Deleterious Effect of Ultraviolet Radiation on Glossogobius giuris: A Short Experimental Study
Abstract
:1. Introduction
2. UV Light and Motivation
3. Materials and Methods
3.1. Ethical Issues
3.2. Collection and Maintenance of Freshwater Fish
3.3. Experimental Setup
3.4. The Ethical Issues, Applied Experimental Radiation, and Well-Being of Fish
3.5. Preparation of Fish for Dissection
3.6. Preparation for Histological Examination
3.7. Biochemical Analysis
3.8. Statistical Analyses
4. Results and Discussion
4.1. Histopathology
4.2. Effects of UVA and UVB Rays on the Tissues of G. giuris
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Ethical Issue
References
- Häder, D.-P.; Kumar, H.D.; Smith, R.C.; Worrest, R.C. Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2003, 2, 39–50. [Google Scholar] [CrossRef]
- Jana, B.; Nandy, S.; Lahiri, S.; Bag, S.; Ghosh, P.; Bhakta, J.; Ghosh, D.; Biswas, J.; Bhattacharjee, A.; Jana, S. Does solar heated structure mimicking greenhouse effective to impede winter growth reduction of some tropical fishes? Aquaculture 2019, 499, 51–60. [Google Scholar] [CrossRef]
- Sinha, R.P.; Häder, D.-P. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Gies, P.; Roy, C.; Javorniczky, J.; Henderson, S.; Lemus-Deschamps, L.; Driscoll, C. Global Solar UV Index: Australian Measurements, Forecasts and Comparison with the UK. Photochem. Photobiol. 2004, 79, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Louis-Jean, S.; Martirosyan, D. Nutritionally Attenuating the Human Gut Microbiome To Prevent and Manage Metabolic Syndrome. J. Agric. Food Chem. 2019, 67, 12675–12684. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.F.; Kastelic, J.P.; Adams, G.P.; Mapletoft, R.J. The use of a progesterone-releasing device (CIDR-B) or melengestrol acetate with GnRH, LH, or estradiol benzoate for fixed-time AI in beef heifers1. J. Anim. Sci. 2002, 80, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.L.; Björn, L.O.; Bais, A.; Ilyasd, M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 2003, 2, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhang, X.; Fu, Q.; Gao, G.; Gao, K. Water depth-dependant photosynthetic and growth rates of Gracilaria lemaneiformis, with special reference to effects of solar UV radiation. Aquaculture 2018, 484, 28–31. [Google Scholar] [CrossRef]
- Lebert, M.; Schuster, M.; Häder, D.P. The European Light Dosimeter Network: Four years of measurements. J. Photochem. Photobiol. B Biol. 2001, 66, 81–87. [Google Scholar] [CrossRef]
- Gregersen, K.J.D.J.; Pedersen, P.B.; Pedersen, L.-F.; Liu, D.; Dalsgaard, J. UV irradiation and micro filtration effects on micro particle development and microbial water quality in recirculation aquaculture systems. Aquaculture 2020, 518, 734785. [Google Scholar] [CrossRef]
- Figueiró, C.; de Oliveira, D.B.; Russo, M.; Caires, A.; Rojas, S. Fish farming water quality monitored by optical analysis: The potential application of UV–Vis absorption and fluorescence spectroscopy. Aquaculture 2018, 490, 91–97. [Google Scholar] [CrossRef]
- Available online: https://www.understandinganimalresearch.org.uk/openness/regulation/ (accessed on 14 March 2021).
- Bennett, R.H.; Ellender, B.R.; Mäkinen, T.; Miya, T.; Pattrick, P.; Wasserman, R.J.; Woodford, D.J.; Weyl, O.L. Ethical considerations for field research on fishes. Koedoe 2016, 58, 15. [Google Scholar] [CrossRef] [Green Version]
- Neiffer, D.L.; Stamper, M.A. Fish Sedation, Anesthesia, Analgesia, and Euthanasia: Considerations, Methods, and Types of Drugs. ILAR J. 2009, 50, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Culling, C.F.A.; Reid, P.E.; Clay, M.G.; Dunn, W.L. The Histochemical Demonstration of O-acylated Sialic Acid in Gastrointestinal Mucins Their Association with the Potassium Hydroxide-Periodic Acid-Schiff Effect. J. Histochem. Cytochem. 1974, 22, 826–831. [Google Scholar] [CrossRef]
- Subramanian, E.R.; Daisy, N.G.; Sudalaimani, D.K.; Ramamoorthy, K.; Balakrishnan, S.; Christyraj, J.D.S.; Arumugaswami, V.; Sivasubramaniam, S. Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration. PLoS ONE 2017, 12, e0175319. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Roe, J.H. The Determination of Sugar in Blood and Spinal Fluid with Anthrone Reagent. J. Biol. Chem. 1955, 212, 335–343. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Alves, R.N.; Agustí, S. Effect of ultraviolet radiation (UVR) on the life stages of fish. Rev. Fish Biol. Fish. 2020, 30, 335–372. [Google Scholar] [CrossRef]
- Stabell, O.B.; Vegusdal, A. Socializing makes thick-skinned individuals: On the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius). J. Comp. Physiol. A 2010, 196, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, U.M.; Mekkawy, I.A.; Sayed, A.E.-D.H. Ultraviolet radiation-A (366nm) induced morphological and histological malformations during embryogenesis of Clarias gariepinus (Burchell, 1822). J. Photochem. Photobiol. B Biol. 2009, 95, 117–128. [Google Scholar] [CrossRef]
- Sayed, A.E.-D.H.; Ibrahim, A.T.; Mekkawy, I.A.; Mahmoud, U.M. Acute effects of Ultraviolet-A radiation on African Catfish Clarias gariepinus (Burchell, 1822). J. Photochem. Photobiol. B Biol. 2007, 89, 170–174. [Google Scholar] [CrossRef]
- Sayed, A.; Abdel-Tawab, H.S.; Hakeem, S.S.A.; Mekkawy, I.A. The protective role of quince leaf extract against the adverse impacts of ultraviolet-A radiation on some tissues of Clarias gariepinus (Burchell, 1822). J. Photochem. Photobiol. B Biol. 2013, 119, 9–14. [Google Scholar] [CrossRef]
- Middlemiss, K.; Daniels, C.L.; Urbina, M.A.; Wilson, R.W. Combined effects of UV irradiation, ozonation, and the probiotic Bacillus spp. on growth, survival, and general fitness in European lobster (Homarus gammarus). Aquaculture 2015, 444, 99–107. [Google Scholar] [CrossRef]
- Ganesan, R.M.; Jebakumar, S.R.D.; Jayaraman, J. Sublethal effects of organochlorine insecticide (endosulfan) on protein, carbohydrate and lipid contents in liver tissues ofOreochromis mossambicus. Proc. Anim. Sci. 1989, 98, 51–55. [Google Scholar] [CrossRef]
- Gluth, G.; Hanke, W. A comparison of physiological changes in carp, Cyprinus carpio, induced by several pollutants at sublethal concentrations: I. The dependency on exposure time. Ecotoxicol. Environ. Saf. 1985, 9, 179–188. [Google Scholar] [CrossRef]
Electromagnetic Radiation Bands | Wavelength (nm) | Energy in Electronvolts (eV) | Lethality | Effects Due to Exposure to the UV Radiation |
---|---|---|---|---|
UVC | 200–280 | 6.2–4.4 | Highly energetic; absorbed by ozone and oxygen. It does not reach the Earth’s surface. | It causes skin burns as well as cancer, leading to a painful death. |
UVB | 280–315 | 4.4–3.9 | Moderately energetic; less destructive | Overexposure may cause sunburn as well as some forms of skin cancer. It destroys vitamin A in the skin. |
UVA | 320–400 | 3.9–3.0 | Mildly energetic; least destructive | Relatively safe but also destroys vitamin A in the skin; this may have side effects. |
Electromagnetic Radiation Bands | * Total Number of Effective Photons Generated | ** Total Number of Effective Photons/cm2 Generated | *** Total Power Delivered by the Lamp W/m2 |
---|---|---|---|
UVA | |||
Number of photons (P = 6 W; voltage at 240 V) | 5.46 × 1016 | 6.3 × 1014 | 693 |
UVA lamp wavelength at 320 nm | 3.9 eV **** | ||
UVB | |||
Number of photons (P = 4 W; voltage at 240 V) | 1.04 × 1016 | 1.20 × 1014 | 462 |
UVB lamp wavelength at 280 nm | 4.4 eV |
Condition | Duration of Exposure | Biochemical Composition | ||
---|---|---|---|---|
Carbohydrate (mg/100 mg Wet Tissue) | Protein (mg/100 mg Wet Tissue) | Lipid (mg/100 mg Wet Tissue) | ||
Control Visible light | 1 h | 1.321 ± 0.018 | 2.213 ± 0.245 | 0.211 ± 0.020 |
UVA | 1 h | 0.811 ± 0.025 | 1.441 ± 0.1993 | 0.196 ± 0.009 |
UVB | 1 h | 0.311 ± 0.037 | 1.121 ± 0.0915 | 0.088 ± 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramakrishnan, A.R.; Kumar, K.; Arunachalam, P.; Sankar, M.; Selvaraj, P.; Jheeta, S. Deleterious Effect of Ultraviolet Radiation on Glossogobius giuris: A Short Experimental Study. Sci 2022, 4, 12. https://doi.org/10.3390/sci4010012
Ramakrishnan AR, Kumar K, Arunachalam P, Sankar M, Selvaraj P, Jheeta S. Deleterious Effect of Ultraviolet Radiation on Glossogobius giuris: A Short Experimental Study. Sci. 2022; 4(1):12. https://doi.org/10.3390/sci4010012
Chicago/Turabian StyleRamakrishnan, Azhagu Raj, Krishna Kumar, Palavesam Arunachalam, Muthupandi Sankar, Prathap Selvaraj, and Sohan Jheeta. 2022. "Deleterious Effect of Ultraviolet Radiation on Glossogobius giuris: A Short Experimental Study" Sci 4, no. 1: 12. https://doi.org/10.3390/sci4010012
APA StyleRamakrishnan, A. R., Kumar, K., Arunachalam, P., Sankar, M., Selvaraj, P., & Jheeta, S. (2022). Deleterious Effect of Ultraviolet Radiation on Glossogobius giuris: A Short Experimental Study. Sci, 4(1), 12. https://doi.org/10.3390/sci4010012