Predisposition to Mass Movements on Railway Slopes: Insights from Field Data on Geotechnical and Pluviometric Influences
Abstract
:1. Introduction
2. Methods and Data Preparation
2.1. Case Study
2.2. Geotechnical Cadastral Survey
- R1: soils with low cohesion and prone to surface erosions and/or poorly fractured rock, with schistosity favorable to falling, and few blocks;
- R2: soils without cohesion and prone to surface erosions and/or medium-fractured rock, with schistosity favorable to falling, and few blocks;
- R3: soils with identification of imminent erosion or wedge and/or very fractured rock, with schistosity favorable to falling, with small blocks;
- R4: soils present some previous mass movements, with median erosion process; when rocks, they are very fractured, with schistosity favorable to falling, and with small blocks;
- R5: soils with visible wedges, advanced erosion process and/or very fractured rock, with schistosity favorable to falling, large blocks, and well-defined soil–rock contact.
2.3. Assessment of Rainfall Incidence
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aldao, E.; González-Jorge, H.; González-deSantos, L.M.; Fontenla-Carrera, G.; Martínez-Sánchez, J. Validation of Solid-State LiDAR Measurement System for Ballast Geometry Monitoring in Rail Tracks. Infrastructures 2023, 8, 63. [Google Scholar] [CrossRef]
- Mukenga, W.; Havenith, H.B.; Eko, R.; Bissaya, R. Geotechnical Assessment of Potential Mass Movement Occurrence in a Zone at Risk Around Yaoundé-Cameroon. In Advancing Culture of Living with Landslides; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 455–463. [Google Scholar]
- Wong, K.; Ho, T. Coast Control for Mass Rapid Transit Railways with Searching Methods. IEE Proc. Electr. Power Appl. 2004, 151, 365–375. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L. The Mechanism of a Railway Landslide Caused by Rainfall. Landslides 2010, 7, 149–156. [Google Scholar] [CrossRef]
- Quang, L.; Loi, D.; Sassa, K.; Takara, K.; Ochiai, H.; Dang, K.; Abe, S.; Asano, S.; Ha, D. Susceptibility Assessment of the Precursor Stage of a Landslide Threatening Haivan Railway Station, Vietnam. Landslides 2018, 15, 309–325. [Google Scholar] [CrossRef]
- Winter, M.; Palmer, D.; Sharpe, J.; Shearer, B.; Harmer, C.; Peeling, D.; Bradbury, T. Economic Impact Assessment of Landslide Events. In Landslide Science for a Safer Geoenvironment; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 217–222. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Ardizzone, F.; Galli, M. The impact of landslides in the Umbria region, central Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 469–486. [Google Scholar] [CrossRef]
- García-Delgado, H.; Machuca, S.; Medina, E. Dynamic and Geomorphic Characterizations of the Mocoa Debris Flow (March 31, 2017, Putumayo Department, Southern Colombia). Landslides 2019, 16, 597–609. [Google Scholar] [CrossRef]
- Chowdhury, R.; Flentje, P. Role of Slope Reliability Analysis in Landslide Risk Management. Bull. Eng. Geol. Environ. 2003, 62, 41–46. [Google Scholar] [CrossRef]
- Altin, T.; Gokkaya, E. Assessment of Landslide-Triggering Factors and Occurrence Using Morphometric Parameters in Geyraz Basin, Tokat, Northern Turkey. Environ. Earth Sci. 2018, 77, 126. [Google Scholar] [CrossRef]
- Valenzuela, P.; Domínguez-Cuesta, M.; Mora García, M.; Jiménez-Sánchez, M. Rainfall Thresholds for the Triggering of Landslides Considering Previous Soil Moisture Conditions (Asturias, NW Spain). Landslides 2018, 15, 273–282. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, Ø.B. Regional Prediction of Landslide Hazard Using Probability Analysis of Intense Rainfall in the Hoa Binh Province, Vietnam. Nat. Hazards 2013, 66, 707–730. [Google Scholar] [CrossRef]
- Crosta, G. Regionalization of Rainfall Thresholds: An Aid to Landslide Hazard Evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Lopes, S.; Fragoso, M.; Lopes, A. Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere 2020, 11, 104. [Google Scholar] [CrossRef]
- Cogan, J.; Gratchev, I.; Wang, G. Rainfall-Induced Shallow Landslides Caused by Ex-Tropical Cyclone Debbie, 31st March 2017. Landslides 2018, 15, 1215–1221. [Google Scholar] [CrossRef]
- Marin, R.; Velásquez, M. Influence of Hydraulic Properties on Physically Modelling Slope Stability and the Definition of Rainfall Thresholds for Shallow Landslides. Geomorphology 2020, 351, 106976. [Google Scholar] [CrossRef]
- Shao, W.; Bogaard, T.; Bakker, M.; Berti, M. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide. J. Hydrol. 2016, 543, 360–372. [Google Scholar] [CrossRef]
- van Westen, C.; van Asch, T.; Soeters, R. Landslide Hazard and Risk Zonation - Why Is It Still so Difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Lopez Saez, J.; Corona, C.; Stoffel, M.; Schoeneich, P.; Berger, F. Probability Maps of Landslide Reactivation Derived from Tree-Ring Records: Pra Bellon Landslide, Southern French Alps. Geomorphology 2012, 138, 189–202. [Google Scholar] [CrossRef]
- Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M.; Peruccacci, S.; Guzzetti, F. Statistical Approaches for the Definition of Landslide Rainfall Thresholds and Their Uncertainty Using Rain Gauge and Satellite Data. Geomorphology 2017, 285, 16–27. [Google Scholar] [CrossRef]
- Crosta, G.; Frattini, P. Distributed Modelling of Shallow Landslides Triggered by Intense Rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, L.; Delgado-Tellez, R.; Bao, H. A Physics-Based Probabilistic Forecasting Model for Rainfall-Induced Shallow Landslides at Regional Scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 969–982. [Google Scholar] [CrossRef]
- Jaiswal, P.; van Westen, C.J. Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 2009, 112, 96–105. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Mikoš, M. Copula-Based IDF Curves and Empirical Rainfall Thresholds for Flash Floods and Rainfall-Induced Landslides. J. Hydrol. 2016, 541, 272–284. [Google Scholar] [CrossRef]
- Glade, T.; Crozier, M.; Smith, P. Applying Probability Determination to Refine Landslide-Triggering Rainfall Thresholds Using an Empirical “Antecedent Daily Rainfall Model”. Pure Appl. Geophys. 2000, 157, 1059–1079. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J. A Review of Assessing Landslide Frequency for Hazard Zoning Purposes. Eng. Geol. 2008, 102, 193–213. [Google Scholar] [CrossRef]
- Jakob, M.; Holm, K.; Lange, O.; Schwab, J. Hydrometeorological Thresholds for Landslide Initiation and Forest Operation Shutdowns on the North Coast of British Columbia. Landslides 2006, 3, 228–238. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, X.; Shen, H.; Bao, H. GIS analysis of urban ground collapse susceptibility: A case study of eastern Hangzhou, China. J. Geotech. Geoenvironmental Eng. 2024, 11, 1338877. [Google Scholar] [CrossRef]
- Pham, V.H.; Nguyen, Q.T.; Pham, V.H.; Thao, G.T.P. GIS-based modeling of landslide susceptibility zonation by integrating the frequency ratio and objective–subjective weighting approach: A case study in a tropical monsoon climate region. Environ. Earth Sci. 2024, 11, 1175567. [Google Scholar]
- Çolak, E.; Memişoğlu, T.; Genç, N. Production of fuel-based carbon footprint distribution map using spatial interpolation methods based on GIS. Int. J. Environ. Res. Public Health 2024, 9, 99–114. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; Sun, W.; Fu, J.; Xiao, T.; Dai, Z. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir Area. Geosci. Front. 2023, 14, 101621. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; Sun, W.; Wang, Y.; Liu, J. Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation. J. Rock Mech. Geotech. Eng. 2024, 16, 3192–3205. [Google Scholar] [CrossRef]
- Silva, F.d.S.; Corsino, C.; Guimarães, R.d.M.; Zanibone, R. Patrimônio Ferroviário Em Minas Gerais—Bens Imóveis. 2020. Available online: http://portal.iphan.gov.br/uploads/ckfinder/arquivos/Patrimonio_Ferroviario_MG.pdf (accessed on 20 June 2020).
- Santos, H.d.; Jacomine, P.; Anjos, L.d.; Oliveira, V.d.; Lumbreras, J.; Coelho, M.; Almeida, J.d.; Araujo Filho, J.d.; Oliveira, J.d.; Cunha, T. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, DF, Brazil, 2018. [Google Scholar]
- Campos, P. Avaliação Do Efeito Da Variação Da Umidade No Comportamento Mecanístico de Um Trecho Da Estrada de Ferro Carajás. Master’s Thesis, Instituto Militar de Engenharia, Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Cruden, D.; Varnes, J. Landslides: Investigation and Mitigation; Transportation Research Board (National Academy of Sciences): Washington, DC, USA, 1996. [Google Scholar]
- Campos, P.; Silva, B.; Marques, M. Caracterização Geotécnica Dos Solos de Subleito Ferroviário: Investigações de Campo e Laboratoriais. Rev. Ibero-Am. Ciências Ambient. 2019, 10, 178–193. [Google Scholar] [CrossRef]
- Rollenbeck, R.; Orellana-Alvear, J.; Rodriguez, R.; Macalupu, S.; Nolasco, P. Calibration of X-band Radar for Extreme Events in a Spatially Complex Precipitation Region in North Peru: Machine Learning vs. Empirical Approach. Atmosphere 2021, 12, 1561. [Google Scholar] [CrossRef]
- da Silva, E.J.R.; Alves, C.N.; Campos, P.C.d.O.; Oliveira, R.A.A.C.e.; Marques, M.E.S.; Amorim, J.C.C.; Paz, I. Comparison of Rain Gauge Network and Weather Radar Data: Case Study in Angra dos Reis, Brazil. Water 2022, 14, 3944. [Google Scholar] [CrossRef]
- Dogra, A.; Thakur, J.; Tandon, A. Do satellite-based products suffice for rainfall observations over data-sparse complex terrains? Evidence from the North-Western Himalayas. Remote Sens. Environ. 2023, 299, 113855. [Google Scholar] [CrossRef]
- da Silva, G.C.G.; Campos, P.C.d.O.; Reis, M.d.M.; Paz, I. Spatiotemporal Land Use and land cover changes and associated runoff impact in Itaperuna, Brazil. Sustainability 2023, 16, 325. [Google Scholar] [CrossRef]
- Paz, I.; Tchiguirinskaia, I.; Schertzer, D. Rain gauge networks’ limitations and the implications to hydrological modelling highlighted with a X-band radar. J. Hydrol. 2020, 583, 124615. [Google Scholar] [CrossRef]
- Pinto, F.M.; Schuch, F.S.; Brentano, D.M. Extreme precipitation events and geomorphic adjustments in the riverscape: A case study in Southern Brazil. Resour. Environ. Sustain. 2023, 13, 100124. [Google Scholar] [CrossRef]
- Lee, W.S.; Chun, J.; Kang, K. Development and Application of GIS-Based PRISM Integration through a Plugin Approach. J. Hydrol. 2014, 513, 58–67. [Google Scholar] [CrossRef]
- Campos, P.; Paz, I. Spatial Diagnosis of Rain Gauges’ Distribution and Flood Impacts: Case Study in Itaperuna, Rio de Janeiro—Brazil. Water 2020, 12, 1120. [Google Scholar] [CrossRef]
Date | Incident * | Impact on the Line’s Operation | Initial (km) | Final (km) |
---|---|---|---|---|
04/12/2017 | Barrier or rock block fall on the railway line | Interruption | 504.11 | 507.54 |
20/03/2015 | Barrier fall | Interruption | 509.21 | 517.04 |
23/03/2015 | Barrier fall | Restriction | 509.21 | 517.04 |
05/12/2017 | Barrier or rock block fall on the railway line | Restriction | 523.64 | 531.56 |
08/02/2015 | Barrier fall | Interruption | 531.56 | 533.80 |
08/03/2015 | Barrier fall | Interruption | 531.56 | 533.80 |
20/01/2016 | Barrier fall | Restriction | 531.56 | 533.80 |
13/12/2016 | Barrier fall | Restriction | 539.51 | 541.42 |
25/11/2016 | Barrier fall | Restriction | 548.13 | 556.21 |
14/12/2016 | Barrier fall | Interruption | 548.13 | 556.21 |
19/01/2016 | Barrier fall | Restriction | 563.31 | 567.81 |
19/01/2016 | Barrier fall | Restriction | 569.66 | 576.35 |
19/01/2016 | Barrier fall | Restriction | 569.66 | 576.35 |
08/03/2018 | Barrier or rock block fall on the railway line | Interruption | 579.90 | 582.30 |
05/10/2016 | Barrier fall | Interruption | 587.02 | 589.45 |
28/02/2018 | Barrier or rock block fall on the railway line | Interruption | 587.02 | 589.45 |
14/01/2017 | Barrier fall | Interruption | 595.56 | 597.48 |
26/01/2016 | Barrier fall | Restriction | 610.31 | 614.38 |
08/12/2016 | Barrier fall | Interruption | 614.38 | 616.70 |
Classification of Geotechnical Predisposing Factors to Mass Movements Classification | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
R1 | 4 | 4 | 7 | 0 |
R2 | 14 | 14 | 9 | 2 |
R3 | 7 | 5 | 14 | 3 |
R4 | 3 | 2 | 11 | 1 |
R5 | 6 | 2 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, P.C.d.O.; Rosa, D.L.; Marques, M.E.S.; Paz, I. Predisposition to Mass Movements on Railway Slopes: Insights from Field Data on Geotechnical and Pluviometric Influences. Infrastructures 2024, 9, 168. https://doi.org/10.3390/infrastructures9100168
Campos PCdO, Rosa DL, Marques MES, Paz I. Predisposition to Mass Movements on Railway Slopes: Insights from Field Data on Geotechnical and Pluviometric Influences. Infrastructures. 2024; 9(10):168. https://doi.org/10.3390/infrastructures9100168
Chicago/Turabian StyleCampos, Priscila Celebrini de Oliveira, Diego Leonardo Rosa, Maria Esther Soares Marques, and Igor Paz. 2024. "Predisposition to Mass Movements on Railway Slopes: Insights from Field Data on Geotechnical and Pluviometric Influences" Infrastructures 9, no. 10: 168. https://doi.org/10.3390/infrastructures9100168
APA StyleCampos, P. C. d. O., Rosa, D. L., Marques, M. E. S., & Paz, I. (2024). Predisposition to Mass Movements on Railway Slopes: Insights from Field Data on Geotechnical and Pluviometric Influences. Infrastructures, 9(10), 168. https://doi.org/10.3390/infrastructures9100168