dimensional Saturated Model

## 3. Model Validation

## 4. Results and Discussions

#### 4.1. Homogeneous Soil and Uniform Contaminant Source (2D)

#### 4.2. Point-Source Pollution Study (2D)

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Bear, J. Dynamics of Fluids in Porous Media; Elsevier Scientific Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Barry, D.A. Modelling contaminant transport in the subsurface: Theory and computer programs. In Modelling Chemical Transport in Soil: Natural and Applied Contaminants; Ghadiri, H., Rose, C.W., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1992; pp. 105–144. [Google Scholar]
- Rolle, M.; Hochstetler, D.; Chiogna, G.; Kitanidis, P.K.; Grathwohl, P. Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp. Porous Media
**2012**, 93, 347–362. [Google Scholar] [CrossRef] - Boso, F.; Bellin, A.; Dumbser, M. Numerical simulations of solute transport in highly heterogeneous formations: A comparison of alternative numerical schemes. Adv. Water Resour.
**2013**, 52, 178–189. [Google Scholar] [CrossRef] - Wang, Q.; Zhan, H. On different numerical inverse Laplace methods for solute transport problems. Adv. Water Resour.
**2015**, 75, 80–92. [Google Scholar] [CrossRef] - Alshawabkeh, A.; Rahbar, N.; Sheahan, T.C.; Tang, G. Volume change effects in solute transport in clay under consolidation. In Proceedings of the Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement, Ibrid, Jordan, 12–15 July 2004; Volume 1, pp. 105–115. [Google Scholar]
- Potter, L.J.; Savvidou, C.; Gibson, R.E. Consolidation and Pollutant Transport Associated with Slurried Mineral Waste Disposal. In Proceedings of the 1st International Conference on Environmental Geotechnics, Edmonton, AB, Canada, 10–15 July 1994; pp. 525–530. [Google Scholar]
- Smith, D.W. One-dimensional contaminant transport through a deforming porous medium: Theory and a solution for a quasi-steady-state problem. Int. J. Numer. Anal. Methods Geomech.
**2000**, 24, 693–722. [Google Scholar] [CrossRef] - Zhang, H.; Jeng, D.S.; Seymour, B.; Barry, D.A.; Li, L. Solute transport in partially-saturated deformable porous media: Application to a landfill clay liner. Adv. Water Resour.
**2012**, 40, 1–10. [Google Scholar] [CrossRef] [Green Version] - Terzaghi, K. Erdbaumechanik auf Bodenphysikalischer Grundlage; Deuticke: Vienna, Austria, 1925. [Google Scholar]
- Wu, S.; Jeng, D.S. Numerical modeling of solute transport in deformable unsaturated layered soil. Water Sci. Eng.
**2017**, 10, 184–196. [Google Scholar] [CrossRef] - Fox, P.; Berles, J. A piecewise-linear model for large strain consolidation. Int. J. Numer. Anal. Methods Geomech.
**1997**, 21, 453–475. [Google Scholar] [CrossRef] - Fox, P. Coupled large strain consolidation and solute transport. I: Model development. J. Geotech. Geoenvironmental Eng. ASCE
**2007**, 133, 3–15. [Google Scholar] [CrossRef] - Wu, S.; Jeng, D.S.; Seymour, B. Numerical Modelling of consolidation-induced solute transport in unsaturated soil with dynamic hydraulic conductivity and degree of saturation. Adv. Water Resour.
**2020**, 135, 103466. [Google Scholar] [CrossRef] - Zhang, Z.H.; Fang, Y.F. A three-dimensional model coupled mechanical consolidation and contaminant transport. J. Residuals Sci. Technolocy
**2016**, 13, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wu, S. Numerical Simulation for Solute Transport in a Deformable Porous Medium. Ph.D. Thesis, Griffith University, Queensland, Australia, 2020. [Google Scholar]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys.
**1941**, 12, 155–164. [Google Scholar] [CrossRef] - Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Burnett, R.; Frind, E. An alternating direction Galerkin technique for simulation of groundwater contaminant transport in three dimensions, 2. Dimensionally effects. Water Resour. Res.
**1987**, 23, 695–705. [Google Scholar] [CrossRef] - COMSOL. COMSOL Multiphysics, 3rd ed.; COMSOL: Shanghai, China, 2010. [Google Scholar]

**Figure 3.**(

**a**) Excesspore pressure (${p}^{e}$ (kPa)) and (

**b**) vertical displacement (w (m)) at the top point ($x={L}_{l}/2$, $z={H}_{l}$) vs. t and (

**c**) solute concentration (${c}_{f}$ (kg/m${}^{3}$)) at the bottom point ($x={L}_{l}/2$, $z=0$) from the 2D model with various soil domain lengths and the 1D model [9].

**Figure 4.**The comparison of solute concentration distribution in the vertical direction for the present model (solid lines) and that of Zhang and Fang [15] (triangles and squares) with a constant loading. Note: results are present for simulation times of 5 years (red) and 10 years (black).

**Figure 7.**Excess pore pressure (${p}^{e}$ (kPa)) distribution along (

**a**) center vertical cut line where $x=$ 30 m; (

**b**) top horizontal cut line where $z=$ 3 m; and (

**c**) ${p}^{e}$ (kPa) vs. t (years) at top cut point $x=$ 30 m, $z=$ 3 m, middle cut point $x=$ 30 m, $z=$ 1.5 m and bottom cut point $x=$ 30 m, $z=$ 0 m.

**Figure 10.**(

**a**) Vertical displacement (w (m)) distribution along center vertical cut line ($x=$ 30 m); (

**b**) w (m) vs. t (years) at top cut point $x=$ 30 m, $z=$ 3 m, middle cut point $x=$ 30 m, $z=$ 1.5 m and bottom cut point $x=$ 30 m, $z=$ 0 m; (

**c**) horizontal displacement (u (m)) distribution along middle horizontal cut line at $z=$ 1.5 m.

**Figure 11.**Distribution of solute concentration (${c}_{f}$ (kg/m${}^{3}$)) from 1 year to 50 years; note that all sub-figures share the same colour legend.

**Figure 12.**Solute concentration (${c}_{f}$ (kg/m${}^{3}$)) distribution along (

**a**) center vertical cut line where $x=$ 30 m; (

**b**) horizontal cut line where $z=$ 15 m; (

**c**) top horizontal cut line where $z=$ 3 m; (

**d**) middle horizontal cut line where $z=$ 1.5 m; and (

**e**) ${c}_{f}$ (kg/m${}^{3}$) vs. t (years) at top cut point $x=$ 30 m, $z=$ 3 m, middle cut point $x=$ 30 m, $z=$ 1.5 m and bottom cut point $x=$ 30 m, $z=$ 0 m.

**Figure 14.**Contour diagram of solute concentration (${c}_{f}$ (kg/m${}^{3}$)) at Locations A, B and C after (

**a**) 5 years, (

**b**) 20 years and (

**c**) 50 years.

**Figure 15.**Solute concentration (${c}_{f}$ (kg/m${}^{3}$)) distribution along horizontal cut lines (

**a**) $z=$3 m; (

**b**) $z=1.5$ m and (

**c**) $z=0$ m from 1 year to 50 years.

Boundary Index | BC of ${\mathit{p}}^{\mathit{e}}$ | BC of $\mathit{u},\mathit{w}$ | BC of ${\mathit{c}}_{\mathit{f}}$ |
---|---|---|---|

1 | $\frac{\partial {p}^{e}}{\partial z}=0$ | $\left[\begin{array}{c}0\\ {\sigma}_{z}\end{array}\right]=\left[\begin{array}{c}0\\ Q\left(t\right)+{p}^{e}\end{array}\right]$ | $\frac{\partial {c}_{f}}{\partial z}=\frac{{D}_{G}}{{n}^{0}h{D}_{m}}({c}_{f}-{c}_{0})$ |

2 | ${p}^{e}=0$ | $\left[\begin{array}{c}u\\ w\end{array}\right]=\left[\begin{array}{c}0\\ 0\end{array}\right]$ | $\frac{\partial {c}_{f}}{\partial z}=0$ |

3 & 4 | $\frac{\partial {p}^{e}}{\partial x}=0$ | $u=0$ | $\frac{\partial {c}_{f}}{\partial x}=0$ |

IC: ${p}^{e}=0$, $\left[\begin{array}{c}u\\ w\end{array}\right]=\left[\begin{array}{c}0\\ 0\end{array}\right]$ and ${c}_{f}=0$ |

Parameter | Value | Description |
---|---|---|

$Q\left(t\right)$ | Referring to Figure 2 | Waste loading |

h | 0.0015 m | Thickness of geomembrane |

${}^{*}{H}_{l}$ | 3 m | Depth of soil domain |

${L}_{l}$ | 1 m, 3 m, 5 m, 8 m, 10 m and 20 m | Width of soil domain |

${S}_{r}^{0}$ | 0.88 | Degree of saturation |

${n}^{0}$ | 0.33 | Initial porosity |

G | $2.75\times {10}^{6}$ Pa | Shear modulus |

$\mu $ | 0.33 | Poisson’s ratio |

${}^{*}{K}_{x}$ | $1\times {10}^{-10}$ m/s | Hydraulic conductivity in the x-direction |

${K}_{z}$ | $1\times {10}^{-10}$ m/s | Hydraulic conductivity in the z-direction |

${\rho}_{w}$ | $1\times {10}^{3}$ kg/m${}^{3}$ | Density of the pore fluid, |

varied due to fluid compressibility | ||

${\rho}_{s}$ | $2.6\times {10}^{3}$ kg/m${}^{3}$ | Density of the solid phase |

${K}_{d}$ | 0 | Partitioning coefficient |

${r}_{h}$ | 0.02 m | Volumetric fraction of dissolved air |

within pore water | ||

${D}_{G}$ | $1.5\times {10}^{-4}$ m${}^{2}$/s | Mass transfer coefficient of geomembrane |

${D}_{m}$ | $5\times {10}^{-9}$ m${}^{2}$/s | Molecular diffusion coefficient in the clay |

${\alpha}_{L}$ | 0.1 m | Longitudinal dispersion coefficient |

${}^{*}{\alpha}_{T}$ | 0.1 m | Transverse dispersion coefficient |

${c}_{0}$ | 0.1 kg/m${}^{3}$ | Reference solute concentration |

**Note 1:**The symbol * indicates that the parameter is only applied in the 2D model, while the rest of the parameters remain same in both models.

**Note 2:**Total of six 2D models were computed with various ${H}_{l}$ as listed.

**Table 3.**Parameters for the validation with Zhang and Fang [15].

Parameter | Value | Description |
---|---|---|

$Q\left(t\right)$ | 100 kPa | Constant waste loading |

${S}_{r}^{0}$ | 1.0 | Initial degree of saturation |

${n}^{0}$ | 0.44 | Initial porosity |

G | $2.6\times {10}^{6}$ Pa | Shear modulus |

$\mu $ | 0.3 | Poisson’s ratio |

${K}_{x}$ | $1.7\times {10}^{-9}$ m/s | Hydraulic conductivity in x-direction |

${K}_{z}$ | $1.7\times {10}^{-9}$ m/s | Hydraulic conductivity in z-direction |

${\rho}_{s}$ | $2.6\times {10}^{3}$ kg/m${}^{3}$ | Density of the solid phase |

${K}_{d}$ | $8.142\times {10}^{-4}$ kg/m | Partitioning coefficient |

${D}_{m}$ | $6.76\times {10}^{-9}$ m${}^{2}$/s | Molecular diffusion coefficient in the clay |

${\alpha}_{L}$ | 0.5 m | Longitudinal dispersion coefficient |

${\alpha}_{T}$ | 0.05 m | Transverse dispersion coefficient |

${c}_{0}$ | 0.5 kg/m${}^{3}$ | Reference solute concentration |

Location | Pollution Region | Description |
---|---|---|

A | $x=$ 130 m to $x=$ 132 m | single pollution for 2 m |

B | $x=$ 149 m to $x=$ 151 m | two 2 m pollution points |

and $x=$ 152 m to $x=$ 154 m | that are close to each other | |

C | $x=$ 170 m to $x=$ 174 m | single pollution for 4 m |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, S.; Jeng, D.-S.
Two-Dimensional Model for Consolidation-Induced Solute Transport in an Unsaturated Porous Medium. *Sci* **2023**, *5*, 16.
https://doi.org/10.3390/sci5020016

**AMA Style**

Wu S, Jeng D-S.
Two-Dimensional Model for Consolidation-Induced Solute Transport in an Unsaturated Porous Medium. *Sci*. 2023; 5(2):16.
https://doi.org/10.3390/sci5020016

**Chicago/Turabian Style**

Wu, Sheng, and Dong-Sheng Jeng.
2023. "Two-Dimensional Model for Consolidation-Induced Solute Transport in an Unsaturated Porous Medium" *Sci* 5, no. 2: 16.
https://doi.org/10.3390/sci5020016