Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA)
Abstract
:Highlights
- Infiltration-type retention practices can aid in managing stormwater volume.
- We monitored a newly-installed rain garden’s hydrology over a four-year period.
- Rain garden detained 50% of total inflow and delayed overflow to sewer system by ~5 h.
- Retention effectiveness was related to total inflow volume and intensity, evapotranspiration losses, and soil formation.
1. Introduction
2. Methods
2.1. Site and Garden Description
2.2. Monitoring the Rain Garden Water Cycle
2.3. Soil Hydrologic and Profile Assessment
2.4. Data Analysis
3. Results and Discussion
3.1. Rain Garden Network Response to Storm Events
3.2. Soil Hydrology
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Holman-Dodds, J.K.; Bradley, A.A.; Potter, K.W. Evaluation of hydrologic benefits of infiltration based urban storm water management. J. Am. Water Resour. Assoc. 2003, 39, 205–215. [Google Scholar] [CrossRef]
- Green, O.O.; Garmestani, A.S.; Albro, S.; Ban, N.C.; Berland, A.; Burkman, C.E.; Gardiner, M.M.; Gunderson, L.; Hopton, M.E.; Schoon, M.L.; et al. Adaptive governance to promote ecosystem services in urban green spaces. Urban Ecosyst. 2016, 19, 77–93. [Google Scholar] [CrossRef]
- Jarden, K.M.; Jefferson, A.J.; Grieser, J.M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Proc. 2016, 30, 1536–1550. [Google Scholar] [CrossRef]
- Emerson, C.H.; Welty, C.; Traver, R.G. Watershed-scale evaluation of a system of storm water detention basins. J. Hydrol. Eng. 2005, 10, 237–242. [Google Scholar] [CrossRef]
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance Assessment of Rain Gardens. J. Am. Water Resourc. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Improving bioretention/biofiltration performance with restorative maintenance. Water Sci. Technol. 2012, 65, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, B.; Shuster, W.; Garmestani, A.; Furio, B.; Albro, S.; Gardiner, M.; Spring, M.; Green, O. A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. J. Envion. Mgnag. 2016, 183, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, B.C.; Gosnell, H.; Cosens, B.A. A decade of adaptive governance scholarship: Synthesis and future directions. Ecol. Soc. 2014, 19, 56. [Google Scholar] [CrossRef]
- Grebel, J.E.; Mohanty, S.K.; Torkelson, A.A.; Boehm, A.B.; Higgins, C.P.; Maxwell, R.M.; Nelson, K.L.; Sedlak, D.L. Engineered infiltration systems for urban stormwater reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1964, 19, 205–234. [Google Scholar]
- Dumouchelle, D.H.; Darner, R.A. Visualization of Soil-Moisture Change in Response to Precipitation within Two Rain Gardens in Ohio; Geological Survey Data Series 837; US Geological Survey: Columbus, OH, USA, 2014.
- Thien, S.J. A flow diagram for teaching texture-by-feel analysis. J. Agron. Educ. 1979, 8, 54–55. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Page, J.L.; Winston, R.J.; Mayes, D.B.; Perrin, C.; Hunt, W.F. Retrofitting with innovative stormwater control measures: Hydrologic mitigation of impervious cover in the municipal right-of-way. J. Hydrol. 2015, 527, 923–932. [Google Scholar] [CrossRef]
- Line, D.E.; Hunt, W.F. Performance of a bioretention area and a level spreader-grass filter strip at two highway sites in North Carolina. J. Irrig. Drain. Eng. 2009, 135, 217–224. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Autixier, L.; Mailhot, A.; Bolduc, S.; Madoux-Humery, A.-S.; Galarneau, M.; Prévost, M.; Dorner, S. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Sci. Total Environ. 2014, 499, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.; Waddington, D. Infiltration rates on residential lawns in central Pennsylvania. J. Soil Water Conserv. 1999, 54, 564–568. [Google Scholar]
- Le Coustumer, S.; Fletcher, T.D.; Deletic, A.; Barraud, S.; Lewis, J.F. Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation. J. Hydrol. 2009, 376, 16–23. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Fraser, P. The effects of three earthworm species on soil macroporosity and hydraulic conductivity. Appl. Soil Ecol. 1998, 10, 11–19. [Google Scholar] [CrossRef]
- Frouz, J.; Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191–199. [Google Scholar]
- Le Coustumer, S.; Fletcher, T.D.; Deletic, A.; Barraud, S.; Poelsma, P. The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Res. 2012, 46, 6743–6752. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Davis, A.P. Urban Particle Capture in Bioretention Media I: Laboratory and Field Studies. J. Environ. Eng. 2008, 134, 409–418. [Google Scholar] [CrossRef]
- Lassabatere, L.; Angulo-Jaramillo, R.; Goutaland, D.; Letellier, L.; Gaudet, J.P.; Winiarski, T.; Delolme, C. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma 2010, 156, 316–325. [Google Scholar] [CrossRef]
- Lloyd, S.; Wong, T. Paired Catchment Storm Event Monitoring: Assessing the Performance of a Bioretention System (Rain Garden). Australas. J. Water Resour. 2008, 12, 133–141. [Google Scholar]
- Jacobs, S.A.; Schubauer-Berigan, J.; Shuster, W.D.; Butler, B.; Mullane, J.; Balz, A.; Martin, E. Francis Rain Gardens in Cincinnati, Ohio: Monitoring the Performance of Green Infrastructure, EPA/600/R-15/xxx; Unpublished report. 2017.
- Jenkins, J.K.; Wadzuk, B.M.; Welker, A.L. Fines accumulation and distribution in a storm-water rain garden nine years postconstruction. J. Irrig. Drain. Eng. 2010, 136, 862–869. [Google Scholar] [CrossRef]
Type/Species | Target Quantity or Coverage (m2) |
---|---|
SHRUBS | |
Viburnum lantana ‘Mohican’ | 86 ea. potted starts |
Mohican Viburnum | |
Itea virginica ‘Little Henry’ | 77 ea. potted starts |
‘Little Henry’ Sweetspire | |
GRASSES | |
Panicum virgatum ‘Shenandoah’ | 80 |
‘Shenandoah’ Switch Grass | |
PERENNIALS | |
Asclepias tuberosa | 30 |
Butterfly Milkweed | |
Echinacea pupurea | 65 |
Purple Coneflower | |
Heliopsis helianthoides | 20 |
False Sunflower | |
Leucanthemum x superbum ‘Becky‘ | 10 |
‘Becky’ Shasta Daisy’ | |
Liatris spicata | 50 |
Blazing Star | |
Nepeta racemosa ‘Walker’s Low’ | 30 |
‘Walker’s Low’ Catmint | |
Rudbeckia fulgida | 40 |
Black Eyed Susan | |
Salvia nemerosa ‘Marcus’ | 35 |
Sage |
Duration (h) | Total Rainfall (mm) | Upper Event Q (m3) | Lower Event Q (m3) | Flow Q (m3) | Flow as Total (%) | Detention (%) | ||
---|---|---|---|---|---|---|---|---|
Total | 1462 | 3070 | 3667 | 2035 | 1345 | . | . | |
Annual | 2012 | 263 | 500 | 417 | 215 | 21 | 5 | 95 |
2013 | 409 | 940 | 1852 | 769 | 628 | 34 | 66 | |
2014 | 552 | 680 | 796 | 734 | 416 | 52 | 48 | |
2015 | 238 | 940 | 602 | 317 | 280 | 47 | 53 |
Year | # Events | Complete Retention (count, %) | Threshold Flow (count, %) | Large Flow (count, %) |
---|---|---|---|---|
Overall | 233 | 198, 85 | 17, 7 | 18, 8 |
2013 | 57 | 45, 79 | 5, 9 | 7, 11 |
2014 | 55 | 49, 90 | 3, 5 | 3, 5 |
2015 | 79 | 68, 86 | 6, 8 | 5, 6 |
Location | Year | Horizon | Bulk Density (g cm−3; Mean ± S.E.) | Macroinvertebrate Presence? |
---|---|---|---|---|
Upper | 2015 | Oi | 0.38 ± 0.02 | Y |
Bw | 1.31 ± 0.04 | Y | ||
2016 | Oi | 0.30 ± 0.02 | Y | |
Bw | 1.18 ± 0.04 | Y | ||
Lower | 2015 | Oi | 0.32 ± 0.04 | N |
Bw | 1.30 ± 0.05 | N | ||
2016 | Oi | 0.29 ± 0.02 | N | |
Bw | 1.16 ± 0.05 | N | ||
Turf | A | 1.35 ± 0.05 | Y |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuster, W.D.; Darner, R.A.; Schifman, L.A.; Herrmann, D.L. Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA). Infrastructures 2017, 2, 11. https://doi.org/10.3390/infrastructures2030011
Shuster WD, Darner RA, Schifman LA, Herrmann DL. Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA). Infrastructures. 2017; 2(3):11. https://doi.org/10.3390/infrastructures2030011
Chicago/Turabian StyleShuster, William D., Robert A. Darner, Laura A. Schifman, and Dustin L. Herrmann. 2017. "Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA)" Infrastructures 2, no. 3: 11. https://doi.org/10.3390/infrastructures2030011
APA StyleShuster, W. D., Darner, R. A., Schifman, L. A., & Herrmann, D. L. (2017). Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA). Infrastructures, 2(3), 11. https://doi.org/10.3390/infrastructures2030011