A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects
Abstract
:1. Introduction
2. The REX Facility
2.1. The REX machine
2.2. The REX Applications
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency. Uses of Ionizing Radiation for Conservation of Tangible Cultural Heritage; Radiation Technology Series No. 6. STI/PUB/1747; IAEA: Vienna, Austria, 2017. [Google Scholar]
- Adamo, A.M.; Giovannotti, M.; Magaudda, G.; Plossi Zappalà, M.; Rocchetti, F.; Rossi, G. Effect of gamma rays on pure cellulose paper as a model for the study of a treatment of biological recovery of biodeteriorated books. Restaur. Int. J. Preserv. Libr. Arch. Mater. 1998, 19, 41–59. [Google Scholar] [CrossRef]
- Magaudda, G.G. The recovery of bio-deteriorat-ed books and archive documents through gamma radiation—Some considerations on the results achieved. J. Cult. Herit. 2004, 5, 113–118. [Google Scholar] [CrossRef]
- Moise, I.V.; Virgolici, M.; Negut, C.D.; Manea, M.; Alexandru, M.; Trandafir, L.; Zorila, F.L.; Talasman, C.M.; Manea, D.; Nisipeanu, S.; et al. Establishing the irradiation dose for paper decontamination. Radiat. Phys. Chem. 2012, 81, 1045–1050. [Google Scholar] [CrossRef]
- Moise, I.V.; Stanculescu, I.; Meltzer, V. Thermogravimetric and calorimetric study of cellulose paper at low dose irradiation. J. Therm. Anal. Calorim. 2014, 115, 1417–1425. [Google Scholar] [CrossRef]
- Manea, M.M.; Negut, C.D.; Stanculescu, I.R.; Ponta, C.C. Radiation effects on canvas oil painting: Spectroscopic observations. Radiat. Phys. Chem. 2012, 81, 1595–1599. [Google Scholar] [CrossRef]
- Manea, M.M.; Moise, I.V.; Virgolici, M.; Negut, C.D.; Barbu, O.H.; Cutrubinis, M.; Fugaru, V.; Stanculescu, I.R.; Ponta, C.C. Spectroscopic evalua-tion of painted layer structural changes induced by gamma radiation in experimental models. Radiat. Phys. Chem. 2012, 81, 160–167. [Google Scholar] [CrossRef]
- Ponta, C. Irradiation conservation of cultural heritage. Nucl. Phys. News 2008, 18, 22–24. [Google Scholar] [CrossRef]
- Ramiere, R. Protection de l’environnement culturel par les techniques nucléaires. In Proceedings of the Industrial Application of Radioisotopes and Radiation Technology, Grenoble, France, 28 September–2 October 1981; Proceedings Series STI/PUB/598. IAEA: Vienna, Austria, 1982. [Google Scholar]
- Severiano, L.C.; Lahr, F.A.; Bardi, M.A.; Santos, A.C.; Machado, L.D. Influence of gamma radiation on properties of common Brazilian wood species used in art-work. Prog. Nucl. Energy 2010, 52, 730–734. [Google Scholar] [CrossRef]
- Sendrea, C.; Badea, E.; Stanculescu, I.; Miu, L.; Iovu, H. Dose-dependent effects of gamma irradiation on collagen in vegetable tanned leather by mobile NMR spectroscopy. Leather Footwear J. 2015, 15, 139–150. [Google Scholar] [CrossRef]
- Nunes, I.; Mesquita, N.; Verde, S.C.; Trigo, M.J.; Ferreira, A.; Carolino, M.M.; Portugal, A.; Botelho, M.L. Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax. Radiat. Phys. Chem. 2012, 81, 1943–1946. [Google Scholar] [CrossRef]
- Geba, M.; Lisa, G.; Ursescu, C.M.; Olaru, A.; Spiridon, I.; Leon, A.L.; Stanculescu, I. Gamma irradiation of protein-based textiles for historical col-lections decontamination. J. Therm. Anal. Calorim. 2014, 118, 977–985. [Google Scholar] [CrossRef]
- Mitran, A.; Ponta, C.C.; Danis, A. Traitement antimicrobien des films cinématographiques au moyen du rayonnement gamma. In Proceedings of the La conservation à l’ère du numérique—Actes des Quatrièmes Journées Internationales D’études de l’ARSAG, Paris, France, 27–30 May 2002; Groupe Liénart Press: Paris, France, 2002. [Google Scholar]
- Vadrucci, M.; Ferrari, P.; Borgognoni, F.; Campani, L. The REX irradiation facility and its applications. Nucl. Instrum. Methods Phys. Res. A 2019, 930, 126–131. [Google Scholar] [CrossRef]
- Vadrucci, M.; Cicero, C.; Mazzuca, C.; Mercuri, F.; Missori, M.; Orazi, N.; Severini, L.; Zammit, U. Effect of X-ray and artificial aging on parchment. Eur. Phys. J. Plus 2021, 136, 873. [Google Scholar] [CrossRef]
- Cicero, C. Nanoscale characterization of the fibrillar networking in collagen-based cultural heritage artefacts. Il Nuovo Cim. C 2021, 44, 1–10. [Google Scholar] [CrossRef]
- Vadrucci, M.; Cicero, C.; Parisse, P.; Casalis, L.; De Bellis, G. Surface evaluation of the effect of X-rays irradiation on parchment artefacts through AFM and SEM. Appl. Surf. Sci. 2020, 513, 145881. [Google Scholar] [CrossRef]
- Vadrucci, M.; de Bellis, G.; Mazzuca, C.; Mercuri, F.; Borgognoni, F.; Schifano, E.; Uccelletti, D.; Cicero, C. Effects of the Ionizing Radiation Disinfection Treatment on Historical Leather. Front. Mater. 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Vadrucci, M.; De Bellis, G.; Mazzuca, C.; Mercuri, F.; Borgognoni, F.; Schifano, E.; Uccelletti, D.; Cicero, C. Caratterizzazione su Scala Nanoscopica Della Rete Fibrillare di Collagene di Beni Archivistici e Librari, 106° Congresso Nazionale; Società Italiana di Fisica: Bologna, Italy, 2020; ISBN 978-88-7438-123-4. [Google Scholar]
- Vadrucci, M.; Cicero, C.; Borgognoni, F. Rimozione del Biodegrado da Beni Culturali con Fasci di Elettroni, 106° Congresso Nazionale; Società Italiana di Fisica: Bologna, Italy, 2020; ISBN 978-88-7438-123-4. [Google Scholar]
- Cicero, C.; Vadrucci, M.; de Bellis, G. Caratterizzazione Degli Effetti Dell’irraggiamento con Raggi X sul Collagene di Manufatti artistici Mediante Tecniche di Microscopia Avanzata. Atti del I Convegno Annuale del Distretto Tecnologico per i Beni e le Attività Culturali della Regione Lazio; Centro di Eccellenza: Roma, Italy, 2019; ISBN 978-88-913-1971-5. [Google Scholar]
- Vadrucci, M.; Cicero, C.; de Bellis, G. Assessing the irradiation-driven restoration of biodeteriorated parchments through AFM and SEM. In Proceedings of the TECHNART 2019: The European Conference on the Use of Analytical Methods for Characterization of Works of Art, Bruges, Belgium, 7–10 May 2019; Available online: https://www.iperionch.eu/technart-2019-the-european-conference-on-the-use-of-analytical-methods-for-characterization-of-works-of-art/ (accessed on 12 December 2022).
- Vadrucci, M.; Cicero, C.; Parisse, P.; Casalis, L.; De Bellis, G. Nanoscale evaluation of the effect of X-rays irradiation on parchment artefacts through AFM and SEM. In Proceedings of the Nano Innovation Conference & Exhibition, Roma, Italy, 11–14 June 2019; Available online: www.nanoinnovation2019.eu (accessed on 12 December 2022).
- Vadrucci, M.; Cicero, C.; de Bellis, G.; Mercuri, F. Evaluation of the effects of the X-rays irradiation on collagen matrix: A new proposed disinfection method. In Proceedings of the Physics of Parchments Workshop, Namur, Belgio, 28–29 November 2019; Available online: https://www.pergamenum21.eu/sites/en/pergamenum/events/workshop/abstract-book-pdf (accessed on 12 December 2022).
- Vadrucci, M.; Borgognoni, F.; Cicero, C.; Perini, N.; Migliore, L.; Mercuri, F.; Orazi, N.; Rubechini, A. Parchment processing and analysis: Ionizing radiation treatment by the REX source and multidisciplinary approach characterization. Appl. Radiat. Isot. 2019, 149, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Vadrucci, M.; Cicero, C.; Borgognoni, F.; Ceres, G.; Perini, N.; Migliore, L.; Mercuri, F.; Orazi, N.; Paoloni, S.; Rubechini, A. Parchment disinfection treatment by ionizing radiation. In Proceedings of the Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 367–372. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Power | 900 W |
RF Frequency: | 2999 Hz |
Pulse Duration (FWHM): | 3.5 μs |
Electron Beam Energy: | up to 5.7 MeV |
X-rays mean energy (from 4 mm W): | 1.25 MeV |
A: wheeled front-closing door of the irradiation chamber of the REX facility used for radiation dumping during operations. |
B: the irradiation chamber specially made for the operations of the REX machine, with a scalable size, equipped with a large, wheeled side door for accessing the objects, structures and devices necessary for the specific treatment. |
C: output of the radiation beams produced by the REX machine (in particular: the output stretch of the electrons accelerated by the linac and emerging from the vacuum window and also the beta-gamma conversion system). |
D: vacuum chamber containing the electron accelerator. |
E: pumping system. |
F: tower containing the power supplies necessary for the electron gun. |
G: radiofrequency waveguide equipped with direct and reflected power measurement devices. |
H: radio frequency generation system. |
I: tower containing the power systems necessary for the radiofrequency formation line. |
L: modifiable floor support structure for housing liquid phase materials which require treatments with radiation from above. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadrucci, M. A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects. Quantum Beam Sci. 2022, 6, 33. https://doi.org/10.3390/qubs6040033
Vadrucci M. A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects. Quantum Beam Science. 2022; 6(4):33. https://doi.org/10.3390/qubs6040033
Chicago/Turabian StyleVadrucci, Monia. 2022. "A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects" Quantum Beam Science 6, no. 4: 33. https://doi.org/10.3390/qubs6040033
APA StyleVadrucci, M. (2022). A Machine for Ionizing Radiation Treatment of Bio-Deteriogens Infesting Artistic Objects. Quantum Beam Science, 6(4), 33. https://doi.org/10.3390/qubs6040033