Surface Channeling of Charged and Neutral Beams in Capillary Guides
Abstract
:1. Introduction
2. Surface Channeling: Basic Principles
2.1. Basics of Channeling
2.2. Small-Angle Multiple Scattering by Smooth Flat or Curved Surface
3. X-ray Surface Channeling in Capillaries
4. Charged Beam Surface Channeling
4.1. Charged Beam Guiding in Dielectric Capillary
4.2. Interaction Potential at Surface Channeling of Charged Beams
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dearnaley, G. The Channeling of Ions through Detectors (Preprint Oct. 1963). IEEE Trans. Nucl. Sci. 1964, 11, 249–253. [Google Scholar] [CrossRef]
- Davies, J. Lectures on Channelling Ion Implantation and Atomic Collisions; Lectures on Mathematics and Physics: Physics; Tata Institute of Fundamental Research: Mumbai, India, 1974. [Google Scholar]
- Kumakhov, M.A.; Shirmer, G. Atomic Collisions in Crystals; G. & B. Sci. Pub. Ltd.: London, UK, 1979. [Google Scholar]
- Feldman, L.; Mayerand, J.; Picraux, S. Materials Analysis by Ion Channeling; Academic Press: London, UK, 1982. [Google Scholar]
- Baryshevsky, V.G. Channeling, Radiation and Reactions in Crystals at High Energies; BSU: Minsk, Belarus, 1982. (In Russian) [Google Scholar]
- Davies, J.A. The Channeling Phenomenon and Some of Its Applications. Phys. Scr. 1983, 28, 294–302. [Google Scholar] [CrossRef]
- Ohtsuki, Y.H. Charged Beam Interaction with Solids; Taylor & Francis Ltd.: London, UK; New York, NY, USA, 1983. [Google Scholar]
- Kalashnikov, N.P. Coherent Interactions of Charged Particles in Single Crystals. Scattering and Radiative Processes in Single Crystals; Harwood Acad. Pub.: London, UK; New York, NY, USA, 1988. [Google Scholar]
- Lindhard, J. Motion of swift charged particles, as influenced by strings of atoms in crystals. Phys. Lett. 1964, 12, 126–128. [Google Scholar] [CrossRef]
- Lindhard, J. Influence of Crystal Lattice on Motion of Energetic Charged Particles. Kongel. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 1965, 34, 1. [Google Scholar]
- Piercy, G.R.; Brown, F.; Davies, J.A.; McCorgo, M. Experimental Evidence for the Increase of Heavy Ions Ranges by Channeling in Crystalline Structure. Phys. Rev. Lett. 1963, 10, 399–400. [Google Scholar] [CrossRef]
- Lutz, H.; Sizmann, R. Super Ranges of Fast Ions in Copper Single Crystals. Phys. Lett. 1963, 5, 113–114. [Google Scholar] [CrossRef]
- Robinson, M.; Oen, O. Computer Studies of the Slowing Down of Energetic Atoms in Crystals. Phys. Rev. 1963, 132, 2385–2398. [Google Scholar] [CrossRef]
- Beeler, J.R., Jr.; Besco, D.G. Range and Damage Effects of Tunnel Tragectories in a Wurtzite Structure. J. Appl. Phys. 1963, 34, 2873–2878. [Google Scholar] [CrossRef]
- Brandt, W. Channeling in Crystals. Sci. Am. 1968, 218, 91. [Google Scholar] [CrossRef]
- Lervig, P.; Lindhard, J.; Nielsen, V. Quantal Treatment of Directional Effects for Energetic Charged Partciles in Crystal Lattices. Nucl. Phys. 1967, A96, 481–504. [Google Scholar] [CrossRef]
- Andersen, J.U.; Andersen, S.K.; Augustyniak, W.M. Channeling of electrons and positrons. Kongel. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 1977, 39, 1–58. [Google Scholar]
- Borisov, A.B.; Borovskiy, A.V.; Korobkin, V.V.; Prokhorov, A.M.; Shiryaev, O.B.; Shi, X.M.; Luk, T.S.; McPherson, A.; Solem, J.C.; Boyer, K.; et al. Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 1992, 68, 2309–2312. [Google Scholar] [CrossRef] [PubMed]
- Frolov, E.; Dik, A.; Dabagov, S. Dynamics of electrons acceleration in presence of crossed laser field. Nucl. Instrum. Meth. B 2013, 309, 157–161. [Google Scholar] [CrossRef]
- Dabagov, S.B.; Dik, A.V.; Frolov, E.N. Channeling of electrons in a crossed laser field. Phys. Rev. ST Accel. Beams 2015, 18, 064002. [Google Scholar] [CrossRef]
- Frolov, E.; Dik, A.; Dabagov, S. Space charge effect simulation at electrons channeling in laser fields. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 402, 220–222. [Google Scholar] [CrossRef]
- Dabagov, S.; Frolov, E.; Dik, A. Space charge influence on particles channeling in optical lattice. Phys. Lett. B 2019, 790, 77–80. [Google Scholar] [CrossRef]
- Dabagov, S.B. Advanced Channeling Technologies in Plasma and Laser Fields. EPJ Web Conf. 2018, 167, 01002. [Google Scholar] [CrossRef]
- Esarey, E.; Sprangle, P.; Krall, J.; Ting, A. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 1997, 33, 1879–1914. [Google Scholar] [CrossRef]
- Davis, J.; Borisov, A.B.; Boyer, K.; Rhodes, C.K. Multikilovolt channelled X-ray propagation in water. J. Phys. B At. Mol. Opt. Phys. 2005, 38, L309–L313. [Google Scholar] [CrossRef]
- Bezryadina, A.; Hansson, T.; Gautam, R.; Wetzel, B.; Siggins, G.; Kalmbach, A.; Lamstein, J.; Gallardo, D.; Carpenter, E.J.; Ichimura, A.; et al. Nonlinear Self-Action of Light through Biological Suspensions. Phys. Rev. Lett. 2017, 119, 058101. [Google Scholar] [CrossRef] [Green Version]
- Schirber, M. Bacteria form waveguides. Physics 2017, 10, 90. [Google Scholar] [CrossRef]
- Carrigan, R.A. Single Crystals and Short-Lived Particles. Phys. Rev. Lett. 1975, 35, 206–209. [Google Scholar] [CrossRef]
- Tsyganov, E. Some Aspects of the Mechanism of a Charged Particle Penetration through a Monocrystal; Fermilab preprint TM-682; Fermilab: Batavia, IL, USA, 1976. [Google Scholar]
- Biryukov, V.M.; Chesnokov, Y.A.; Kotov, V.I. Crystal Channeling and Its Application at High-Energy Accelerators; Springer: Berlin, Germany, 1997. [Google Scholar]
- Scandale, W.; Taratin, A. Channeling and volume reflection of high-energy charged particles in short bent crystals. Crystal assisted collimation of the accelerator beam halo. Phys. Rep. 2019, 815, 1–107. [Google Scholar] [CrossRef]
- Kumakhov, M. On the theory of electromagnetic radiation of charged particles in a crystal. Phys. Lett. A 1976, 57, 17–18. [Google Scholar] [CrossRef]
- Beloshitsky, V.V.; Komarov, F.F. Electromagnetic Radiation of Relativistic Channeling Particles (The Kumakhov Effect). Phys. Rep. 1982, 93, 117–197. [Google Scholar] [CrossRef]
- Saenz, A.; Uberall, H. (Eds.) Coherent Radiation Sources; Springer: Berlin, Germany, 1985. [Google Scholar]
- Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M. High Energy Electromagnetic Processes in Oriented Single Crystals; World Scientific: Singapore, 1998. [Google Scholar]
- Rullhusen, P.; Artru, X.; Dhez, P. Novel Radiation Sources Using Relativistic Electrons: From Infrared to X-rays (Series in Mathematical Biology and Medicine); World Scientific: Singapore, 1998. [Google Scholar]
- Shiltsev, V.; Zimmermann, F. Modern and future colliders. Rev. Mod. Phys. 2021, 93, 015006. [Google Scholar] [CrossRef]
- Minty, M.G.; Zimmermann, F. Measurement and Control of Charged Particle Beams; Particle Acceleration and Detection; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, R.; Seidling, M.; Hommelhoff, P. Charged particle guiding and beam splitting with auto-ponderomotive potentials on a chip. Nat. Commun. 2021, 12, 390. [Google Scholar] [CrossRef]
- Gras-Marti, A.; Urbassek, H.M.; Arista, N.R.; Flores, F. (Eds.) Interaction of Charged Particles with Solids and Surfaces; Nato ASI Series; Springer: Boston, MA, USA, 1991; Volume 271. [Google Scholar] [CrossRef]
- Dabagov, S.B. Channeling of neutral particles in micro- and nanocapillaries. Phys.-Uspekhi 2003, 46, 1053–1075. [Google Scholar] [CrossRef]
- Thiel, D.; Stern, E.; Bilderback, D.; Lewis, A. Focusing of synchrotron radiation using tapered glass capillaries. Phys. B Condens. Matter 1989, 158, 314–316. [Google Scholar] [CrossRef]
- Kumakhov, M. Channeling of photons and new X-ray optics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1990, 48, 283–286. [Google Scholar] [CrossRef]
- Engström, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knöchel, A.; Lechtenberg, F. A submicron synchrotron X-ray beam generated by capillary optics. Nucl. Instrum. Meth. A 1991, 302, 547–552. [Google Scholar] [CrossRef]
- Thiel, D.J.; Bilderback, D.H.; Lewis, A.; Stern, E.A. Submicron concentration and confinement of hard X-rays. Nucl. Instrum. Meth. A 1992, 317, 597–600. [Google Scholar] [CrossRef]
- Bilderback, D.H.; Thiel, D.J.; Pahl, R.; Brister, K.E. X-ray Applications with Glass-Capillary Optics. J. Synchrotron Radiat. 1994, 1, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kumakhov, M.A. Deflection of charged beams by surface channeling. Tech. Phys. Lett. 1979, 5, 689–692. (In Russian) [Google Scholar]
- Akkerman, A.F.; Chubisov, M. Simulation of particles deflection by surface channeling. Tech. Phys. Lett. 1981, 51, 2152–2155. (In Russian) [Google Scholar]
- Kumakhov, M.A.; Sabirov, A.S. Theory of ion reflection from amorphous surface at low glancing angles. Radiat. Eff. 1989, 107, 197–225. [Google Scholar] [CrossRef]
- Kumakhov, M.A. Radiation of Channeled Particles in Crystals; Energoatomizdat: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Mashkova, E.S.; Molchanov, V.A. Medium-energy ion scattering by solid surfaces part II. Radiat. Eff. 1974, 23, 215–270. [Google Scholar] [CrossRef]
- Sizmann, R.; Varelas, C. Surface Channeling. Nucl. Instrum. Methods 1976, 132, 633–638. [Google Scholar] [CrossRef]
- Kumakhov, M.; Komarov, F. Multiple reflection from surface X-ray optics. Phys. Rep. 1990, 191, 289–350. [Google Scholar] [CrossRef]
- Bilderback, D.H. Review of capillary X-ray optics from the 2nd International Capillary Optics Meeting. X-ray Spectrom. 2003, 32, 195–207. [Google Scholar] [CrossRef]
- Kumakhov, M. (Ed.) Kumakhov Optics and Applications; SPIE Selected Papers; Proc. SPIE: Washington, WA, USA, 2000; Volume 4155. [Google Scholar]
- Khounsary, A.; MacDonald, C.A. Focusing Polycapillary Optics and Their Applications. X-ray Opt. Instrum. 2010, 2010, 867049. [Google Scholar] [CrossRef] [Green Version]
- Dabagov, S.B.; Gladkikh, Y.P. Advanced channeling technologies for X-ray applications. Radiat. Phys. Chem. 2019, 154, 3–16. [Google Scholar] [CrossRef]
- Winter, H. Scattering of atoms and ions from insulator surfaces. Prog. Surf. Sci. 2000, 63, 177–247. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Bremer, J.H.; Hoffmann, V.; Hellhammer, R.; Fink, D.; Petrov, A.; Sulik, B. Transmission of 3 keV Ne7+ Ions through Nanocapillaries Etched in Polymer Foils: Evidence for Capillary Guiding. Phys. Rev. Lett. 2002, 88, 133201. [Google Scholar] [CrossRef]
- Schiessl, K.; Palfinger, W.; Tőkési, K.; Nowotny, H.; Lemell, C.; Burgdörfer, J. Simulation of guiding of multiply charged projectiles through insulating capillaries. Phys. Rev. A 2005, 72, 062902. [Google Scholar] [CrossRef] [Green Version]
- Stolterfoht, N. Comparison of ion guiding through nanocapillaries and macrocapillaries in insulating materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 354, 51–55. [Google Scholar] [CrossRef]
- Hellhammer, R.; Sobocinski, P.; Pešić, Z.; Bundesmann, J.; Fink, D.; Stolterfoht, N. Interaction of slow highly charged ions with the inner surface of nanocapillaries. Nucl. Instrum. Meth. B 2005, 232, 235–243. [Google Scholar] [CrossRef]
- Pokhil, G.; Vokhmyanina, K. Drift model of ion beam guiding using capillaries. J. Surf. Investig. 2008, 2, 237–240. [Google Scholar] [CrossRef]
- Stolterfoht, N. Simulation and analysis of ion guiding through a nanocapillary in insulating polymers. Phys. Rev. A 2013, 87, 012902. [Google Scholar] [CrossRef]
- Stolterfoht, N. Simulations of ion-guiding through insulating nanocapillaries of varying diameter: Interpretation of experimental results. Atoms 2020, 8, 48. [Google Scholar] [CrossRef]
- Giglio, E.; Guillous, S.; Cassimi, A.; Zhang, H.; Nagy, G.; Tokési, K. Evolution of the electric potential of an insulator under charged particle impact. Phys. Rev. A 2017, 95, 030702. [Google Scholar] [CrossRef]
- Schiessl, K.; Tőkési, K.; Solleder, B.; Lemell, C.; Burgdörfer, J. Electron Guiding through Insulating Nanocapillaries. Phys. Rev. Lett. 2009, 102, 163201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dassanayake, B.S.; Das, S.; Ayyad, A.; Tanis, J.A. Electron transmission through a single glass macrocapillary: Dependence on energy and time. Phys. Scr. 2011, T144, 014041. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Yu, D.Y.; Yang, B.; Wu, Y.H.; Zhang, M.W.; Ruan, F.F.; Cai, X.H. Transmission of electrons through a tapered glass capillary. Phys. Scr. 2011, T144, 014023. [Google Scholar] [CrossRef]
- Wickramarachchi, S.; Dassanayake, B.; Keerthisinghe, D.; Ayyad, A.; Tanis, J. Electron transmission through a microsize tapered glass capillary. Nucl. Instrum. Meth. B 2011, 269, 1248–1252. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Tanis, J. Significant differences in ion and electron guiding through highly insulating capillaries. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 421, 32–37. [Google Scholar] [CrossRef]
- Das, S.; Dassanayake, B.; Winkworth, M.; Baran, J.; Stolterfoht, N.; Tanis, J. Inelastic guiding of electrons in polymer nanocapillaries. Phys. Rev. A—At. Mol. Opt. Phys. 2007, 76, 042716. [Google Scholar] [CrossRef]
- Dassanayake, B.; Das, S.; Bereczky, R.; Tokési, K.; Tanis, J. Energy dependence of electron transmission through a single glass macrocapillary. Phys. Rev. A—At. Mol. Opt. Phys. 2010, 81, 020701. [Google Scholar] [CrossRef]
- Wickramarachchi, S.; Ikeda, T.; Dassanayake, B.; Keerthisinghe, D.; Tanis, J. Electron-beam transmission through a micrometer-sized tapered-glass capillary: Dependence on incident energy and angular tilt angle. Phys. Rev. A 2016, 94, 022701. [Google Scholar] [CrossRef]
- Vokhmyanina, K.; Kubankin, A.; Myshelovka, L.; Zhang, H.; Kaplii, A.; Sotnikova, V.; Zhukova, M. Transport of accelerated electrons through dielectric nanochannels in PET films. J. Instrum. 2020, 15, C04003. [Google Scholar] [CrossRef]
- Vokhmyanina, K.; Myshelovka, L.; Sotnikova, V.; Kubankina, A.; Pyatigor, A.; Kubankin, A.; Grigoriev, Y. A Study of the Transmission of 10-keV Electrons through a Ceramic Macrochannel. Tech. Phys. Lett. 2021, 47, 51. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Wulfkühler, J.P.; Heisig, J.; Tajmar, M. Electron guiding in macroscopic borosilicate capillaries with large bending angles. Sci. Rep. 2021, 11, 8345. [Google Scholar] [CrossRef] [PubMed]
- Nebiki, T.; Yamamoto, T.; Narusawa, T.; Breese, M.; Teo, E.; Watt, F. Focusing of MeV ion beams by means of tapered glass capillary optics. J. Vac. Sci. Technol. Vac. Surf. Film. 2003, 21, 1671–1674. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Kanai, Y.; Kojima, T.M.; Iwai, Y.; Kambara, T.; Yamazaki, Y.; Hoshino, M.; Nebiki, T.; Narusawa, T. Production of a microbeam of slow highly charged ions with a tapered glass capillary. Appl. Phys. Lett. 2006, 89, 163502. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Kojima, T.; Iwai, Y.; Kanai, Y.; Kambara, T.; Nebiki, T.; Narusawa, T.; Yamazaki, Y. Production of a nm sized slow HCI beam with a guiding effect. J. Phys. Conf. Ser. 2007, 58, 68–73. [Google Scholar] [CrossRef]
- Zhou, C.; Simon, M.; Ikeda, T.; Guillous, S.; Iskandar, W.; Méry, A.; Rangama, J.; Lebius, H.; Benyagoub, A.; Grygiel, C.; et al. Transmission of slow highly charged ions through glass capillaries: Role of the capillary shape. Phys. Rev. A—At. Mol. Opt. Phys. 2013, 88, 050901. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y. Beam diameter effects on the transmission of 1-MeV protons through an insulating macrocapillary. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 482, 1–5. [Google Scholar] [CrossRef]
- Ikeda, T. Applications of microbeams produced by tapered glass capillary optics. Quantum Beam Sci. 2020, 4, 22. [Google Scholar] [CrossRef]
- Lemell, C.; Burgdörfer, J.; Aumayr, F. Interaction of charged particles with insulating capillary targets—The guiding effect. Prog. Surf. Sci. 2013, 88, 237–278. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Yamazaki, Y. Guiding of charged particles through capillaries in insulating materials. Phys. Rep. 2016, 629, 1–107. [Google Scholar] [CrossRef]
- Schiessl, K.; Lemell, C.; Tökési, K.; Burgdörfer, J. Simulation of charged particle guiding through insulating nanocapillaries. J. Phys. Conf. Ser. 2009, 194, 012069. [Google Scholar] [CrossRef]
- Schiessl, K.; Palfinger, W.; Lemell, C.; Burgdörfer, J. Simulation of guiding of highly charged projectiles through insulating nanocapillaries. Nucl. Instrum. Meth. B 2005, 232, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Stolterfoht, N.; Zhao, Y. Simulated transmission of a 1-MeV proton microbeam through an insulating macrocapillary. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 458, 28–32. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y. Simulations of transmission of 1 MeV protons through an insulating macrocapillary. J. Phys. Appl. Phys. 2020, 53. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y. Simulations of 1-MeV proton transmission through an insulating conical macrocapillary: Further insight into transmission mechanisms. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2021, 491, 1–6. [Google Scholar] [CrossRef]
- Moliere, G. Theorie der Streuung schneller geladener Teilchen I Einzelstreuung am abgeschirmten Coulomb-Feld. Z. Naturforschung A 1947, A2, 133–145. [Google Scholar] [CrossRef]
- Bethe, H.A. Molière’s Theory of Multiple Scattering. Phys. Rev. 1953, 89, 1256–1266. [Google Scholar] [CrossRef]
- Gemmell, D.S. Channeling and Related Effects in the Motion of Charged Particles Through Crystals. Rev. Mod. Phys. 1974, 46, 129–227. [Google Scholar] [CrossRef]
- Madelung, O. Solid State Theory, Russian ed.; Translated from O. Madelung, Festköpertheorie I, II, Spriger-Verlag 1972; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Dabagov, S.B.; Zhevago, N.K. On radiation by relativistic electrons and positrons channeled in crystals. Riv. Nuovo C. 2008, 31, 491–529. [Google Scholar] [CrossRef]
- Kumakhov, M.A. Interaction potential of a particle with amorphous surface. Tech. Phys. Lett. 1983, 9, 1314–1316. (In Russian) [Google Scholar]
- Dabagov, S.B. Redistribution of X-rays Trapped in Bound States by Capillary Systems; Preprint IROS-1/1992; IROS: Moscow, Russia, 1992. [Google Scholar]
- Cappuccio, G.; Dabagov, S.; Pifferi, A.; Gramaccioni, C. Divergence Behaviour Due to Surface Channeling in Capillary Optics. Appl. Phys. Lett. 2001, 78, 2822–2824. [Google Scholar] [CrossRef]
- Dabagov, S.B. Wave theory of X-ray scattering in capillary structures. X-ray Spectrom. 2003, 32, 179–185. [Google Scholar] [CrossRef]
- Dabagov, S.B.; Kumakhov, M.A. X-ray channeling in capillary systems. Proc. SPIE 1995, 2515, 124–133. [Google Scholar] [CrossRef]
- Dabagov, S.; Kumakhov, M.; Nikitina, S. On the Interference of X-rays in Multiple Reflection Optics. Phys. Lett. A 1995, 203, 279–282. [Google Scholar] [CrossRef]
- Burattini, E.; Dabagov, S.B. Channeling of X-rays in capillary systems: I. General principles. Nuovo C. B 2001, 116, 361–370. [Google Scholar]
- Burattini, E.; Dabagov, S.B.; Monti, F. Channeling of X-rays in capillary systems. II. Quantum-wave approach. Nuovo C. B 2002, 117, 769–779. [Google Scholar]
- Bukreeva, I.; Popov, A.; Pelliccia, D.; Cedola, A.; Dabagov, S.B.; Lagomarsino, S. Wave-Field Formation in a Hollow X-ray Waveguide. Phys. Rev. Lett. 2006, 97, 184801. [Google Scholar] [CrossRef]
- Dabagov, S.; Uberall, H. On X-ray waveguiding in nanochannels: Channeling formalism. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Kumakhov, M.A. (Ed.) X-ray and Neutron Capillary Optics II; Proc. SPIE: Washington, WA, USA, 2004; Volume 5943. [Google Scholar]
- Dabagov, S.B. From surface down to bulk X-ray channeling. AIP Conf. Proc. 2003, 652, 89–98. [Google Scholar] [CrossRef]
- Dabagov, S.B.; Kumakhov, M.A.; Nikitina, S.V.; Murashova, V.A.; Fedorchuk, R.V.; Yakimenko, M.N. Observation of Interference Effects at the Focus of an X-ray Lens. J. Synch. Irradiat. 1995, 2, 132–135. [Google Scholar] [CrossRef]
- Artemiev, N.; Artemiev, A.; Kohn, V.; Smolyakov, N. Coherent Phenomenon in Reflection of Radiation by an Uneven Mirror. Phys. Scr. 1998, 57, 228. [Google Scholar] [CrossRef] [Green Version]
- Dabagov, S.B.; Marcelli, A. Single-reflection regime of X-rays that travel into a monocapillary. Appl. Opt. 1999, 38, 7494–7497. [Google Scholar] [CrossRef]
- Kukhlevsky, S.V.; Flora, F.; Marinai, A.; Nyitray, G.; Ritucci, A.; Palladino, L.; Reale, A.; Tomassetti, G. Diffraction of X-ray beams in capillary waveguides. Nucl. Instrum. Meth. B 2000, 168, 276–282. [Google Scholar] [CrossRef]
- Liu, C.; Golovchenko, J.A. Surface Trapped X-rays: Whispering-Gallery Modes at λ = 0.7 Å. Phys. Rev. Lett. 1997, 79, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, A.V.; Kovalev, V.F.; Kozhevnikov, I.V.; Pustovalov, V.V. Diffraction theory for grazing modes in concave mirrors and resonators at X-ray wavelengths. Sov. Phys. Tech. Phys. 1985, 30, 335–339. [Google Scholar]
- Dabagov, S.B.; Marcelli, A.; Murashova, V.A.; Svyatoslavsky, N.L.; Fedorchuk, R.V.; Yakimenko, M.N. Coherent and incoherent components of a synchrotron radiation spot produced by separate capillaries. Appl. Opt. 2000, 39, 3338–3343. [Google Scholar] [CrossRef] [PubMed]
- Bongaerts, J.; David, C.; Drakopoulos, M.; Zwanenburg, M.; Wegdam, G.; Lackner, T.; Keymeulen, H.; Van der Veen, J. Propagation of a partially coherent focused X-ray beam within a planar X-ray waveguide. J. Synchrotron Radiat. 2002, 9, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, Y.; Dabagov, S.; Kumakhov, M.; Murashova, V.; Fedin, D.; Fedorchuk, R.; Yakimenko, M. Peculiarities of photon transmission through capillary systems. Nucl. Instrum. Meth. B 1998, 134, 174–180. [Google Scholar] [CrossRef]
- Devreese, J.T.; Kunz, A.B.; Collins, T.C. (Eds.) Elementary Excitations in Solids, Molecules and Atoms. Part B, Chapter—Electron Interaction with Surface Modes by G. D. Mahan; Nato ASI Subseries B; Springer: New York, NY, USA, 1974; Volume 2. [Google Scholar] [CrossRef]
- Ashkroft, N.; Mermin, N. Solid State Physics, Russian ed.; Translated from N.W. Ashkroft, N.D. Mermin, Solid State Physics, Saunders College Publ. 1976; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Dedkov, G.V. Interatomic potentials of interactions in radiation physics. Phys.-Uspekhi 1995, 38, 877–910. [Google Scholar] [CrossRef]
- Kawai, R.; Itoh, N.; Ohtsuki, Y. Inelastic Scattering of Ions at the Surface. Surf. Sci. 1982, 114, 137–146. [Google Scholar] [CrossRef]
- Nunez, R.; Echenique, P.; Ritchie, R. The energy loss of energetic ions moving near a solid surface. J. Phys. C Solid State Phys. 1980, 13, 4229–4246. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Dabagov, S.B.; Dik, A.V. On channeling of charged particles in a single dielectric capillary. arXiv 2021, arXiv:2109.03524. [Google Scholar]
- Metzger, T.H. Squeezing X-ray Photons. Science 2002, 297, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Dabagov, S.B.; Uberall, H. On X-ray channeling in narrow guides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2008, 266, 3881–3887. [Google Scholar] [CrossRef]
- Ioffe, A.; Dabagov, S.; Kumakhov, M. Effective neutron bending at large angles. Neutron News 1995, 6, 20–21. [Google Scholar] [CrossRef]
- Pogossian, S.P.; Gall, H.L. Neutron and X-ray propagation laws in thin film waveguides. Opt. Commun. 1995, 114, 235–241. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabagov, S.; Dik, A. Surface Channeling of Charged and Neutral Beams in Capillary Guides. Quantum Beam Sci. 2022, 6, 8. https://doi.org/10.3390/qubs6010008
Dabagov S, Dik A. Surface Channeling of Charged and Neutral Beams in Capillary Guides. Quantum Beam Science. 2022; 6(1):8. https://doi.org/10.3390/qubs6010008
Chicago/Turabian StyleDabagov, Sultan, and Alexey Dik. 2022. "Surface Channeling of Charged and Neutral Beams in Capillary Guides" Quantum Beam Science 6, no. 1: 8. https://doi.org/10.3390/qubs6010008
APA StyleDabagov, S., & Dik, A. (2022). Surface Channeling of Charged and Neutral Beams in Capillary Guides. Quantum Beam Science, 6(1), 8. https://doi.org/10.3390/qubs6010008