Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability
Abstract
:1. Introduction
- An innovative operational concept for SIES;
- A framework for the holistic simulation of SIES;
- Scenarios and evaluation criteria for the optimization of the operation of an SIES.
2. State of the Art
2.1. Sector Coupled Energy Systems
2.2. Operational Optimization of Sector Coupled Energy Systems
2.3. Dynamic Modeling of Physical Energy Systems
2.4. Modeling of ICT
2.5. Market Mechanisms
2.6. The Cellular Approach
2.7. Transactive Control
3. Concept for Optimal Operation by Holistic Modeling of Smart Integrated Energy Systems
3.1. Methodology
3.2. Operational Concept
3.3. Simulation
4. Findings
4.1. Energy System Scenarios 2050
4.2. Simulation
4.3. Evaluation Criteria
5. Conclusions and Outlook
5.1. Conclusions
5.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruendlinger, T.; Koenig, J.E.; Frank, O.; Gründig, D.; Jugel, C.; Kraft, P.; Krieger, O.; Mischinger, S.; Prein, P.; Seidl, H.; et al. Dena-Leitstudie Integrierte Energiewende: Impulse für die Gestaltung des Energiesystems bis 2050; Technical Report; Deutsche Energie-Agentur GmbH (Dena): Berlin, Germany, 2018. [Google Scholar]
- Bundes-Klimaschutzgesetz vom 12. Dezember 2019 (BGBl. I S. 2513), das durch Artikel 1 des Gesetzes vom 18. August 2021 (BGBl. I S. 3905) geändert worden ist. 2021. Available online: https://www.gesetze-im-internet.de/ksg/BJNR251310019.html (accessed on 28 September 2021).
- Rasti, S.J.; Schegner, P. A Novel Approach to Describe and Aggregate Multi-Energy Flexibility in Cellular Energy Systems Using Affine Arithmetic; VDE-Verlag: Frankfurt am Main, Germany, 2021. [Google Scholar]
- VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Der Zellulare Ansatz: Ein Beitrag zur Konkretisierung des zellularen Ansatzes mit Handlungsempfehlungen; Energietechnische Gesellschaft im VDE (ETG): Frankfurt am Main, Germany, 2019. [Google Scholar]
- Abrishambaf, O.; Lezama, F.; Faria, P.; Vale, Z. Towards transactive energy systems: An analysis on current trends. Energy Strategy Rev. 2019, 26, 100418. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Q.; Huang, S.; Zhao, H. Transactive energy: A review of state of the art and implementation. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar]
- Haller, B.; Langniß, O.; Reuter, A.; Spengler, N. 1,5° Csellsius–Energiewende Zellulaer–Partizipativ–Vielfaeltig Umgesetzt; C/Sells Selbstverlag: Stuttgart, Germany, 2020. [Google Scholar]
- Flatter, F.; Mohammadi, S.; Wellssow, W.; Schinke-Nendza, A.; Blumberg, G.; Weber, C.; Rasti, S.; Schegner, P.; Uhlemeyer, B.; Zdrallek, M.; et al. ZellNetz2050—Structure, Planning and Operation of a Cellular Energy System in 2050. In Proceedings of the ETG Kongress 2021, Online, 18–19 March 2021. [Google Scholar]
- Munster, M.; Moller Sneum, D.; Bramstoft, R.; Buhler, F.; Elmegaard, B.; Giannelos, S.; Strbac, G.; Berger, M.; Radu, D.; Elsaesser, D.; et al. Sector Coupling: Concepts, State-of-the-Art and Perspectives; Whitepaper; Technical Report; European Technology and Innovation Platform (ETIP). 2020. Available online: https://www.etip-snet.eu/etip_publ/sector-coupling-concepts-state-art-perspectives/ (accessed on 28 September 2021).
- Fridgen, G.; Keller, R.; Körner, M.F.; Schöpf, M. A holistic view on sector coupling. Energy Policy 2020, 147, 111913. [Google Scholar] [CrossRef]
- Wietschel, M.; Plötz, P.; Pfluger, B.; Klobasa, M.; Eßer, A.; Haendel, M.; Müller-Kirchenbauer, J.; Kochems, J.; Hermann, L.; Grosse, B.; et al. Sektorkopplung: Definition, Chancen und Herausforderungen; Working Paper Sustainability and Innovation S01/2018; Fraunhofer ISI: Karlsruhe, Germany, 2018. [Google Scholar]
- Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Heuck, K.; Dettmann, K.D.; Schulz, D. Elektrische Energieversorgung; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2013. [Google Scholar] [CrossRef]
- Ni, L.; Feng, C.; Wen, F.; Salam, A. Optimal power flow of multiple energy carriers with multiple kinds of energy storage. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Zhu, F.; Fu, J.; Zhao, P.; Xie, D. Robust energy hub optimization with cross-vector demand response. Int. Trans. Electr. Energy Syst. 2020, 30, e12559. [Google Scholar] [CrossRef]
- Ha, T.; Zhang, Y.; Hao, J.; Thang, V.; Li, C.; Cai, Z. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems. Energies 2018, 11, 707. [Google Scholar] [CrossRef] [Green Version]
- Oskouei, M.Z.; Baboli, P.T.; Babazadeh, D. Robust Stochastic Optimization for Energy Sharing between Multi-Carrier Microgrids using Transactive Energy Management System. In Proceedings of the ETG Congress 2021, Online, 18–19 March 2021; pp. 1–6. [Google Scholar]
- Zhu, J. Optimization of Power System Operation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S. Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm. Sustainability 2021, 13, 7448. [Google Scholar] [CrossRef]
- Erlach, B.; Henning, H.M.; Kost, C.; Palzer, A.; Stephanos, C. Optimierungsmodell REMod-D. Materialien des Akademienprojekts “Energiesysteme der Zukunft”; Technical Report; acatech—Deutsche Akademie der Technikwissenschaften e.V.: München, Germany, 2018. [Google Scholar]
- Collins, S.; Deane, J.P.; Poncelet, K.; Panos, E.; Pietzcker, R.C.; Delarue, E.; Gallachóir, B.P.O. Integrating short term variations of the power system into integrated energy system models: A methodological review. Renew. Sustain. Energy Rev. 2017, 76, 839–856. [Google Scholar] [CrossRef] [Green Version]
- Van Beuzekom, I.; Gibescu, M.; Slootweg, J.G. A review of multi-energy system planning and optimization tools for sustainable urban development. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar] [CrossRef]
- Senkel, A.; Bode, C.; Schmitz, G. Quantification of the resilience of integrated energy systems using dynamic simulation. Reliab. Eng. Syst. Saf. 2021, 209, 107447. [Google Scholar] [CrossRef]
- Heckel, J.P.; Becker, C. Investigation of the Voltage Stability in the Integrated Energy System of Northern Germany. In Proceedings of the NEIS Conference 2020, Hamburg, Germany, 14–15 September 2020. [Google Scholar]
- TransiEnt Library. Available online: https://www.tuhh.de/transient-ee/ (accessed on 30 September 2021).
- Dubucq, P.; Schmitz, G.; Andresen, L.; Kather, A.; Ackermann, G.; Peniche Garcia, R. Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer Energien; Abschlussbericht des Verbundvorhabens; TUHH Technische Universität Hamburg-Harburg: Hamburg, Germany, 2017. [Google Scholar] [CrossRef]
- Sharma, R.; Dhillon, J. PyPSA: Open Source Python Tool for Load Flow Study. J. Phys. Conf. Ser. 2021, 1854, 012036. [Google Scholar] [CrossRef]
- Appelrath, H.J.; Kagermann, H.; Mayer, C. Future Energy Grid: Migration to the Internet of Energy; acatech Study; EIT ICT Labs IVZW: Brussels, Belgium, 2012. [Google Scholar]
- Accenture Utilities; Fraunhofer ESK. Smart Grid = Connected Grid, Kommunikationstechnologien als Grundlage des Smart Grid; Technical Report; Accenture Consulting: Munich, Germany, 2017. [Google Scholar]
- Brand, M.; Ansari, S.; Castro, F.; Chakra, R.; Hassan, B.H.; Krüger, C.; Babazadeh, D.; Lehnhof, S. A framework for the integration of ict-relevant data in power system applications. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- acatech/Leopoldina/Akademienunion. Resilienz Digitalisierter Energiesysteme: Wie können Blackout-Risiken Begrenzt Werden? Schriftenreihe zur wissenschaftsbasierten Politikberatung; Deutsche Akademie der Naturforscher Leopoldina e. V.–Nationale Akademie der Wissenschaften: Munich, Germany, 2021. [Google Scholar]
- Attarha, S.; Narayan, A.; Hage Hassan, B.; Krüger, C.; Castro, F.; Babazadeh, D.; Lehnhoff, S. Virtualization management concept for flexible and fault-tolerant smart grid service provision. Energies 2020, 13, 2196. [Google Scholar] [CrossRef]
- Krüger, C.; Narayan, A.; Castro, F.; Hassan, B.H.; Attarha, S.; Babazadeh, D.; Lehnhoff, S. Real-time Test Platform for Enabling Grid Service Virtualisation in Cyber Physical Energy System. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 109–116. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X. Simulation of the smart grid communications: Challenges, techniques, and future trends. Comput. Electr. Eng. 2014, 40, 270–288. [Google Scholar] [CrossRef]
- Garlapati, S.; Volos, H.I.; Kuruganti, T.; Buehrer, M.R.; Reed, J.H. PHY and MAC layer design of hybrid spread spectrum based smart meter network. In Proceedings of the 2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC), Austin, TX, USA, 1–3 December 2012; pp. 183–184. [Google Scholar]
- Dong, Y.; Cai, Z.; Yu, M.; Sturer, M. Modeling and simulation of the communication networks in smart grid. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 2658–2663. [Google Scholar]
- Tong, X. The co-simulation extending for wide-area communication networks in power system. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Ponci, F.; Monti, A.; Benigni, A. Simulation for the design of smart grid controls. In Proceedings of the 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS), Brussels, Belgium, 17 October 2011; pp. 73–78. [Google Scholar]
- Steinbrink, C.; van der Meer, A.A.; Cvetkovic, M.; Babazadeh, D.; Rohjans, S.; Palensky, P.; Lehnhoff, S. Smart grid co-simulation with MOSAIK and HLA: A comparison study. Comput.-Sci.-Res. Dev. 2018, 33, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Li, Z. Uncertainty Modeling of Distributed Energy Resources: Techniques and Challenges. Curr. Sustain. Renew. Energy Rep. 2019, 6, 42–51. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Pramangioulis, D.; Atsonios, K.; Nikolopoulos, N.; Rakopoulos, D.; Grammelis, P.; Kakaras, E. A Methodology for Determination and Definition of Key Performance Indicators for Smart Grids Development in Island Energy Systems. Energies 2019, 12, 242. [Google Scholar] [CrossRef] [Green Version]
- Siano, P.; De Marco, G.; Rolán, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019, 13, 3454–3466. [Google Scholar] [CrossRef]
- Keles, D.; Jochem, P.; McKenna, R.; Ruppert, M.; Fichtner, W. Meeting the Modeling Needs of Future Energy Systems. Energy Technol. 2017, 5, 1007–1025. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.S.R.; Gundersen, T.; Adams, T.A. Modeling and Simulation of Energy Systems: A Review. Processes 2018, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Benz, T.; Dickert, J.; Erbert, M.; Erdmann, N.; Johae, C.; Katzenbach, W.; Mueller, H.; Schegner, P.; Schwarz, J.; Speh, R.; et al. Der Zellulare Ansatz: Grundlage Einer Erfolgreichen, Regionenübergreifenden Energiewende; Technical Report; Energietechnische Gesellschaft im VDE (ETG): Frankfurt am Main, Germany, 2015. [Google Scholar]
- GridWise Architecture Council. GridWise Transactive Energy Framework Version 1.1; PNNL-22946; GridWise Architecture Council: Richland, WA, USA, 2019; pp. 1–80. [Google Scholar]
- Hu, J.; Yang, G.; Kok, K.; Xue, Y.; Bindner, H. Transactive control: A framework for operating power systems characterized by high penetration of distributed energy resources. J. Mod. Power Syst. Clean Energy 2017, 5, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, I.; Fan, L. Distribution Locational Marginal Pricing (DLMP) for Multiphase Systems. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018; pp. 1–6. [Google Scholar]
- Lezama, F.; Soares, J.; Hernandez-Leal, P.; Kaisers, M.; Pinto, T.; Vale, Z. Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems. IEEE Trans. Power Syst. 2018, 34, 4081–4088. [Google Scholar] [CrossRef] [Green Version]
- ENTSO-E. Ten Year Network Development Report 2022: Scenarios Final Storyline Report; Technical Report; ENTSO-E: Brussels, Belgium, 2021. [Google Scholar]
- Engel, B. Development of a Process for Integrated Development and Evaluation of Energy Scenarios for Lower Saxony. Final Report of the Research Project NEDS—Nachhaltige Energieversorgung Niedersachsen; Cuvillier: Göttingen, Germany, 2019. [Google Scholar]
- Kost, C.; Shammugam, S.; Fluri, V.; Pieper, D.; Memar, A.D.; Schlegl, T. Stromgestehungskosten Erneuerbare Energien; Technical Report; Fraunhofer-Institut für Solare Energiesysteme—ISE: Freiburg, Germany, 2021. [Google Scholar]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Rösch, C.; Bräutigam, K.R.; Kopfmüller, J.; Stelzer, V.; Lichtner, P. Indicator system for the sustainability assessment of the German energy system and its transition. Energy Sustain. Soc. 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Fishburn, P.C. Letter to the Editor—Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef]
- Pichery, C. Sensitivity Analysis. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 236–237. [Google Scholar] [CrossRef]
Features | Characteristics | Scenario A | Scenario B | |
---|---|---|---|---|
Technical Features | Power generation structure |
| 1: Low 2: High | 1: High 2: High |
Heat supply |
| 1: Medium (∼45%) 2: Low (∼20%) 3: Medium (∼35%) | 1: High (∼70%) 2: Low (∼10%) 3: Low (∼20%) | |
Energy management |
| 1: High 2: Low | 1: Low 2: High | |
Energy mix/primary energy sources |
| 1: High 2: High 3: Low | 1: High 2: Medium 3: Low | |
Reserve power plant |
| 1: Medium 2: Medium 3: Low | 1: Medium 2: Low 3: Medium | |
Focus of consumption |
| 1: High 2: Low | 1: Medium 2: High | |
Acceptance |
| 1: High 2: Low | 1: Low 2: High | |
Grid digitization | 1. Complete digitization | 1 | 1 | |
Technical requirements for the CA | 1. Full compliance | 1 | 1 | |
Mobility (private, public transportation) |
| 1: High (∼75%) 2: Low (∼15%) 3: Low (∼10%) | 1: High (∼90%) 2: Low (∼5%) 3: Low (∼5%) | |
Mobility (freight traffic) |
| 1: Low (∼10%) 2: Medium (∼30%) 3: High (∼60%) | 1: Medium (∼20%) 2: Medium (∼25%) 3: High (∼55%) | |
Flexibility options |
| 1: Low to medium 2: Low 3: High | 1: High 2: Medium 3: Low to medium | |
ICT Features | Interoperability/standardization of ICT |
| 1 | 2 |
New services and products |
| 1 | 2 | |
Communication technology |
| 1 | 2 | |
Market Features | Local market participation |
| 1: No 2: Yes | 1: Yes 2: Yes |
Objective priorities |
| 1: High 2: Low | 1: Medium 2: Medium | |
Pricing scheme |
| 1: Yes 2: No | 1: No 2: Yes | |
Power generating costs |
| 1: Medium 2: Medium | 1: Low 2: High |
Ecological Sustainability | Resilience | Economic Efficiency |
---|---|---|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoth, K.; Steffen, T.; Wiegel, B.; Youssfi, A.; Babazadeh, D.; Venzke, M.; Becker, C.; Fischer, K.; Turau, V. Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability. Infrastructures 2021, 6, 150. https://doi.org/10.3390/infrastructures6110150
Hoth K, Steffen T, Wiegel B, Youssfi A, Babazadeh D, Venzke M, Becker C, Fischer K, Turau V. Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability. Infrastructures. 2021; 6(11):150. https://doi.org/10.3390/infrastructures6110150
Chicago/Turabian StyleHoth, Kai, Tom Steffen, Béla Wiegel, Amine Youssfi, Davood Babazadeh, Marcus Venzke, Christian Becker, Kathrin Fischer, and Volker Turau. 2021. "Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability" Infrastructures 6, no. 11: 150. https://doi.org/10.3390/infrastructures6110150
APA StyleHoth, K., Steffen, T., Wiegel, B., Youssfi, A., Babazadeh, D., Venzke, M., Becker, C., Fischer, K., & Turau, V. (2021). Holistic Simulation Approach for Optimal Operation of Smart Integrated Energy Systems under Consideration of Resilience, Economics and Sustainability. Infrastructures, 6(11), 150. https://doi.org/10.3390/infrastructures6110150