Effects of Relative Humidity and Temperature on the Drying Shrinkage of Roller-Compacted Concrete Pavements
Abstract
:1. Introduction
2. Methodology
- Materials and laboratory tests: This step describes the materials used and the laboratory test procedures in detail. These tests are essential to calibrate the results obtained under controlled conditions.
- Computational modeling of laboratory tests: In this phase, computational modeling replicates and analyzes the laboratory test results. It allows for a deeper understanding of the data obtained.
- Computational modeling and validation of RCC pavement results: In this last step, computational modeling is used to evaluate the performance of an RCC pavement [31] under different conditions, including corner loading and various ambient conditions, such as (i) 85% relative humidity at 25 °C, (ii) 10% relative humidity at 40 °C, and (iii) 20% relative humidity at 25 °C. These conditions reflect specific water vapor levels in the air (17, 5, and 4 g of water vapor per kilogram of air, respectively) (Figure 1). This step aims to determine the maximum stresses experienced by the pavement under corner loading.
2.1. Materials and Laboratory Tests
- A moisture content test;
- A free shrinkage strain test;
- A compressive strength test;
- A flexural strength test;
- An elastic modulus test.
- The preparation of the molds;
- The preparation of the RCC mix;
- (i)
- The density of the thin section (p);
- (ii)
- The difference between the weight of the untaped thin section at day zero () and day 90 (), divided by the multiplication of the density (p) and thickness () of the thin section;
- (iii)
- The thickness of the thin section ().
- Measure the displacement of the beams with the frame fixed;
- Place the beams in the climatic chambers;
- Remove the beams from the climatic chambers to measure their displacement;
- Reposition the beams in the climatic chambers.
- The cubes were placed in climatic chambers for 90 days;
- They were subjected to a compression test in a universal machine (Universidad de Granada, Spain) with a loading rate of 0.25 MPa/s;
- The compressive strength was determined using the maximum load in the contact zone.
- The modulus of rupture for the maximum load, considering the distance from the support to the plane of break and the transverse dimensions of the beams;
- The elastic modulus for the load, considering the span, the transverse dimensions, and the strain in the lower fibers of the beams.
2.2. Computational Modeling of Laboratory Tests
2.3. Computational Modeling and Validation of RCC Pavement Results
Layer | Thickness, m | Foundation Stiffness per Area, MPa/m | Elastic Modulus, MPa | Poisson’s Ratio |
---|---|---|---|---|
RCC | 0.20 | - | 49,779 to 52,526 * | 0.18 |
Base | 0.15 | - | 8000 | 0.30 |
Subgrade | Semi-infinite | 60 | - | - |
3. Results and Discussion
3.1. Laboratory Results
3.2. Validation of the Laboratory Computational Models
3.3. Computational Modeling and Results Validation Using Inferential Statistics
3.3.1. Model of Behavior under Corner Loading
3.3.2. Influence of the Curing Time
4. Conclusions
- This study validates the effectiveness of finite element method models in accurately replicating moisture content and drying shrinkage curves, staying within standard limits (10% for moisture content and 7% for drying shrinkage). This outcome is crucial for understanding how relative humidity and temperature impact roller-compacted concrete used in pavements under typical ambient conditions.
- This study revealed that in dry conditions, temperature has a more significant influence than in wet conditions. This is due to the stabilization of the shrinkage curve after 56 days of curing in an ambient condition with 10% relative humidity and 40 °C, in contrast with an ambient condition with 20% relative humidity and 25 °C. Thus, this coincides with the moisture stabilization time, which is also 56 days.
- Ambient effects are crucial in analyzing maximum stresses in pavements: stress increases by a factor of 1.10 with vehicular load and ambient conditions but escalates to 158 times in wet conditions and 220 times in dry conditions with ambient factors alone. Therefore, vehicular load mitigates the impacts of shrinkage and moisture.
- In practice, it is feasible to design roller-compacted concrete pavements for intermediate ambient conditions, as no significant differences were found between wet and dry ambient conditions. The designs should consider a 1.10 increase in stress due to vehicular loading at the corners of the pavement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CEM II/A-M | Portland composite cement |
E | Flexural elasticity |
f’c | Compressive strength |
FEM | Finite element method |
GGBF | Ground granulated blast furnace |
Mdd | Maximum dry density |
Mr | Modulus of rupture |
OMC | Optimum moisture content |
RCC | Roller-compacted concrete |
RH | Relative humidity |
T | Temperature |
References
- Leiva-Padilla, P.; Moreno-Navarro, F.; Iglesias, G.; Rubio-Gamez, M.C. A Review of the contribution of mechanomutable asphalt materials towards addressing the upcoming challenges of asphalt pavements. Infrastructures 2020, 5, 23. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sierra-Carrillo de Albornoz, F.J.; Sol-Sánchez, M.; Rubio-Gámez, M.C. MASAI: Sustainable, automated and intelligent asphalt materials. The way to the next generation of asphalt pavements. Road Mater. Pavement Des. 2023, 24 (Suppl. S1), 486–505. [Google Scholar] [CrossRef]
- Garbowski, T.; Pożarycki, A. Multi-level backcalculation algorithm for robust determination of pavement layers parameters. Inverse Probl. Sci. Eng. 2017, 25, 674–693. [Google Scholar] [CrossRef]
- Karlaftis, A.G.; Badr, A. Predicting asphalt pavement crack initiation following rehabilitation treatments. Transp. Res. Part C Emerg. Technol. 2015, 55, 510–517. [Google Scholar] [CrossRef]
- Mattinzioli, T.; Sol-Sanchez, M.; Moreno-Navarro, F.; Rubio-Gamez, M.C.; Martinez, G. Benchmarking the embodied environmental impacts of the design parameters for asphalt mixtures. Sustain. Mater. Technol. 2022, 32, e00395. [Google Scholar] [CrossRef]
- Moreno, F.; Sol, M.; Martín, J.; Pérez, M.; Rubio, M.C. The effect of crumb rubber modifier on the resistance of asphalt mixes to plastic deformation. Mater. Des. 2013, 47, 274–280. [Google Scholar] [CrossRef]
- Aghaeipour, A.; Madhkhan, M. Mechanical properties and durability of roller compacted concrete pavement (RCCP)—A review. Road Mater. Pavement Des. 2020, 21, 1775–1798. [Google Scholar] [CrossRef]
- Harrington, D.; Abdo, F.; Adaska, W.; Hazaree, C.V.; Ceylan, H. Guide for Roller-Compacted Concrete Pavements. Available online: http://lib.dr.iastate.edu/intrans_reports (accessed on 2 April 2021).
- Mickevič, R.; Vaitkus, A. Application of roller-compacted concrete in freight terminals. Moksl. Liet. Ateitis 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Smallridge, M.; Elbaz, M. RCC pavement success at mobile container terminal. Ports 2010: Building on the Past, Respecting the Future. In Proceedings of the 12th Triannual International Conference 2010, Jacksonville, FL, USA, 25–28 April 2010; pp. 901–911. [Google Scholar]
- Kim, Y.S. Roller-compacted concrete shoulder construction on interstate highway in Georgia. Transp. Res. Rec. 2007, 2040, 71–79. [Google Scholar] [CrossRef]
- Saluja, S.; Kaur, K.; Goyal, S.; Bhattacharjee, B. Assessing the effect of GGBS content and aggregate characteristics on drying shrinkage of roller compacted concrete. Constr. Build. Mater. 2019, 201, 72–80. [Google Scholar] [CrossRef]
- Saluja, S.; Kaur, K.; Goyal, S.; Bhattacharjee, B. Long-term drying shrinkage of GGBFS-incorporated RCC under various temperature exposures. J. Mater. Civ. Eng. 2021, 33, 04021122. [Google Scholar] [CrossRef]
- Jingfu, K.; Chuncui, H.; Zhenli, Z. Strength and shrinkage behaviors of roller-compacted concrete with rubber additives. Mater. Struct./Mater. Constr. 2009, 42, 1117–1124. [Google Scholar] [CrossRef]
- Li, Z.-X.; Chen, Y.-Z.; Guo, T.-T.; Huang, F.-H.; Chang, Y.-M.; Niu, X.-J. Pavement Performance and Mechanism of Action for Modified Rubber Roller Compacted Concrete. Zhongguo Gonglu Xuebao/China J. Highw. Transp. 2023, 36, 39–48. [Google Scholar] [CrossRef]
- Pourjahanshahi, A.; Madani, H.; Emadi, M. Assessing flexural and permeability performance of roller-compacted concrete pavement (RCCP) reinforcing with different types of synthetic fibres and crimped steel fibre. Aust. J. Civ. Eng. 2023, 21, 167–181. [Google Scholar] [CrossRef]
- Mahdi, M.; Wu, Z.; Liu, Y.L.; Sobhani, M.G. Investigation of in situ thermal properties and early-age pavement behavior in the design and performance evaluation of roller compacted concrete pavement in Louisiana, U.S. Transp. Res. Rec. 2023, 2677, 10. [Google Scholar] [CrossRef]
- Sok, T.; Kim, Y.K.; Park, J.Y.; Lee, S.W. Evaluation of early-age strains and stresses in roller-compacted concrete pavement. J. Traffic. Transp. Eng. Engl. Ed. 2021, 9, 93–105. [Google Scholar] [CrossRef]
- Gholami, N.; Modarres, A. Shrinkage behaviour of superplasticised RCCP and its relationship with internal temperature. Int. J. Pavement Eng. 2019, 20, 12–23. [Google Scholar] [CrossRef]
- Jafarifar, N.; Pilakoutas, K.; Bennett, T. The effect of shrinkage cracks on the load bearing capacity of steel-fibre-reinforced roller-compacted-concrete pavements. Mater. Struct./Mater. Constr. 2016, 49, 2329–2347. [Google Scholar] [CrossRef]
- Jafarifar, N. Shrinkage Behaviour of Steel-Fibre-Reinforced-Concrete Pavements. Available online: https://etheses.whiterose.ac.uk/7475/1/PhD%20Thesis-%20Naeimeh%20Jafarifar-%20Corrected%20Version.pdf (accessed on 26 January 2021).
- Pittman, D.W.; Ragan, S.A. Drying shrinkage of roller-compacted concrete for pavement applications. ACI Mater. J. 1998, 95, 19–26. [Google Scholar]
- Hejazi, S.M.; Abtahi, S.M.; Safaie, F. Investigation of thermal stress distribution in fiber-reinforced roller compacted concrete pavements. J. Ind. Text. 2016, 45, 896–914. [Google Scholar] [CrossRef]
- AASHTO. Mechanistic-Empirical Pavement Design Guide. A Manual of Practice; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015. [Google Scholar]
- AASHTO. AASHTO (2008) Pavement Design Guide A Manual of Practice; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008. [Google Scholar]
- LCPC-SETRA. Chaussée en Béton, Guide Technique. Paris: LCPC-SETRA. 2000. Available online: https://en.calameo.com/read/001587962fa82bd755fe6 (accessed on 8 April 2021).
- Pittman, D.W.; Mccullough, B.F. Development of a roller-compacted concrete pavement crack and joint spacing model. Transp. Res. Rec. 1997, 1568, 52–64. [Google Scholar] [CrossRef]
- Adwan, I.; Milad, A.; Memon, Z.A.; Widyatmoko, I.; Zanuri, N.A.; Memon, N.A.; Yusoff, N.I.M. Asphalt pavement temperature prediction models: A review. Appl. Sci. 2021, 11, 3794. [Google Scholar] [CrossRef]
- An, H.; Liu, H.; Han, H. Hybrid Finite-Discrete Element Modelling of Excavation Damaged Zone Formation Process Induced by Blasts in a Deep Tunnel. Adv. Civ. Eng. 2020, 2020, 7153958. [Google Scholar] [CrossRef]
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The science behind scour at bridge foundations: A review. Water 2020, 12, 374. [Google Scholar] [CrossRef]
- Zdiri, M.; Abriak, N.-E.; Ouezdou, M.B.; Loulizi, A.; Neji, J. Numerical modeling of a roller compacted concrete pavement under vehicular loading. Int. J. Pavement Res. Technol. 2009, 2, 188–195. [Google Scholar]
- Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX 2020, 12, 100563. [Google Scholar] [CrossRef]
- Shafigh, P.; Hashemi, M.; Nam, B.H.; Koting, S. Optimum moisture content in roller-compacted concrete pavement. Int. J. Pavement Eng. 2020, 21, 1769–1779. [Google Scholar] [CrossRef]
- ASTM. ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft 3 (2700 kN-m/m3). ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar] [CrossRef]
- ASTM. ASTM C128-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- ASTM. ASTM C127-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- Portland Cement Association. Guide Specification for Construction of Roller-Compacted Concrete Pavements, Illinois. June 2004. Available online: https://www.chaneyenterprises.com/files/productdocs/Guidetorcc.PDF (accessed on 10 September 2021).
- Chhorn, C.; Lee, S.W. Influencing compressive strength of roller-compacted concrete. Proc. Inst. Civ. Eng.-Constr. Mater. 2018, 171, 3–10. [Google Scholar] [CrossRef]
- ASTM. ASTM C33/C33M-18; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar] [CrossRef]
- Hashemi, M.; Shafigh, P.; Bin Karim, M.R.; Atis, C.D. The effect of coarse to fine aggregate ratio on the fresh and hardened properties of roller-compacted concrete pavement. Constr. Build. Mater. 2018, 169, 553–566. [Google Scholar] [CrossRef]
- Ministerio de Fomento. RC-16 Instrucción Para la Recepción de Cementos. Ministerio de la Presidencia. 2016. Available online: https://www.mitma.gob.es/recursos_mfom/boea20166167.pdf (accessed on 1 September 2021).
- García-Travé, G.; Martinez-Echevarria, M.J.; Gámez, M.C.R.; Navarro, F.M. Bituminous mix response to plastic deformations: Comparison of the Spanish NLT-173 and UNE-EN 12697-22 wheel-tracking tests|Análisis comparativo del comportamiento de una mezcla bituminosa frente a deformaciones plásticas, atendiendo a los ensayos NLT. Dyna 2012, 79, 51–57. [Google Scholar]
- García Travé, G.M. Análisis Comparativo del Comportamiento Mecánico de Mezclas Bituminosas: Normativa NLT-Normativa UNE-EN: Para la Obtención del Título de Doctor por la Universidad de Granada; Editorial Universidad de Granada: Granada, Spain, 2013. [Google Scholar]
- Jafarifar, N.; Pilakoutas, K.; Bennett, T. Moisture transport and drying shrinkage properties of steel-fibre-reinforced-concrete. Constr. Build. Mater. 2014, 73, 41–50. [Google Scholar] [CrossRef]
- Asad, M.; Baluch, M.H.; Al-Gadhib, A.H. Drying shrinkage stresses in concrete patch repair systems. Mag. Concr. Res. 1997, 49, 283–293. [Google Scholar] [CrossRef]
- Ayano, T.; Wittmann, F.H. Drying, moisture distribution, and shrinkage of cement-based materials. Mater. Struct. 2002, 35, 134–140. [Google Scholar] [CrossRef]
- ASTM. ASTM C157/C157M-17; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- ASTM. ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar] [CrossRef]
- British Standards Institution. BS EN 12390-3:2019; TC: Tracked Changes. Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2019. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030407444 (accessed on 10 January 2021).
- ASTM. ASTM C78/C78M-21; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar] [CrossRef]
- Asad, M. Computational Modelling of Shrinkage in Repaired Concrete. King Fahd University of Petroleum and Minerals. 1995. Available online: https://eprints.kfupm.edu.sa/id/eprint/2591/1/S_M_F_14.pdf (accessed on 7 April 2021).
- Pegg, E.C.; Gill, H.S. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations. J. Biomech. 2016, 49, 3116–3121. [Google Scholar] [CrossRef] [PubMed]
- Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Liao, S.S.C. Estimating the coefficient of subgrade reaction for plane strain conditions. Proc. Inst. Civ. Eng. Geotech. Eng. 1995, 113, 166–181. [Google Scholar] [CrossRef]
- Hou, X.; Silberschmidt, V.V. Metamaterials with Negative Poisson’s Ratio: A Review of Mechanical Properties and Deformation Mechanisms. In Mechanics of Advanced Materials: Analysis of Properties and Performance; Springer: Switzerland, 2015; pp. 155–179. [Google Scholar] [CrossRef]
- AASHTO. A Policy on Geometric Design of Highways and Streets, 7th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018; Available online: https://aashtojournal.org/2018/09/28/aashto-releases-7th-edition-of-its-highway-street-design-green-book/ (accessed on 11 November 2022).
- Brewer, J.; German, J.; Krammes, R.; Movassaghi, K.; Okamoto, J.; Otto, S.; Ruff, W.; Sillan, S.; Stamatiadis, N.; Walters, R. Geometric Design Practices for European Roads, Washington, DC, USA. 2001. Available online: https://international.fhwa.dot.gov/Pdfs/Geometric_Design.pdf (accessed on 4 November 2023).
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; Chapman and Hall/CRC: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Spangl, B.; Kaiblinger, N.; Ruckdeschel, P.; Rasch, D. Minimal sample size in balanced ANOVA models of crossed, nested, and mixed classifications. Commun. Stat. Theory Methods 2021, 52, 1728–1743. [Google Scholar] [CrossRef]
- Sahu, P.K.; Pal, S.R.; Das, A.K. Estimation and Inferential Statistics; Springer: New Delhi, India, 2015; pp. 1–317. [Google Scholar] [CrossRef]
- Korosteleva, O. Nonparametric Methods in Statistics with SAS Applications; Taylor & Francis Ltd.: London, UK, 2013. [Google Scholar] [CrossRef]
- Ho, R. Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS; Chapman and Hall/CRC: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Sok, T.; Hong, S.J.; Kim, Y.K.; Lee, S.W. Evaluation of load transfer characteristics in roller-compacted concrete pavement. Int. J. Pavement Eng. 2020, 21, 796–804. [Google Scholar] [CrossRef]
With or without Relative Humidity and Temperature Conditions | p-Value | Only p-Values > 0.05 Have a Normal Distribution |
---|---|---|
With 85% RH, 25 °C | 2.2 × 10−16 | No |
Without 85% RH, 25 °C | 1.125 × 10−14 | No |
With 20% RH, 25 °C | 1.162 × 10−10 | No |
Without 20% RH, 25 °C | 1.17 × 10−14 | No |
With 10% RH, 40 °C | 3.803 × 10−11 | No |
Without 10% RH, 40 °C | 1.173 × 10−14 | No |
Source of Variation | Chi-Squared | Degrees of Freedom | p-Value | Significant Difference (Only p-Values < 0.05 Are Significant) |
---|---|---|---|---|
Maximum principal stress from 0 to 728 days with or without relative humidity of 85% and temperature of 25 °C | 6.1184 | 1 | 0.01338 | Yes |
Maximum principal stress from 0 to 728 days with or without relative humidity of 20% and temperature of 25 °C. | 8.6954 | 1 | 0.00319 | Yes |
Maximum principal stress from 0 to 728 days with or without relative humidity of 10% and temperature of 40 °C | 7.3343 | 1 | 0.006765 | Yes |
Source of Variation | Chi-Squared | Degrees of Freedom | p-Value | Significant Difference (Only p-Values < 0.05 Are Significant) |
---|---|---|---|---|
Maximum principal stress from 0 to 364 days | 1.7387 | 2 | 0.4192 | No |
Relative Humidity and Temperature | 10%, 40 °C | 20%, 25 °C |
---|---|---|
20%, 25 °C | 0.81 | - |
85%, 25 °C | 0.81 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulecio-Díaz, J.; Sol-Sánchez, M.; Moreno-Navarro, F. Effects of Relative Humidity and Temperature on the Drying Shrinkage of Roller-Compacted Concrete Pavements. Infrastructures 2024, 9, 22. https://doi.org/10.3390/infrastructures9020022
Pulecio-Díaz J, Sol-Sánchez M, Moreno-Navarro F. Effects of Relative Humidity and Temperature on the Drying Shrinkage of Roller-Compacted Concrete Pavements. Infrastructures. 2024; 9(2):22. https://doi.org/10.3390/infrastructures9020022
Chicago/Turabian StylePulecio-Díaz, Julián, Miguel Sol-Sánchez, and Fernando Moreno-Navarro. 2024. "Effects of Relative Humidity and Temperature on the Drying Shrinkage of Roller-Compacted Concrete Pavements" Infrastructures 9, no. 2: 22. https://doi.org/10.3390/infrastructures9020022
APA StylePulecio-Díaz, J., Sol-Sánchez, M., & Moreno-Navarro, F. (2024). Effects of Relative Humidity and Temperature on the Drying Shrinkage of Roller-Compacted Concrete Pavements. Infrastructures, 9(2), 22. https://doi.org/10.3390/infrastructures9020022