Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review
Abstract
1. Introduction
- (1)
- How does RAP content influence the fatigue behavior of asphalt mixtures when evaluated using the IDT?
- (2)
- How do RAP content and modification strategies interact to affect the mechanical performance of asphalt innovative mixtures compared to conventional ones?
- (3)
- How can technological enhancements be leveraged to optimize RAP performance, thereby guiding the design of durable, cost-effective, and environmentally responsible pavements?
2. Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RAP | Reclaimed Asphalt Pavement |
AC20 | asphalt concrete with a 20 mm aggregate size |
IDT | Indirect Tensile Test |
WTT | Wheel Tracking Test or Hamburg Wheel Test |
HMA | Hot Mix Asphalt |
TSR | Tensile Strength Ratio |
HWMA | Hot–Warm Mix Asphalt |
Kfree | Kappa Free-Marginal Multirater Coefficient |
References
- Wang, Y.D.; Keshavarzi, B.; Kim, Y.R. Fatigue Performance Analysis of Pavements with RAP Using Viscoelastic Continuum Damage Theory. KSCE J. Civ. Eng. 2018, 22, 2118–2125. [Google Scholar] [CrossRef]
- Bruno, S.; Loprencipe, G.; Di Mascio, P.; Cantisani, G.; Fiore, N.; Polidori, C.; Riccio, G.; D’Andrea, A.; Moretti, L. Eco-efficient asphalt recycling for urban slow mobility. Euro-Mediterr. J. Environ. Integr. 2024, 9, 957–964. [Google Scholar] [CrossRef]
- Fiore, N.; Bruno, S.; Del Serrone, G.; Iacobini, F.; Giorgi, G.; Rinaldi, A.; Moretti, L.; Duranti, G.; Peluso, P.; Vita, L. Experimental Analysis of Hot-Mix Asphalt (HMA) Mixtures with Reclaimed Asphalt Pavement (RAP) in Railway Sub-Ballast. Materials 2023, 16, 1335. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Radziszewski, P.; Nazarko, J.; Vilutiene, T.; Dębkowska, K.; Ejdys, J.; Gudanowska, A.; Halicka, K.; Kilon, J.; Kononiuk, A.; Kowalski, K.J.; et al. Future trends in road pavement technologies development in the context of environmental protection. Balt. J. Road Bridge Eng. 2016, 11, 160–168. [Google Scholar] [CrossRef]
- Mączka, E.; Mackiewicz, P. Asphalt mixtures degradation induced by water, frost, and road salt in the 4-PB bending test evaluated by stiffness variability. Road Mater. Pavement Des. 2023, 24, 389–408. [Google Scholar] [CrossRef]
- Olalekan, S.T.; Olatunde, A.A.; Kolapo, S.K.; Omolola, J.M.; Olukemi, O.A.; Mufutau, A.A.; Olaosebikan, O.O.; Saka, A.A. Durability of bitumen binder reinforced with polymer additives: Towards upgrading Nigerian local bitumen. Heliyon 2024, 10, e30825. [Google Scholar] [CrossRef]
- Tarbox, S.; Daniel, J.S. Effects of Long-Term Oven Aging on Reclaimed Asphalt Pavement Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2012, 2294, 1–15. [Google Scholar] [CrossRef]
- National Asphalt Pavement Association (NAPA). RAP Benefits for Pavement Owners. Available online: https://www.asphaltpavement.org/uploads/documents/Sustainability/NAPA_RAP_Benefits_for_Pavement_Owners_1121.pdf (accessed on 10 August 2025).
- Yin, F.; Arámbula-Mercado, E.; Epps Martin, A.E.; Newcomb, D.; Tran, N. Long-term ageing of asphalt mixtures. Road Mater. Pavement Des. 2017, 18, 2–27. [Google Scholar] [CrossRef]
- Huang, Y.H. Pavement Analysis and Design, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; ISBN 0-13-142473-4. [Google Scholar]
- AASHTO R 35; Standard Practice for Superpave Volumetric Design for Asphalt Mixtures. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2022.
- Aurangzeb, Q.; Al-Qadi, I.L.; Ozer, H.; Yang, R. Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resour. Conserv. Recycl. 2014, 83, 77–86. [Google Scholar] [CrossRef]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; US Department of Transportation, Federal Highway Administration: McLean, VA, USA, 2011. [Google Scholar]
- Ramadan, S.; Kassem, H.; Elkordi, A.; Joumblat, R. Advancing Pavement Sustainability: Assessing Recycled Aggregates as Substitutes in Hot Mix Asphalt. Sustainability 2025, 17, 5472. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B. Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. Int. J. Pavement Eng. 2015, 16, 39–55. [Google Scholar] [CrossRef]
- Zhang, K.; Muftah, A.; Wen, H.; Bayomy, F.; Santi, M. Performance-Related Design Method for Asphalt Mixes That Contain Reclaimed Asphalt Pavement (RAP) (No.16-4726). 2016. Available online: https://trid.trb.org/View/1393767 (accessed on 24 August 2025).
- Silva, H.M.R.D.; Oliveira, J.R.P.; Jesus, C.M.G. Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resour. Conserv. Recycl. 2012, 60, 38–48. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Jia, X.; Woods, M. Laboratory Performance Evaluation of Warm-Mix Asphalt Containing High Percentages of Reclaimed Asphalt Pavement. Transp. Res. Rec. J. Transp. Res. Board 2012, 2294, 98–105. [Google Scholar] [CrossRef]
- Yi, X.; Chen, H.; Wang, H.; Shi, C.; Yang, J. The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2022, 319, 126122. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I.; Gómez-Meijide, B. Performance of High RAP Half-Warm Mix Asphalt. Sustainability 2020, 12, 10240. [Google Scholar] [CrossRef]
- Ma, T.; Ding, X.; Zhang, D.; Huang, X.; Chen, J. Experimental study of recycled asphalt concrete modified by high-modulus agent. Constr. Build. Mater. 2016, 128, 128–135. [Google Scholar] [CrossRef]
- Zhang, J.; Sesay, T.; You, Q.; Jing, H. Maximizing the Application of RAP in Asphalt Concrete Pavements and Its Long-Term Performance: A Review. Polymers 2022, 14, 4736. [Google Scholar] [CrossRef] [PubMed]
- ASTM D6931-17; Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2017.
- Wang, Z.; Lu, W.; Liu, K.; Lv, S.; Peng, X.; Yang, S.; Ding, S. Research on failure strength master curve and fatigue performance of asphalt mixture containing high-proportion reclaimed asphalt pavement. Constr. Build. Mater. 2023, 370, 130537. [Google Scholar] [CrossRef]
- Bennert, T.; Haas, E.; Wass, E. Indirect Tensile Test (IDT) to Determine Asphalt Mixture Performance Indicators during Quality Control Testing in New Jersey. Transp. Res. Board 2018, 2672, 394–403. [Google Scholar] [CrossRef]
- Antunes, V.; Neves, J.; Freire, A.C. Performance Assessment of Reclaimed Asphalt Pavement (RAP) in Road Surface Mixtures. Recycling 2021, 6, 32. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Chen, T.; Zhang, W.; Yao, K.; Fan, C.; Liang, M.; Guo, C.; Yao, Z. Evaluation on the mechanical performance of recycled asphalt mixtures incorporated with high percentage of RAP and self-developed rejuvenators. Constr. Build. Mater. 2021, 269, 121337. [Google Scholar] [CrossRef]
- Riccardi, C.; Wang, D.; Wistuba, M.P.; Walther, A. Effects of polyacrylonitrile fibres and high content of RAP on mechanical properties of asphalt mixtures in binder and base layers. Road Mater. Pavement Des. 2022, 24, 2133–2155. [Google Scholar] [CrossRef]
- Majidifard, H.; Tabatabaee, N.; Buttlar, W. Investigating Short-term and Long-term Binder Performance of High-RAP Mixtures Containing Waste Cooking Oil. J. Traffic Transp. Eng. 2019, 6, 396–406. [Google Scholar] [CrossRef]
- Xu, X.; Lu, G.; Yang, J.; Liu, X. Mechanism and Rheological Properties of High-Modulus Asphalt. Adv. Mater. Sci. Eng. 2020, 1, 8795429. [Google Scholar] [CrossRef]
- Suo, Z.; Chen, H.; Yan, Q.; Tan, Y.; Li, X.; Zhang, A. Laboratory Performance Evaluation on the Recovering of Aged Bitumen With Vegetable Oil Rejuvenator. Front. Mater. 2021, 8, 650809. [Google Scholar] [CrossRef]
- Mehmood, R.; Jakarni, F.M.; Muniandy, R.; Hassim, S.; Nik Daud, N.N.N.; Ansari, A.H. Waste engine oil as a sustainable approach for asphalt rejuvenation and modification: A review. Heliyon 2024, 10, e40737. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. Evaluation of Rejuvenator’s Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures. Transp. Res. Rec. 2013, 2370, 17–25. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, K.; Le, T.H.M. Development of Sustainable Cement Asphalt Mortar Using Agricultural Waste-Derived Bio-Oil and Latex–Acrylic Polymers for Enhanced Durability. Polymers 2024, 16, 3210. [Google Scholar] [CrossRef]
- Albayati, A.H.; Latief, R.H.; Al-Mosawe, H.; Wang, Y. Nano-Additives in Asphalt Binder: Bridging the Gap between Traditional Materials and Modern Requirements. Appl. Sci. 2024, 14, 3998. [Google Scholar] [CrossRef]
- Jwaida, Z.; Dulaimi, A.; Mydin, M.A.O.; Özkılıç, Y.O.; Jaya, R.P.; Ameen, A. The Use of Waste Polymers in Asphalt Mixtures: Bibliometric Analysis and Systematic Review. J. Compos. Sci. 2023, 7, 415. [Google Scholar] [CrossRef]
- Masri, K.A.; Nur Syafiqah, S.M.Z.; Seman, M.A.; Ramadhansyah, P.J.; Yaacob, H.; Mashros, N. A review on nanomaterials as additive in asphalt binder. IOP Conf. Ser. Earth Environ. Sci. 2021, 682, 012055. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, Y.; Zhang, K.; Yu, D. Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures. Polymers 2024, 16, 2016. [Google Scholar] [CrossRef]
- Valdes-Vidal, G.; Calabi-Floody, A.; Mignolet-Garrido, C.; Bravo-Espinoza, C. Enhancing Fatigue Resistance in Asphalt Mixtures with a Novel Additive Derived from Recycled Polymeric Fibers from End-of-Life Tyres (ELTs). Polymers 2024, 16, 385. [Google Scholar] [CrossRef]
- Phillips, M.; Reed, J.B.; Zwicky, D.; Van Epps, A.S.; Buhler, A.G.; Rowley, E.M.; Zakharov, W. Systematic Reviews in the Engineering Literature: A Scoping Review. IEEE Access 2024, 12, 62648–62663. Available online: https://ieeexplore.ieee.org/document/10509688 (accessed on 24 August 2025). [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Boutron, I.; Page, M.J.; Higgins, J.P.; Altman, D.G.; Lundh, A.; Hróbjartsson, A. Chapter 7: Considering bias and conflicts of interest among the included studies. Cochrane Handb. Syst. Rev. Interv. 2019, 177–204. Available online: https://www.cochrane.org/authors/handbooks-and-manuals/handbook (accessed on 24 August 2025).
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: London, UK, 2019. [Google Scholar]
- Randolph, J.J. Free-Marginal Multirater Kappa (multirater K[free]): An Alternative to Fleiss’ Fixed-Marginal Multirater Kappa; Oensuu University Learning and Instruction Symposium: Joensuu, Finland, 2005. Available online: https://files.eric.ed.gov/fulltext/ED490661.pdf (accessed on 24 August 2025).
- Ali, H.A.; Mohammad, L.; Mohammadafzali, M.; Haddadi, F.; Akentuna, M.; Sholar, G.; Moseley, H.; Rilko, W.; Allen, C. Investigating the effect of degree of blending on performance of high RAP content mixtures. J. Mater. Civ. Eng. 2021, 33, 04021048. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Nardi, E.; Pérez-Barge, N.; Toraldo, E. Valorisation of lignin-rich industrial byproduct into half-warm mix reclaimed asphalt with enhanced performance. Constr. Build. Mater. 2022, 315, 125770. [Google Scholar] [CrossRef]
- Florida DOT. Flexible Pavement Design Manual; Florida Department of Transportation: Tallahassee, FL, USA, 2021. [Google Scholar]
- AENOR Asociación Española de Normalización y Certificación. EN 1426 Bitumen and Bituminous Binders. Determination of Needle Penetration; AENOR: Madrid, Spain, 2007. (In Spanish) [Google Scholar]
- ENOR Asociación Española de Normalización y Certificación. EN 1427 Bitumen and Bituminous Binders. Determination of the Softening Point. Ring and Ball Method; AENOR: Madrid, Spain, 2007. (In Spanish) [Google Scholar]
- ATEB Asociación Técnica de Emulsiones Bituminosas. Half-Warm Mix Asphalt with Bitumen Emulsion; ATEB: Madrid, Spain, 2014. (In Spanish) [Google Scholar]
- MFOM Ministry of Public Works. Article 542 (Asphalt Concrete) of the General Technical Specifications for Road and Bridge Works (PG3) from the Spanish Ministry of Public Works; MFOM: Madrid, Spain, 2015. (In Spanish)
- AENOR Asociación Española de Normalización y Certificación. EN 12697-12 Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Determination of the Water Sensitivity of Bituminous Specimens; AENOR: Madrid, Spain, 2006. (In Spanish) [Google Scholar]
- JTG F40-2004; Standard Specification for Construction of Highway Asphalt Pavements. Ministry of Transport of the People’s Republic of China: Beijing, China, 2004.
- Ma, X.; Wang, J.; Xu, Y. Investigation on the Effects of RAP Proportions on the Pavement Performance of Recycled Asphalt Mixtures. Front. Mater. 2022, 8, 842809. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.; Han, Z.; Zhang, M.; Wang, X.; He, L. The effect of RAP content on fatigue damage property of hot reclaimed asphalt mixtures. Math. Biosci. Eng. 2024, 21, 3037–3062. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.T.; Al-shamayleh, R.A.; Ibrahim, R.; Alkhrissat, T.; Alqatamin, A. Mechanical properties evaluation of asphalt mixtures with variable contents of reclaimed asphalt pavement (RAP). Results Eng. 2022, 14, 100463. [Google Scholar] [CrossRef]
- Obaid, A.; Nazzal, M.D.; Abu Qtaish, L.; Kim, S.S.; Abbas, A.; Arefin, M.; Quasem, T. Effect of RAP source on cracking resistance of asphalt mixtures with high RAP contents. J. Mater. Civ. Eng. 2019, 31, 04019213. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Koting, S.; Katman, H.Y.B.; Ibrahim, M.R.; Babalghaith, A.M.; Asqool, O. Performance of High Content Reclaimed Asphalt Pavement (RAP) in Asphaltic Mix with Crumb Rubber Modifier and Waste Engine Oil as Rejuvenator. Appl. Sci. 2021, 11, 5226. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, Q.; Qian, Z.; Wang, X. Evaluating the Effects of High RAP Content and Rejuvenating Agents on Fatigue Performance of Fine Aggregate Matrix through DMA Flexural Bending Test. Materials 2019, 12, 1508. [Google Scholar] [CrossRef]
- Jin, D.; Yin, L.; Nedrich, S.; Boateng, K.A.; You, Z. Resurface of rubber modified asphalt mixture with stress absorbing membrane interlayer: From laboratory to field application. Constr. Build. Mater. 2024, 441, 137452. [Google Scholar] [CrossRef]
- Mannan, U.A.; Faisal, H.M.; Hasan, M.M.; Tarefder, R.A. Evaluating the effect of high RAP content on asphalt mixtures and binders fatigue behavior. J. Test. Eval. 2018, 46, 1749–1761. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Austerman, A.; Roque, R.; Underwood, S.; Mohammad, L.; Zou, J. Ageing and rejuvenators: Evaluating their impact on high RAP mixtures fatigue cracking characteristics using advanced mechanistic models and testing methods. Road Mater. Pavement Des. 2015, 16 (Suppl. S2), 1–28. [Google Scholar] [CrossRef]
- Mullapudi, R.S.; Aparna Noojilla, S.L.; Reddy, K.S. Fatigue and healing characteristics of rap mixtures. J. Mat. Civ. Eng. 2020, 32, 04020390. [Google Scholar] [CrossRef]
- Iwama, M.; Hayano, K. Influence of combined aging on the mechanical and physical properties of reclaimed asphalt pavement mixtures blended with rejuvenator agents. J. Mater. Cycles Waste Manag. 2023, 25, 1417–1433. [Google Scholar] [CrossRef]
- Jiang, L.; Shen, J.; Wang, W. Performance of High-Dose Reclaimed Asphalt Mixtures (RAPs) in Hot In-Place Recycling Based on Balanced Design. Materials 2024, 17, 2096. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Hui, B.; Zhang, H.; Guan, Y.; Guo, F.; Li, Y.; He, Y.; Wang, D. Analysis of Modulus Properties of High-Modulus Asphalt Mixture and Its New Evaluation Index of Rutting Resistance. Sustainability 2023, 15, 7574. [Google Scholar] [CrossRef]
- Izaks, R.; Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance properties of high modulus asphalt concrete containing high reclaimed asphalt content and polymer modified binder. Int. J. Pavement Eng. 2020, 23, 2255–2264. [Google Scholar] [CrossRef]
- Pham, N.H.; Sauzéat, C.; Di Benedetto, H.; González-León, J.A.; Barreto, G.; Nicolaï, A. Fatigue and Thermal Cracking of Hot and Warm Bituminous Mixtures with Different RAP Contents. Sustainability 2020, 12, 9812. [Google Scholar] [CrossRef]
- Al-Saffar, Z.H.; Yaacob, H.; Katman, H.Y.; Mohd Satar, M.K.I.; Bilema, M.; Putra Jaya, R.; Eltwati, A.S.; Radeef, H.R. A Review on the Durability of Recycled Asphalt Mixtures Embraced with Rejuvenators. Sustainability 2021, 13, 8970. [Google Scholar] [CrossRef]
- Wu, J.; Sun, H.; Wan, L.; Yang, J.; Wang, S. Study on Low-Temperature and Fatigue Performance of High RAP Content Hot Recycled Asphalt Mixture Based on the Degree of Blending (DOB). Polymers 2022, 14, 4520. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Le, T.H.M. Feasibility and Sustainable Performance of RAP Mixtures with Low-Viscosity Binder and Castor Wax–Corn Oil Rejuvenators. Buildings 2023, 13, 1578. [Google Scholar] [CrossRef]
- Mohammadafzali, M.; Ali, H.; Musselman, J.A.; Sholar, G.A.; Rilko, W.A. Aging of Rejuvenated Asphalt Binders. Adv. Mater. Sci. Eng. 2017, 2017, 8426475. [Google Scholar] [CrossRef]
- Tutu, K.; Tuffour, Y. Warm-Mix Asphalt and Pavement Sustainability: A Review. J. Civ. Eng. 2016, 6, 84–93. [Google Scholar] [CrossRef]
- Manke, N.D.; Williams, R.C.; Sotoodeh-Nia, Z.; Cochran, E.W.; Porot, L.; Chailleux, E.; Pouget, S.; Olard, F.; Jiménez del Barco Carrión, A.; Planche, J.-P.; et al. Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder. Road Mater. Pavement Des. 2019, 22, 812–834. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Elseifi, M.; Carpenter, S.H. Reclaimed Asphalt Pavement—A Literature Review; No. FHWA-ICT-07-001; Illinois Center for Transportation: Urbana, IL, USA, 2007. [Google Scholar]
Refs. | Reviewer | Selection | Implementation | Detection | Wear | Reporting | Overall, for Author |
---|---|---|---|---|---|---|---|
[47] | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | |
[20] | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | |
[48] | 1 | 1 | 1 | 2 | 1 | 1 | 2 |
2 | 1 | 1 | 2 | 1 | 1 | 2 | |
[21] | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | |
[22] | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 |
Overall 1/Overall 2 | Low Risk of Bias | Some Concerns | High Risk of Bias | Overall |
---|---|---|---|---|
Low risk of bias | 2 | 1 | 0 | 3 |
Some concerns | 2 | 0 | 0 | 2 |
High risk of bias | 0 | 0 | 0 | 0 |
Overall | 4 | 1 | 0 | 2 |
Index | Value |
---|---|
Proportion of observed agreement | 1 |
Proportion of agreement expected by chance | 3500 |
Kfree | 1 |
Refs. | Materials | Methods and Tests | Results |
---|---|---|---|
[47] | 1. Virgin asphalt binder 2. Virgin limestone aggregates 3. RAP 4. Rejuvenators: heavy paraffinic distilled solvent extract (RA1), petroleum neutral distillate (RA2), re-refined used oils (RA3), pine oil (RA4), bio-rejuvenator, oil base, and fluid (RA5) | 1. The staged extraction technique was used for the extraction of the asphalt binder in each rejuvenated RAP mixture. 2. Mixtures compliant with AASHTO R 35 [12] and Florida DOT Standard Specifications for Road and Bridge Construction [49]. 3. Loaded-Wheel Tracking Test 4. Florida Indirect Tensile Test | A recycled mixture with a 6 °C higher High Temperature Performance Grade showed improved rutting and moisture resistance after aging compared to the conventional mix. In 100% RAP mixtures with minimal rejuvenator, rut depth was unaffected by homogeneity index or aging. Both conventional and RAP mixtures exhibited satisfactory crack resistance. The RA1 mix showed the best crack performance. |
[20] | 1. Virgin asphalt 2. Epoxy resins and curing agent 3. RAP 4. Virgin aggregate | 1. Marshall Method 2. Wheel Tracking Test (WTT) 3. Trabecular Bending Test 4. Freeze–Thaw Test 5. Trabecular Fatigue Test 6. Indirect Tensile Test (IDT) 7. Semi-Circular Bending (SCB) | The recycled epoxy asphalt mixture outperformed the conventional one in rutting resistance, whereas crack resistance and moisture susceptibility were similar to both conventional and 100% RAP mixes. Epoxy components influenced crack resistance more than the aged binder. Despite lower fatigue resistance, epoxy asphalt can be recycled with 100% RAP. |
[48] | 1. RAP 2. Bitumen emulsion: C67B2 MBC Ecotemp 3. By-product containing lignin 4. Asphalt mixture | 1. Indirect Tensile Strength (ITSW and ITSD). Tensile Strength Ratio (TSR) 2. Resilient Modulus Test 3. Uniaxial Confined Test 3. Hamburg Wheel Tracking Test 4. Cántabro Test 5. Penetration Test according to [50] 6. Ring And Ball Test | In hot–warm mix asphalt (HWMA), replacing 5% of the material with industrial by-products containing lignin enhanced water resistance and deformation capacity. The optimized mix outperforms the control in terms of its mechanical properties. |
[21] | 1. Natural aggregates 2. RAP 3. Bitumen Emulsion | 1. Indirect Tensile Strength (ITS) and Tensile Strength Ratio (TSR) 2. Resilience Modulus Test 3. Wheel Tracking Test 4. Indirect Tensile Fatigue Test (ITFT) 5. Penetration test according to [50] 6. Ring And Ball Test according to [51] | The high RAP HWMA demonstrated superior resistance in warm climates, contributing to energy and raw material savings. However, its increased stiffness resulted in reduced fatigue life. |
[22] | 1. Neat asphalt 2. RAP 2. Limestone aggregates 3. Mineral fillers 4. High-modulus agent | 1. Simple Performance Tester 2. Wheel Loading Test 3. Indirect Tensile Test 4. Marshall Test 5. Three-Point Beam Bending Test 6. Four-Point Beam Bending Test | RAP combined with high-modulus agents increases dynamic modulus and stability but decreases resistance to thermal and fatigue cracking. High-modulus agents improve moisture resistance, mitigating RAP’s negative effects. Combined with additional binders, they enhance mixture strength and stability. |
By-Product Content (% of the Dry Mass of the Residue) | ITSD (MPa) | ITSW (MPa) | TSR (%) | ||
---|---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | ||
0 | 2.027 | 0.096 | 1.802 | 0.076 | 88.90 |
5 | 2.229 | 0.248 | 2.068 | 0.236 | 90.08 |
10 | 2.410 | 0.125 | 1.389 | 0.104 | 57.62 |
15 | 1.964 | 0.178 | 1.369 | 0.165 | 69.69 |
20 | 2.157 | 0239 | 1.387 | 0.278 | 64.32 |
Parameter (Unit) | Control HMA | High-RAP HMA |
---|---|---|
Rut depth, d10,000 (mm) | 1.81 | 0.89 |
PRDair (%) | 3.01 | 1.49 |
WTSair (mm/103 cycle) | 0.09 | 0.04 |
Residual Binder Provided by the Bitumen Emulsion (%) | Total Residual Binder (%) | Va (%) | TSR (%) |
---|---|---|---|
1.50 | 6.21 | 6.1 | - |
2.00 | 6.68 | 5.60 | 87.69 |
2.50 | 7.16 | 5.0 | 68.87 |
2.75 | 7.40 | 3.9 | 76.59 |
3.00 | 7.64 | 3.7 | 88.84 |
Refs. | RAP Content | Rejuvenator Dosage | Fatigue Resistance |
---|---|---|---|
[47] | 100% RAP | Five commercially available rejuvenators were evaluated; RA1 was the best. | The R1 mixture (100% recycled RAP with 7.9% RA1) showed the best cracking performance compared to the virgin mixture. |
[20] | 100% RAP | Epoxy resin components were 25% of the total weight of the asphalt binder (including virgin asphalt and RAP asphalt). | The fatigue performance of the recycled epoxy asphalt mixture was inferior to the virgin epoxy asphalt mixture. |
[48] | 100% RAP | An industrial by-product rich in lignin was used as a substitute for the bituminous emulsion at 0% (control), 5%, 10%, 15%, and 20% by weight. | The optimal percentage of rejuvenators to improve fatigue resistance was 5%. |
[21] | 100% RAP and 0% RAP (control) were compared | No rejuvenators. | The control mixture fatigue life was much longer than the high-RAP HWMA without rejuvenators. |
[22] | From 20% to 60% RAP percentage | Low molecular weight synthetic polyolefin polymers were used for high-modulus mixtures. | The fatigue life of conventional high-modulus mixtures decreases with increasing RAP content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loprencipe, G.; Moretti, L.; Saltaren Daniel, M. Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review. Designs 2025, 9, 104. https://doi.org/10.3390/designs9050104
Loprencipe G, Moretti L, Saltaren Daniel M. Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review. Designs. 2025; 9(5):104. https://doi.org/10.3390/designs9050104
Chicago/Turabian StyleLoprencipe, Giuseppe, Laura Moretti, and Mario Saltaren Daniel. 2025. "Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review" Designs 9, no. 5: 104. https://doi.org/10.3390/designs9050104
APA StyleLoprencipe, G., Moretti, L., & Saltaren Daniel, M. (2025). Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review. Designs, 9(5), 104. https://doi.org/10.3390/designs9050104