Blast Loading Response of Reinforced Concrete Panels Externally Reinforced with Steel Strips
Abstract
1. Introduction
Research Significance
2. Methodology
2.1. Description of Blast Protection Wall Panels
2.2. Material Properties
2.3. Location of Gauges
2.4. Techniques Being Used for Strengthening/Retrofitting of Structures against Blast Loading
- Aramid fiber reinforced plastics (AFRP) [5]
- Fiber reinforced polymers (FRP) [6]
- Ultra-high performance fiber reinforced concrete [7]
- Glass fiber reinforced polymers [8]
- Carbon fiber reinforced polymers [9]
- Polyurethane elastomers [10]
- Steel jacketing [11]
- Strain hardening cementations composites [12]
- Steel plates [13]
- Glass curtain walls [14]
- FRP composites [19]
- Use of GFRP [21]
2.5. Weaknesses Observed in Existing Arrangements
- The base of the RCC wall panel is not fixed
- Intermediate space between RCC wall panels
- RCC wall panels not designed for blast loading
2.6. The Technique Used for Improvement of the Existing Structure against Blast Loading
- Drill hole with drill bit
- Install anchor
- Hammer in anchor
3. Results and Discussions
3.1. Displacement Time Relationship
3.1.1. Case I: Explosion at Face of RCC Wall Panels
- For 50 kg TNT explosion, displacement of RCC wall panel reduces from 78 mm to 0.42 mm
- For 100 kg TNT explosion, displacement of RCC wall panel reduces from 175 mm to 0.62 mm
- For 50 kg TNT explosion, displacement of structural wall reduces from 20 mm to 0.11 mm
- For 100 kg TNT explosion, displacement of structural wall reduces from 41 mm to 0.14 mm
3.1.2. Case II: Explosion at Distance of 10 ft from RCC Wall Panels
- For 50 kg TNT explosion, displacement of RCC wall panels reduces from 48 mm to 0.18 mm
- For 100 kg TNT explosion, displacement of RCC wall panels reduces from 76 mm to 0.42 mm
- For 50 kg TNT explosion, displacement of structural wall reduces from 15 mm to 0.07 mm
- For 100 kg TNT explosion, displacement of structural wall reduces from 17 mm to 0.12 mm
3.2. Pressure Time History
3.2.1. Case I: Explosion at Face of RCC Wall Panels
3.2.2. Case II: Explosion at Distance of 10 ft from RCC Wall Panels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, C.; Ngo, T.; Mendis, P.; Lumantarna, R.; Zobec, M. Dynamic response of double skin façades under blast loads. Eng. Struct. 2016, 123, 155–165. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, D.; Chen, X.; Lu, F.; Wang, E. Experimental and numerical study on the dynamic response of RC slabs under blast loading. Eng. Fail. Anal. 2016, 66, 120–129. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hao, H.; Wang, Z.; Su, Y. Experimental investigation of ultra-high performance concrete slabs under contact explosions. Int. J. Impact Eng. 2016, 93, 62–75. [Google Scholar] [CrossRef]
- Codina, R.; Ambrosini, D.; de Borbon, F. Experimental and numerical study of a RC member under a close-in blast loading. Eng. Struct. 2016, 127, 145–158. [Google Scholar] [CrossRef]
- Kong, X.; Qo, X.; Gu, Y.; Lawam, I.A.; Qu, Y. Numerical evaluation of blast resistance of RC slab strengthened with AFRP. Constr. Build. Mater. 2018, 178, 244–253. [Google Scholar] [CrossRef]
- Chundawat, T.S.; Vaya, D.; Sini, N.K.; Varma, I.K. Blast mitigation using FRP retrofitting and coating techniques. Polym. Compos. 2018, 39, 1389–1402. [Google Scholar] [CrossRef]
- Aoude, H.; Frederic, P.D.; Burell, R.P.; Saatcioglu, M. Behavior of ultra-high performance fiber reinforced concrete columns under blast loading. Int. J. Impact Eng. 2015, 80, 185–202. [Google Scholar] [CrossRef]
- Jacques, E.; Lloyd, A.; Asce, A.M.; Imbeau, P.; Palermo, D.; Asce, A.M. GFRP-Retrofitted Reinforced Concrete Columns Subjected to Simulated Blast Loading. J. Struct. Eng. 2015, 141, 04015028. [Google Scholar] [CrossRef]
- Chen, L.; Fang, Q.; Fan, J.; Zhang, Y.; Hao, H.; Liu, H. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings. Adv.Struct. Eng. 2014, 17, 817–836. [Google Scholar] [CrossRef]
- Somarathna, H.; Raman, S.N.; Badri, K.H.; Mutalib, A.A. Mechanical characterization of polyurethane elastomers: For retrofitting application against blast effects. In Proceedings of the 3rd Conference on Smart Monitoring, Assessment and Rehabilitation of Structures (SMAR2015), Antalya, Turkey, 7 September 2015. [Google Scholar]
- Codina, R.; Ambrosini, D.; de Borbón, F. Alternatives to prevent the failure of RC members under close-in blast loadings. Eng. Fail. Anal. 2016, 60, 96–106. [Google Scholar] [CrossRef]
- Adhikary, S.D.; Chandra, L.R.; Christian, A.; Ong, K.C.G. SHCC-strengthened RC panels under near-field explosions. Constr. Build. Mater. 2018, 183, 675–692. [Google Scholar] [CrossRef]
- Chen, J.; Teng, J. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- Jie, G.; Guoqiang, L. Dynamic analysis of glass curtain walls with protective films subjected to blast loading. Int. J. Struct. Eng. 2012, 3, 160–169. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Hazell, P.J. Modelling the response of reinforced concrete panels under blast loading. Mater. Des. (1980–2015) 2014, 56, 620–628. [Google Scholar] [CrossRef]
- Yusof, M.A.; Rosdi, R.N.; Ismail, A.; Yahya, M.A.; Peng, N.C. Simulation of reinforced concrete blast wall subjected to air blast loading. J. Asian Sci. Res. 2014, 4, 522–533. [Google Scholar]
- Smith, P. Blast walls for structural protection against high explosive threats: A review. Int. J. Prot. Struct. 2010, 1, 67–84. [Google Scholar] [CrossRef]
- Luccioni, B.; Ambrosini, R.; Danesi, R. Analysis of building collapse under blast loads. Eng. Struct. 2004, 26, 63–71. [Google Scholar] [CrossRef]
- Buchan, P.; Chen, J. Blast resistance of FRP composites and polymer strengthened concrete and masonry structures—A state of the art review. Compos. Part B Eng. 2007, 38, 509–522. [Google Scholar] [CrossRef]
- Rasheed, A.; Farooq, S.H.; Usman, M.; Hanif, A.; Khan, N.A.; Khushnood, R.A. Structural reliability analysis of superstructure of highway bridges on China-Pakistan Economic Corridor (CPEC): A case study. J. Struct. Integr. Maint. 2018, 3, 197–207. [Google Scholar] [CrossRef]
- Razaqpur, A.G.; Tolba, A.; Contestabile, E. Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates. Compos. Part B Eng. 2007, 38, 535–546. [Google Scholar] [CrossRef]
- Farooq, H.; Usman, M.; Mehmood, K.; Malik, M.S.; Hanif, A. Effect of Steel Confinement on Axially Loaded Short Concrete Columns. IOP Conf. Ser. Mater.Sci.Eng. 2018, 414, 012026. [Google Scholar] [CrossRef]
- Farooq, S.H.; Ilyas, M.; Ghaffar, A. Technique for strengthening of masonry wall panels using steel strips. Asian J. Civil Eng. (Build. Hous.) 2006, 7, 621–638. [Google Scholar]
- Terrorist Activities in Last Decade and Accessed. Available online: http://www.pakistanbodycount.com (accessed on 10 August 2018).
- Khan, B.L.; Farooq, H.; Usman, M.; Butt, F.; Khan, A.Q.; Hanif, A. Effect of soil–structure interaction on a masonry structure under train-induced vibrations. Proc. Inst. Civil Eng. Struct. Build. 2018. [Google Scholar] [CrossRef]
- ANSYS AUTODYN. Available online: https://www.ansys.com (accessed on 26 August 2018).
Properties of air | |
State equation | Ideal gas |
γ | 1.41 |
Reference density | 1.225E-03 g/cm3 |
Reference temperature | 2.882E + 02 oK |
Specific heat (C.V.) | 7.173 + 02 J/kg K |
Properties of reinforced concrete | |
State equation | Linear |
Reference density | 2.750 g/cm3 |
Bulk modulus | 3.527E+07kPa |
Strength model | Von Mises |
Shear modulus | 1.220E+07 kPa |
Elastic limit | 1.000E+04kPa |
Failure criteria | Principal stresses |
Failure stress | 1.000+04kPa |
Properties of masonry | |
State equation | Linear |
Reference density | 2.400E+00 g/cm3 |
Bulk modulus | 7.800E+06 kPa |
Strength model | Mohr Coulomb |
Shear modulus | 2.6E+06 kPa |
Failure criteria | Principal stresses |
Failure tension | 1.000+03 kPa |
Ser | Location | TNT (Kilograms) |
---|---|---|
1 | U.S. Consulate Karachi | 70 |
2 | U.S. Consulate Karachi | 100 |
3 | Parachinar, Pakistan | 50 |
4 | Charbagh, Swat Valley, KPK | 60 |
5 | Police Checkpoint Peshawar | 80 |
6 | Orakzai Agency, FATA | 95 |
7 | Khyber Bazaar, Peshawar | 30 |
8 | Timergara, Lower Dir | 75 |
9 | Lakki Marwat District, KPK | 79 |
10 | Khyber Agency, FATA | 56 |
11 | Ghalanai, Mohmand Agency, FATA | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Farooq, S.H.; Usman, M. Blast Loading Response of Reinforced Concrete Panels Externally Reinforced with Steel Strips. Infrastructures 2019, 4, 54. https://doi.org/10.3390/infrastructures4030054
Khan R, Farooq SH, Usman M. Blast Loading Response of Reinforced Concrete Panels Externally Reinforced with Steel Strips. Infrastructures. 2019; 4(3):54. https://doi.org/10.3390/infrastructures4030054
Chicago/Turabian StyleKhan, Rizwan, Syed Hassan Farooq, and Muhammad Usman. 2019. "Blast Loading Response of Reinforced Concrete Panels Externally Reinforced with Steel Strips" Infrastructures 4, no. 3: 54. https://doi.org/10.3390/infrastructures4030054
APA StyleKhan, R., Farooq, S. H., & Usman, M. (2019). Blast Loading Response of Reinforced Concrete Panels Externally Reinforced with Steel Strips. Infrastructures, 4(3), 54. https://doi.org/10.3390/infrastructures4030054