Exploring Causal Factor in Highway–Railroad-Grade Crossing Crashes: A Comparative Analysis
Abstract
1. Introduction
2. Literature Review
2.1. Identification of Relationships Between Risk Factors and Crashes
2.2. Risk Factor Identifications in Highway–Railway-Grade Crossing (HRGC) Crashes
2.3. Graphic Models for Causal Inference in Traffic Crash Analysis
3. Methodology
3.1. Identification of Causal Relationships
3.2. Gaussian Graphical Model (GGM)
- Empirical Covariance Matrix Calculation
- 2.
- Likelihood Function
- 3.
- Simplifying the Log-likelihood Function
- 4.
- Adding the L1 Penalty
- 5.
- Convex Optimization
3.3. Extreme Gradient Boosting (XGBoost)
3.4. Causal Bayesian Network (CBN) Learning
4. Case Study Dataset
5. Results and Discussions
5.1. Gaussian Graphical Model (GGM) Results
5.2. Graphic Extreme Gradient Boosting (XGBoost) Results
5.3. Causal Bayesian Network (CBN) Learning Results
6. Conclusions and Limitations
6.1. Conclusions
- Stop Signs and Flashing Lights and Bells
- Track Angle
- Daily Trains
- Maximum Road Speed
- Daily Pedestrians
6.2. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transport Canada. 2024–2025 Departmental Plan; Government of Canada: Ottawa, ON, Canada, 2024; Available online: https://tc.canada.ca/sites/default/files/2024-03/2024-25_DEPARTMENTAL_PLAN_ENGLISH.pdf (accessed on 9 July 2024).
- Cerwick, D.M.; Gkritza, K.; Shaheed, M.S.; Hans, Z. A Comparison of the Mixed Logit and Latent Class Methods for Crash Severity Analysis. Anal. Methods Accid. Res. 2014, 3–4, 11–27. [Google Scholar] [CrossRef]
- Hauer, E. Cause, Effect and Regression in Road Safety: A Case Study. Accid. Anal. Prev. 2010, 42, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Hauer, E. Crash Causation and Prevention. Accid. Anal. Prev. 2020, 143, 105528. [Google Scholar] [CrossRef] [PubMed]
- Elvik, R. Problems in Determining the Optimal Use of Road Safety Measures. Res. Transp. Econ. 2014, 47, 27–36. [Google Scholar] [CrossRef]
- Hauer, E. Statistical Road Safety Modeling. Transp. Res. Rec. 2004, 1897, 81–87. [Google Scholar] [CrossRef]
- Khan, K.; Zaidi, S.B.; Ali, A. Evaluating the Nature of Distractive Driving Factors towards Road Traffic Accident. Civ. Eng. J. 2020, 6, 1555–1580. [Google Scholar] [CrossRef]
- Lord, D.; Mannering, F. The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives. Transp. Res. Part. A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef]
- Elvik, R. Risk Factors as Causes of Accidents: Criterion of Causality, Logical Structure of Relationship to Accidents and Completeness of Explanations. Accid. Anal. Prev. 2024, 197, 107469. [Google Scholar] [CrossRef]
- Joshua, S.C.; Garber, N.J. Estimating Truck Accident Rate and Involvements Using Linear and Poisson Regression Models. Transp. Plan. Technol. 1990, 15, 41–58. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Fang, S. Prediction of Urban Expressway Total Traffic Accident Duration Based on Multiple Linear Regression and Artificial Neural Network. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; IEEE: New York, NY, USA, 2019; pp. 503–510. [Google Scholar]
- Cai, H.; Zhu, D.; Yan, L. Using Multi-Regression to Analyze and Predict Road Traffic Safety Level in China. In Proceedings of the 2015 International Conference on Transportation Information and Safety (ICTIS), Wuhan, China, 25–28 June 2015; IEEE: New York, NY, USA, 2015; pp. 363–369. [Google Scholar]
- Goldstein, H. Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least Squares. Biometrika 1986, 73, 43–56. [Google Scholar] [CrossRef]
- Huang, H.; Abdel-Aty, M. Multilevel Data and Bayesian Analysis in Traffic Safety. Accid. Anal. Prev. 2010, 42, 1556–1565. [Google Scholar] [CrossRef]
- El-Basyouny, K.; Barua, S.; Islam, M.T. Investigation of Time and Weather Effects on Crash Types Using Full Bayesian Multivariate Poisson Lognormal Models. Accid. Anal. Prev. 2014, 73, 91–99. [Google Scholar] [CrossRef]
- Aguero-Valverde, J.; Jovanis, P.P. Analysis of Road Crash Frequency with Spatial Models. Transp. Res. Rec. 2008, 2061, 55–63. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Radwan, A.E. Modeling Traffic Accident Occurrence and Involvement. Accid. Anal. Prev. 2000, 32, 633–642. [Google Scholar] [CrossRef]
- Akin, D. Darçın Akın Analysis of Highway Crash Data by Negative Binomial and Poisson Regression Models. In Proceedings of the 2nd International Symposium on Computing in Science and Engineering, Izmir, Turkey, 1–4 June 2011. [Google Scholar] [CrossRef]
- Wu, K.-F.; Aguero-Valverde, J.; Jovanis, P.P. Using Naturalistic Driving Data to Explore the Association between Traffic Safety-Related Events and Crash Risk at Driver Level. Accid. Anal. Prev. 2014, 72, 210–218. [Google Scholar] [CrossRef]
- Coruh, E.; Bilgic, A.; Tortum, A. Accident Analysis with Aggregated Data: The Random Parameters Negative Binomial Panel Count Data Model. Anal. Methods Accid. Res. 2015, 7, 37–49. [Google Scholar] [CrossRef]
- Usman, T.; Fu, L.; Miranda-Moreno, L.F. Accident Prediction Models for Winter Road Safety: Does Temporal Aggregation of Data Matter? Transp. Res. Rec. 2011, 2237, 144–151. [Google Scholar] [CrossRef]
- Dong, C.; Clarke, D.B.; Yan, X.; Khattak, A.; Huang, B. Multivariate Random-Parameters Zero-Inflated Negative Binomial Regression Model: An Application to Estimate Crash Frequencies at Intersections. Accid. Anal. Prev. 2014, 70, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Jou, R.; Saleh, W.; Pai, C. Accidents Involving Pedestrians with Their Backs to Traffic or Facing Traffic: An Evaluation of Crash Characteristics and Injuries. J. Advced Transp. 2016, 50, 736–751. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.S. Using Logistic Regression to Estimate the Influence of Accident Factors on Accident Severity. Accid. Anal. Prev. 2002, 34, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.K.W. Risk Factors Affecting the Severity of Single Vehicle Traffic Accidents in Hong Kong. Accid. Anal. Prev. 2004, 36, 333–340. [Google Scholar] [CrossRef]
- Elvik, R. Evaluating the Effectiveness of Norway’s “Speak Out!” Road Safety Campaign: The Logic of Causal Inference in Road Safety Evaluation Studies. Transp. Res. Rec. 2000, 1717, 66–75. [Google Scholar] [CrossRef]
- Elvik, R. Assessing Causality in Multivariate Accident Models. Accid. Anal. Prev. 2011, 43, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Ageli, M.M.; Zaidan, A.M. Road Traffic Accidents in Saudi Arabia: An ADRL Approach and Multivariate Granger Causality. IJEF 2013, 5, 26. [Google Scholar] [CrossRef]
- Yu, R.; Xiong, Y.; Abdel-Aty, M. A Correlated Random Parameter Approach to Investigate the Effects of Weather Conditions on Crash Risk for a Mountainous Freeway. Transp. Res. Part. C Emerg. Technol. 2015, 50, 68–77. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C.; Mannering, F.L. A Note on Modeling Vehicle Accident Frequencies with Random-Parameters Count Models. Accid. Anal. Prev. 2009, 41, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kocatepe, A.; Ulak, M.B.; Ozguven, E.E.; Horner, M.W. Who Might Be Affected by Crashes? Identifying Areas Susceptible to Crash Injury Risk and Their Major Contributing Factors. Transp. A Transp. Sci. 2019, 15, 1278–1305. [Google Scholar] [CrossRef]
- Ulak, M.B.; Ozguven, E.E. Identifying the Latent Relationships between Factors Associated with Traffic Crashes through Graphical Models. Accid. Anal. Prev. 2024, 197, 107470. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Zhou, R.; Liu, Z.; Sun, X. Exploring the Mechanism of Crashes with Autonomous Vehicles Using Machine Learning. Math. Probl. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Elyassami, S.; Hamid, Y.; Habuza, T. Road Crashes Analysis and Prediction Using Gradient Boosted and Random Forest Trees. In Proceedings of the 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir-Essaouira, Morocco, 5–12 June 2021; IEEE: New York, NY, USA, 2020; pp. 520–525. [Google Scholar]
- Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A. Toward Safer Highways, Application of XGBoost and SHAP for Real-Time Accident Detection and Feature Analysis. Accid. Anal. Prev. 2020, 136, 105405. [Google Scholar] [CrossRef]
- Rana, P.; Sattari, F.; Lefsrud, L.; Hendry, M. Machine Learning Approach to Enhance Highway Railroad Grade Crossing Safety by Analyzing Crash Data and Identifying Hotspot Crash Locations. Transp. Res. Rec. J. Transp. Res. Board. 2023, 2678, 1055–1071. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, B.; Huang, J. Causal Analysis of Road Safety Accidents in Britain Based on a Univariate Decision Tree Method. In Proceedings of the 2022 International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI), Zakopane, Poland, 15–16 August 2022; IEEE: New York, NY, USA, 2022; pp. 436–441. [Google Scholar]
- Yang, C.; Chen, M.; Yuan, Q. The Application of XGBoost and SHAP to Examining the Factors in Freight Truck-Related Crashes: An Exploratory Analysis. Accid. Anal. Prev. 2021, 158, 106153. [Google Scholar] [CrossRef] [PubMed]
- Ziakopoulos, A.; Vlahogianni, E.; Antoniou, C.; Yannis, G. Spatial Predictions of Harsh Driving Events Using Statistical and Machine Learning Methods. Saf. Sci. 2022, 150, 105722. [Google Scholar] [CrossRef]
- Zhang, Z.; Akinci, B.; Qian, S. Inferring Heterogeneous Treatment Effects of Work Zones on Crashes. Accid. Anal. Prev. 2022, 177, 106811. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Guo, Y.; Liu, P.; Ding, H.; Cao, J.; Zhou, J.; Feng, Z. What Can We Learn from the AV Crashes?—An Association Rule Analysis for Identifying the Contributing Risky Factors. Accid. Anal. Prev. 2024, 199, 107492. [Google Scholar] [CrossRef]
- Hong, J.; Tamakloe, R.; Park, D. Application of Association Rules Mining Algorithm for Hazardous Materials Transportation Crashes on Expressway. Accid. Anal. Prev. 2020, 142, 105497. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.P. Highway-Rail Grade Crossing Traffic Hazard Forecasting Model. In Proceedings of the Transportation Research Board Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Saccomanno, F.F.; Fu, L.; Miranda-Moreno, L.F. Risk-Based Model for Identifying Highway-Rail Grade Crossing Blackspots. Transp. Res. Rec. 2004, 1862, 127–135. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, P.; Tolliver, D. Decision Tree Approach to Accident Prediction for Highway–Rail Grade Crossings: Empirical Analysis. Transp. Res. Rec. 2016, 2545, 115–122. [Google Scholar] [CrossRef]
- Soleimani, S.; Leitner, M.; Codjoe, J. Applying Machine Learning, Text Mining, and Spatial Analysis Techniques to Develop a Highway-Railroad Grade Crossing Consolidation Model. Accid. Anal. Prev. 2021, 152, 105985. [Google Scholar] [CrossRef]
- Lasisi, A.; Li, P.; Chen, J. Hybrid Machine Learning and Geographic Information Systems Approach—A Case for Grade Crossing Crash Data Analysis. Adv. Data Sci. Adapt. Data Anal. 2020, 12, 2050003. [Google Scholar] [CrossRef]
- Shangguan, Q.; Wang, Y.; Fu, L. Quantifying the Effectiveness of an Active Treatment in Improving Highway-Railway Grade Crossing Safety in Canada: An Empirical Bayes Observational before–after Study. Can. J. Civ. Eng. 2024, 52, 17–28. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, K.; Ji, T.; Lu, C.-T. Granger Causal Inference for Interpretable Traffic Prediction. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; IEEE: New York, NY, USA, 2022; pp. 1645–1651. [Google Scholar]
- Yu, Q.; Zhou, Y.; Ayele Atumo, E.; Qu, L.; Zhang, N.; Jiang, X. Addressing Endogeneity between Hazardous Actions and Motorcyclist Injury Severity by Integrating Generalized Propensity Score Approach and Instrumental Variable Model. Accid. Anal. Prev. 2023, 192, 107297. [Google Scholar] [CrossRef] [PubMed]
- Afghari, A.P.; Papadimitriou, E.; Pilkington-Cheney, F.; Filtness, A.; Brijs, T.; Brijs, K.; Cuenen, A.; De Vos, B.; Dirix, H.; Ross, V.; et al. Investigating the Effects of Sleepiness in Truck Drivers on Their Headway: An Instrumental Variable Model with Grouped Random Parameters and Heterogeneity in Their Means. Anal. Methods Accid. Res. 2022, 36, 100241. [Google Scholar] [CrossRef]
- Najaf, P.; Thill, J.-C.; Zhang, W.; Fields, M.G. City-Level Urban Form and Traffic Safety: A Structural Equation Modeling Analysis of Direct and Indirect Effects. J. Transp. Geogr. 2018, 69, 257–270. [Google Scholar] [CrossRef]
- Zheng, L.; Sayed, T.; Essa, M. Validating the Bivariate Extreme Value Modeling Approach for Road Safety Estimation with Different Traffic Conflict Indicators. Accid. Anal. Prev. 2019, 123, 314–323. [Google Scholar] [CrossRef]
- Shaaban, K.; Gaweesh, S.; Ahmed, M.M. Investigating In-Vehicle Distracting Activities and Crash Risks for Young Drivers Using Structural Equation Modeling. PLoS ONE 2020, 15, e0235325. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, Z.; Li, W.; Wang, Q. A Traffic Accident Causation Analysis Method Based on AHP-Apriori. Procedia Eng. 2016, 137, 680–687. [Google Scholar] [CrossRef]
- John, M.; Shaiba, H. Apriori-Based Algorithm for Dubai Road Accident Analysis. Procedia Comput. Sci. 2019, 163, 218–227. [Google Scholar] [CrossRef]
- Delen, D.; Sharda, R.; Bessonov, M. Identifying Significant Predictors of Injury Severity in Traffic Accidents Using a Series of Artificial Neural Networks. Accid. Anal. Prev. 2006, 38, 434–444. [Google Scholar] [CrossRef]
- Jamal, A.; Umer, W. Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network. IJERPH 2020, 17, 7466. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Cunningham, S. Causal Inference: The Mixtape; Yale University Press: New Haven, Connecticut, 2021; ISBN 978-0-300-25588-1. [Google Scholar]
- Kataoka, S.; Yasuda, M.; Furtlehner, C.; Tanaka, K. Traffic Data Reconstruction Based on Markov Random Field Modeling. Inverse Probl. 2014, 30, 025003. [Google Scholar] [CrossRef]
- Ellis, B.; Wong, W.H. Learning Causal Bayesian Network Structures From Experimental Data. J. Am. Stat. Assoc. 2008, 103, 778–789. [Google Scholar] [CrossRef]
- Needham, C.J.; Bradford, J.R.; Bulpitt, A.J.; Westhead, D.R. Inference in Bayesian Networks. Nat. Biotechnol. 2006, 24, 51–53. [Google Scholar] [CrossRef]
- Aguilera, P.A.; Fernández, A.; Fernández, R.; Rumí, R.; Salmerón, A. Bayesian Networks in Environmental Modelling. Environ. Model. Softw. 2011, 26, 1376–1388. [Google Scholar] [CrossRef]
- Fortin, S.P.; Johnston, S.S.; Schuemie, M.J. Applied Comparison of Large-scale Propensity Score Matching and Cardinality Matching for Causal Inference in Observational Research. BMC Med. Res. Methodol. 2021, 21, 109. [Google Scholar] [CrossRef]
- Pearl, J. Comment: Understanding Simpson’s Paradox. Am. Stat. 2014, 68, 8–13. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics 2008, 9, 432–441. [Google Scholar] [CrossRef]
- Aubert, G.; Kornprobst, P. Image Processing: Mathematics. In Encyclopedia of Mathematical Physics; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–10. ISBN 978-0-12-512666-3. [Google Scholar]
- Liu, H.; Lafferty, J.; Wasserman, L. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. J. Mach. Learn. Res. 2009, 10, 2295–2328. [Google Scholar]
- Kuismin, M.; Sillanpää, M.J. MCPeSe: Monte Carlo Penalty Selection for Graphical Lasso. Bioinformatics 2021, 37, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. Mach. Learn. Python 2011, 12, 2825–2830. [Google Scholar]
- Ankan, A.; Panda, A. Pgmpy: Probabilistic Graphical Models Using Python. In Proceedings of the 14th Python in Science Conferenve (Scipy 2015), Austin, Texas, 6–12 July 2015; pp. 6–11. [Google Scholar]
- Ma, J.; Ding, Y.; Cheng, J.C.P.; Tan, Y.; Gan, V.J.L.; Zhang, J. Analyzing the Leading Causes of Traffic Fatalities Using XGBoost and Grid-Based Analysis: A City Management Perspective. IEEE Access 2019, 7, 148059–148072. [Google Scholar] [CrossRef]
- Transport Canada Grade Crossings Inventory—Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/d0f54727-6c0b-4e5a-aa04-ea1463cf9f4c (accessed on 6 November 2024).
- Hong, W.-T.; Clifton, G.; Nelson, J.D. Railway Accident Causation Analysis: Current Approaches, Challenges and Potential Solutions. Accid. Anal. Prev. 2023, 186, 107049. [Google Scholar] [CrossRef] [PubMed]
- Keerin, P.; Boongoen, T. Improved KNN Imputation for Missing Values in Gene Expression Data. Comput. Mater. Contin. 2022, 70, 4009–4025. [Google Scholar] [CrossRef]
- Heydari, S.; Fu, L. Developing Safety Performance Functions for Railway Grade Crossings: A Case Study of Canada. In Proceedings of the 2015 Joint Rail Conference, American Society of Mechanical Engineers, San Jose, CA, USA, 23 March 2015; p. V001T06A017. [Google Scholar]
Variable | Description | Possible Values | Mean | STD | Min | Max |
---|---|---|---|---|---|---|
Railroad | ||||||
Track Number | Number of railway tracks | 1.17 | 0.46 | 0.00 | 10.00 | |
Track Angle | Angle degree of track | 78.86 | 22.33 | 0.00 | 173.00 | |
Daily Trains | Total number of trains per day | 7.91 | 11.02 | 0.00 | 289.00 | |
Railway Speed Limit | Overall maximum speed for rail train approaching from both sides | 38.240 | 21.45 | 0.00 | 250.00 | |
Highway | ||||||
Highway Lanes | Number of highway lanes | 1.840 | 0.63 | 0.00 | 7.000 | |
Daily Vehicles | Number of vehicles per day | 1110.59 | 3545.88 | 0.00 | 65,104.00 | |
Daily Pedestrians | Number of pedestrians per day | 1.55 | 6.98 | 0.00 | 284.00 | |
Road Speed Limit | Road posted/unposted maximum speed for road approach from both sides | 55.19 | 25.94 | 0.000 | 110.00 | |
Environment | ||||||
Area Type | Whether the HRGC is in rural areas or urban areas | 0—rural; 1—urban | - | - | - | - |
Lightings | Lighting conditions along highway | 0—unlighted; 1—single side; 2—both sides | - | - | - | - |
Crossing | ||||||
Gradient Stopping Sight Distance | Percent of gradient stopping sight distance for left side | [−100, 100] | 1.24 | 3.95 | 36.40 | 64.99 |
Distance to Intersection | Distance between the crossing and intersection for left side | 7.83 | 19.32 | 0.00 | 500.00 | |
Whistle | Train is required to whistle or not | 0—no; 1—yes | - | - | - | - |
Sign | Presence of signs at passive crossings | 0—no; 1—yes | - | - | - | - |
Stop | Presence of stop signs at passive crossings | 0—no; 1—yes | - | - | - | - |
Gate | Active warning devices for vehicles | 0—no; 1—yes | - | - | - | - |
Flashing lights & Bells (FLB) | Traffic control signal or device is interconnected to a crossing warning system or not | 0—no; 1—yes | - | - | - | - |
Crossing Type | Type of the crossing | 0—passive; 1—active warning system | - | - | - | - |
Collision | Whether a collision occurred or not | 0—no collisions; 1—at least one collision | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jiao, Y.; Fu, L.; Shangguan, Q. Exploring Causal Factor in Highway–Railroad-Grade Crossing Crashes: A Comparative Analysis. Infrastructures 2025, 10, 216. https://doi.org/10.3390/infrastructures10080216
Wang Y, Jiao Y, Fu L, Shangguan Q. Exploring Causal Factor in Highway–Railroad-Grade Crossing Crashes: A Comparative Analysis. Infrastructures. 2025; 10(8):216. https://doi.org/10.3390/infrastructures10080216
Chicago/Turabian StyleWang, Yubo, Yubo Jiao, Liping Fu, and Qiangqiang Shangguan. 2025. "Exploring Causal Factor in Highway–Railroad-Grade Crossing Crashes: A Comparative Analysis" Infrastructures 10, no. 8: 216. https://doi.org/10.3390/infrastructures10080216
APA StyleWang, Y., Jiao, Y., Fu, L., & Shangguan, Q. (2025). Exploring Causal Factor in Highway–Railroad-Grade Crossing Crashes: A Comparative Analysis. Infrastructures, 10(8), 216. https://doi.org/10.3390/infrastructures10080216