A Mixed FEM for Studying Jointed Concrete Pavement Blowups
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Relationships and Variational Formulation
2.1.1. Pavement Support Models
2.1.2. Jointed Pavement
2.2. Variational Formulation
2.3. Numerical Model
Beam–Support Stiffness Parameters
3. Results
3.1. Beam on Winkler Support
3.1.1. Modal Shapes
3.1.2. Critical Loads
3.2. Beam on Half-Space
3.2.1. Modal Shapes
3.2.2. Critical Loads
3.3. Beam on Half-Plane
3.3.1. Modal Shapes
3.3.2. Critical Loads
4. Discussion
4.1. Beam on Winkler Support
4.1.1. Modal Shapes
4.1.2. Critical Loads
4.2. Beam on Elastic Continuum
4.2.1. Modal Shapes
4.2.2. Critical Loads
4.3. Calculation Examples
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Repair of concrete blowups in Delaware. Eng. News Rec. 1925, 95.
- Woods, K.B.; Sweet, I.-I.S.; Shelburne, T.E. Pavement blowups correlated with source of coarse aggregate. Proc. Highw. Res. Board 1945, 25. [Google Scholar]
- Hveem, F.N. Types and causes of failure in highway pavements. HRB Bull. 1958, 187, 1–52. [Google Scholar]
- Hensley, M.J. The Study of Pavement Blowups; Research Project 10; Arkansas State Highway Department: Little Rock, AR, USA, 1966. [Google Scholar]
- Stott, J.P.; Brook, K.M. Report on a Visit to U.S.A. to Study Blowups in Concrete Roads; Road Research Laboratory Report LR 128; British Ministry of Transport: London, UK, 1968. [Google Scholar]
- Levi, R. Perrin: Les risques de soulevement des pistes et des roies ferrees. Inst. Tech. Bâtim. Trav. Publics Circ. Sér. 1947, 36. [Google Scholar]
- Bergstrom, S.G. Temperature stresses in concrete pavements. In Proc. Swedish Cement and Concrete Research Institute at the Royal Institute of Technology; Stockholm, Sweden, 1950. [Google Scholar]
- Stabilini, L. Über die maximale Länge der monolithischen Beläge für Strassen und Flugplätze. In Stahlbau und Baustatik—Aktuelle Probleme; Grengg, H., Pelikan, W., Reinitzhuber, F., Eds.; Springer: Wien, Vienna; New York, NY, USA, 1965. [Google Scholar]
- Kawaguchi, M. Thermal buckling of continuous pavement. Trans. JSCE 1969, 1, 37–52. [Google Scholar] [CrossRef]
- Kawaguchi, M. Thermal buckling of concrete pavements with joints. Trans. JSCE 1972, 4, 13–20. [Google Scholar]
- Kerr, A.D.; Dallis, W.A., Jr. Blowup of Concrete Pavements; Department of Civil Engineering Report, CE-81-20; University of Delaware: Newark, DE, USA, 1981. [Google Scholar]
- Kerr, A.D.; Shade, P.J. Analysis of concrete pavement blowups. Acta Mech. 1984, 52, 201–224. [Google Scholar] [CrossRef]
- Kerr, A.D.; Shade, P.J. Analytic Approach to Concrete Pavement Blowups. Transp. Res. Rec. 1983, 930, 78–83. [Google Scholar]
- Kerr, A.D. The stress and stability analysis of railroad tracks. J. Appl. Mech. 1974, 41, 841–848. [Google Scholar] [CrossRef]
- Kerr, A.D. Analysis of thermal track buckling in the lateral plane. Acta Mech. 1978, 30, 17–50. [Google Scholar] [CrossRef]
- Kerr, A.D. Blowup of a concrete pavement adjoining a rigid structure. Int. J. Non-Linear Mech. 1994, 29, 387–396. [Google Scholar]
- Kerr, A.D. Assessment of Concrete Pavement Blowups. J. Transp. Eng. 1997, 123, 123–131. [Google Scholar]
- Croll, J.G.A. Thermal buckling of pavement slabs. Proc. Inst. Civ. Eng. Transp. 2005, 158, 115–126. [Google Scholar]
- Hernandez, J.A.; Al-Qadi, I. Concrete Pavement Blowup Considering Generalized Boundary Conditions. J. Transp. Eng. Part B Pavements 2018, 144, 04018038. [Google Scholar]
- Mahfuda, A.; Siswosukarto, S.; Suhendro, B. The Influence of Temperature Variations on Rigid Pavement Concrete Slabs. J. Civ. Eng. Forum 2023, 9, 139–150. [Google Scholar] [CrossRef]
- Li, M.; Dai, Q.; Su, P.; You, Z. Buckling prediction based on joint opening and safe temperature estimation in jointed plain concrete pavements. Constr. Build. Mater. 2024, 444, 137630. [Google Scholar]
- Yang, G.; Bradford, M.A. A refined modelling for thermal-induce upheaval buckling of continuously reinforced concrete pavements. Eng. Struct. 2017, 150, 256–270. [Google Scholar]
- Yang, G.; Bradford, M.A. Thermal-induced upheaval buckling of concrete pavements incorporating the effects of temperature gradient. Eng. Struct. 2018, 164, 316–324. [Google Scholar]
- Ahn, H.R.; Kim, Y.K.; Alalade, S.; Lee, S.W. Prediction of blow-up for jointed concrete pavement. Int. J. Pavement Eng. 2025, 26, 2470859. [Google Scholar] [CrossRef]
- Lee, S.W.; Ahn, H.R.; Alalade, S.; Ryu, S.W.; Xu, Y.; Wright, M. Pavement growth and blow-up analysis model for jointed concrete pavement. Constr. Build. Mater. 2025, 469, 141025. [Google Scholar]
- Heteny, M. Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering; University of Michigan Press: Ann Arbor, MI, USA, 1946. [Google Scholar]
- Wang, C.Y. Optimum Location of an Internal Hinge of a Uniform Column on an Elastic Foundation. J. Appl. Mech. 2008, 75, 034501. [Google Scholar]
- Wang, C.Y. Buckling of a weakened infinite beam on an Elastic Foundation. J. Eng. Mech. 2010, 136, 534–537. [Google Scholar]
- Winkler, E. Die Lehre von der Elastiztat und Festigkeit; Dominicus: Prague, Czech Republic, 1867. [Google Scholar]
- Tullini, N.; Tralli, A.; Baraldi, D. Stability of slender beams and planes resting on 2D elastic half-space. Arch. Appl. Mech. 2013, 83, 467–482. [Google Scholar]
- Baraldi, D.; Tullini, N. Buckling of beams and coatings of finite width in bilateral frictionless contact with an elastic half space. Int. J. Solids Struct. 2021, 228, 111104. [Google Scholar]
- Baraldi, D. Nonlinear Analysis of Structures on Elastic Half-Space by a FE-BIE Approach. Ph.D. Dissertation, Università degli Studi di Ferrara, Ferrara, Italy, 2013. [Google Scholar]
- Baraldi, D.; Tullini, N. In-plane bending of Timoshenko beams in bilateral frictionless contact with an elastic half-space using a coupled FE-BIE model. Eng. Anal. Bound. Elem. 2018, 97, 114–130. [Google Scholar]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Kachanov, M.L.; Shafiro, B.; Tsukrov, I. Handbook of Elasticity Solutions; Springer Science+Business Media: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Biot, M.A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech. 1937, 4, A1–A7. [Google Scholar]
- Pasternak, P.L. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. In Gosuderevstvennoe Izdatlesvo Literaturi po Stroitelstvu i Arkihitekture; USSR: Moscow, Russia, 1954. [Google Scholar]
- Di Paola, M.; Marino, F.; Zingales, M. A generalized model of elastic foundation based on long-range interactions: Integral and fractional model. Int. J. Solids Struct. 2009, 46, 3124–3137. [Google Scholar]
- Baraldi, D.; Tullini, N. Incremental analysis of elastoplastic beams and frames resting on an elastic half-plane. J. Eng. Mech. 2017, 143, 04017101. [Google Scholar]
- Reddy, J.N. An Introduction to the Finite Element Method, 3rd ed.; McGraw Hill: Singapore, 2006. [Google Scholar]
- Yankelevsky, D.Z.; Eisenberger, M. Analysis of a beam column on elastic foundation. Comput. Struct. 1986, 23, 351–356. [Google Scholar]
- Vesic, A.B. Bending of beams resting on isotropic elastic solid. J. Eng. Mech. 1961, 87, 35–53. [Google Scholar]
- Selvadurai, A.P.S. Elastic Analysis of Soil-Foundation Interaction; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Reissner, M.E. On the theory of beams resting on a yielding foundation. Proc. Natl. Acad. Sci. USA 1937, 23, 328–333. [Google Scholar] [PubMed]
- Goodier, J.N.; Hsu, C.S. Nonsinusoidal buckling modes of sandwich plates. J. Aeronaut. Sci. 1954, 21, 525–532. [Google Scholar]
2D | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 5 | 10 | 20 | 50 | 100 | ||
0.069 | 0.070 | 0.070 | 0.072 | 0.077 | 0.084 | 0.102 | 0.124 | |
0.121 | 0.123 | 0.125 | 0.130 | 0.139 | 0.155 | 0.193 | 0.239 |
[m] | [m] | [m] | [MPa] | Support Type [22] | [MPa] | [N/m] | [kN] | [kN] |
---|---|---|---|---|---|---|---|---|
10 | 1 | 0.2 | 30 | Clay with high plasticity | 10 | 690 | 988 | |
Slits with high plasticity | 20 | 1096 | 1568 | |||||
Uniform sand | 40 | 1740 | 2490 | |||||
0.3 | Clay with high plasticity | 10 | 1036 | 1482 | ||||
Slits with high plasticity | 20 | 1644 | 2353 | |||||
Uniform sand | 40 | 2610 | 3735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baraldi, D. A Mixed FEM for Studying Jointed Concrete Pavement Blowups. Infrastructures 2025, 10, 86. https://doi.org/10.3390/infrastructures10040086
Baraldi D. A Mixed FEM for Studying Jointed Concrete Pavement Blowups. Infrastructures. 2025; 10(4):86. https://doi.org/10.3390/infrastructures10040086
Chicago/Turabian StyleBaraldi, Daniele. 2025. "A Mixed FEM for Studying Jointed Concrete Pavement Blowups" Infrastructures 10, no. 4: 86. https://doi.org/10.3390/infrastructures10040086
APA StyleBaraldi, D. (2025). A Mixed FEM for Studying Jointed Concrete Pavement Blowups. Infrastructures, 10(4), 86. https://doi.org/10.3390/infrastructures10040086