Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications
Abstract
1. Introduction
2. Model Design in FLAC3D
3. Model Validation
4. Mechanical Responses of Mono-Bucket Foundation
5. Deflection-Controlled Bearing Capacity of Mono-Bucket Foundation
6. Conclusions
- Numerical Validation: The FLAC3D model, employing a velocity-controlled approach with reduced initial velocities to minimize the oscillations, accurately predicted the bearing capacity of MBFs, showing close agreement with centrifuge test results. This validates the reliability of the numerical framework for analyzing MBF performance.
- Mechanical Response: The load–deflection behavior of MBFs exhibits distinct phases: an initial linear elastic response under small deflections, followed by nonlinear deformation as plastic yielding begins. Plastic deformation first occurs on the anti-loading side due to stress relaxation, while the loading side develops a wedge-shaped shear stress concentration zone, governing the MBF’s ultimate failure.
- Deformation Characteristics: Under loading, MBFs experience gap formation and soil heave around the skirt. The rotation center (RC) migrates toward the loading direction, stabilizing at approximately 0.8 times the skirt length (L) from the cap, without reaching the skirt edge. Stress redistribution causes compression on the loading side and relaxation on the anti-loading side and base.
- Design Parameter Sensitivity:
- a.
- Geometry: Thin, deep MBFs exhibit a higher bearing capacity than wide, shallow configurations due to greater soil mobilization.
- b.
- Eccentricity: Increasing the eccentricity enhances the moment capacity but reduces the allowable horizontal force, a critical consideration for design optimization.
- c.
- Vertical Loads: While vertical loads minimally influence the bearing capacity within serviceability limits, compressive loads slightly reduce the normalized bending moments, particularly at low eccentricities.
- Normalized Bearing Capacity: The proposed normalization framework, incorporating the eccentricity ratio (ε), vertical load (υ), and soil parameters (M, λ, κ), reveals a logarithmic linear relationship between the normalized bending moment (ω) and ε. The derived analytical expressions (Equations (6) and (7)) provide a practical tool for preliminary design.
- DCM Application: The DCM successfully guided the design of an MBF in southeastern China, demonstrating its efficacy for use with homogeneous clay. However, its applicability to heterogeneous soils requires further investigation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, K.-Y.; Nam, W.; Ryu, M.S.; Kim, J.-Y.; Epureanu, B.I. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew. Sustain. Energy Rev. 2018, 88, 16–36. [Google Scholar] [CrossRef]
- Jia, N.; Zhang, P.; Liu, Y.; Ding, H. Bearing capacity of composite bucket foundations for offshore wind turbines in silty sand. Ocean Eng. 2018, 151, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Qi, X.; Ding, H.; Le, C.; Lin, Y.; Xiao, J. Bearing characteristics of mono-column composite bucket foundation in sand for offshore wind turbines. Ocean Eng. 2023, 280, 114870. [Google Scholar] [CrossRef]
- Yin, Z.-Y. Three-dimensional numerical modelling of progressive failure of caisson foundation in sand using a coupled FDM–DEM method. Ocean Eng. 2022, 253, 111332. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.-Y. Micro-mechanical analysis of caisson foundation in sand using DEM. Ocean Eng. 2020, 203, 107240. [Google Scholar] [CrossRef]
- Gerolymos, N.; Zafeirakos, A.; Karapiperis, K. Generalized failure envelope for caisson foundations in cohesive soil: Static and dynamic loading. Soil Dyn. Earthq. Eng. 2015, 78, 154–174. [Google Scholar] [CrossRef]
- Houlsby, G.T.; Byrne, B.W. Design procedures for installation of suction caissons in clay and other materials. Proc. Inst. Civ. Eng. Geotech. Eng. 2005, 158, 75–82. [Google Scholar] [CrossRef]
- Gelagoti, F.; Georgiou, I.; Kourkoulis, R.; Gazetas, G. Nonlinear lateral stiffness and bearing capacity of suction caissons for offshore wind-turbines. Ocean Eng. 2018, 170, 445–465. [Google Scholar] [CrossRef]
- Kim, S.-R.; Hung, L.C.; Oh, M. Group effect on bearing capacities of tripod bucket foundations in undrained clay. Ocean Eng. 2014, 79, 1–9. [Google Scholar] [CrossRef]
- Kourkoulis, R.S.; Lekkakis, P.C.; Gelagoti, F.M.; Kaynia, A.M. Suction caisson foundations for offshore wind turbines subjected to wave and earthquake loading: Effect of soil–foundation interface. Géotechnique 2014, 64, 171–185. [Google Scholar] [CrossRef]
- Senders, M.; Randolph, M.F. CPT-Based Method for the Installation of Suction Caissons in Sand. J. Geotech. Geoenviron. Eng. 2009, 135, 14–25. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Y.; Zhang, P.; Le, C. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay. Ocean Eng. 2015, 103, 114–122. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Li, J. Centrifuge modeling and numerical analysis on lateral performance of mono-bucket foundation for offshore wind turbines. Ocean Eng. 2022, 259, 111925. [Google Scholar] [CrossRef]
- Faizi, K. Development of an analytical model for predicting the lateral bearing capacity of caisson foundations in cohesionless soils. Ocean Eng. 2020, 13, 108112. [Google Scholar] [CrossRef]
- Houlsby, G.T.; Kelly, R.B.; Huxtable, J.; Byrne, B.W. Field trials of suction caissons in sand for offshore wind turbine foundations. Géotechnique 2006, 56, 3–10. [Google Scholar] [CrossRef]
- Houlsby, G.T.; Byrne, B.W. Suction Caisson Foundations for Offshore Wind Turbines and Anemometer Masts. Wind Eng. 2000, 24, 249–255. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, W.; Ying, P.; Chen, Y. Deflection-Based Bearing Capacity of Suction Caisson Foundations of Offshore Wind Turbines. J. Geotech. Geoenviron. Eng. 2014, 140, 04014013. [Google Scholar] [CrossRef]
- Tran, N.X.; Hung, L.C.; Kim, S.-R. Evaluation of horizontal and moment bearing capacities of tripod bucket foundations in sand. Ocean Eng. 2017, 140, 209–221. [Google Scholar] [CrossRef]
- Wang, L.Z.; Wang, H.; Zhu, B.; Hong, Y. Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand. Ocean Eng. 2018, 155, 88–105. [Google Scholar] [CrossRef]
- DNV-ST-0126; Anon Support Structures for Wind Turbines. Det Norske Veritas (DNV): HØvik, Norway, 2016.
- NBT 10105-2018; Anon Code for Design of Wind Turbine Foundations for Offshore Wind Power Projects. China Water & Power Press: Beijing, China, 2019.
- Achmus, M.; Akdag, C.T.; Thieken, K. Load-bearing behavior of suction bucket foundations in sand. Appl. Ocean Res. 2013, 43, 157–165. [Google Scholar] [CrossRef]
- Itasca Consulting Group, Inc. FLAC3D—Fast Lagrangian Analysis of Continua in Three-Dimensions; Itasca Consulting Group: Minneapolis, MN, USA, 2019. [Google Scholar]
- Hegde, M.A.M.; Sitharam, D.T.G. 3-Dimensional numerical analysis of geocell reinforced soft clay beds by considering the actual geometry of geocell pockets. Can. Geotech. J. 2015, 52, 1396–1407. [Google Scholar] [CrossRef]
- Zhu, B.; Kong, D.; Chen, R.; Kong, L.; Chen, Y. Installation and lateral loading tests of suction caissons in silt. Can. Geotech. J. 2011, 48, 1070–1084. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
[kPa] | 2,000,000 |
[kPa] | 2,000,000 |
[kPa] | - |
- | |
[kPa] | 45 |
[kPa] | 0 |
Parameters | Values |
---|---|
Shear modulus, G [MPa] | 1.36 |
Friction constant, M | 0.68 |
0.22 | |
0.09 | |
1.78 | |
Pre-consolidation pressure, | 100 |
20 |
Test Number | Design of Suction Buckets | |||||
---|---|---|---|---|---|---|
D [m] | L [m] | H [m] | ||||
1 | 13.00 | 13.00 | 1.00 | −0.30 | 4.00 | 0.31 |
2 | −0.20 | |||||
3 | −0.10 | |||||
4 | 0.00 | |||||
5 | 0.10 | |||||
6 | 0.20 | |||||
7 | 13.00 | 16.25 | 0.85 | 0.00 | 4.00 | 0.31 |
8 | 15.29 | 0.90 | ||||
9 | 14.44 | 0.95 | ||||
10 | 13.68 | 1.00 | ||||
11 | 13.00 | 1.05 | ||||
12 | 12.38 | 1.10 | ||||
13 | 11.82 | 1.15 | ||||
14 | 11.30 | 1.20 | ||||
15 | 13.00 | 13.00 | 1.00 | −0.30 | 4.00 | 0.31 |
16 | 6.00 | 0.46 | ||||
17 | 8.00 | 0.62 | ||||
18 | 10.00 | 0.77 | ||||
19 | 12.00 | 0.92 | ||||
20 | 14.00 | 1.08 | ||||
21 | 16.00 | 1.23 | ||||
22 | 18.00 | 1.38 | ||||
23 | 20.00 | 1.54 | ||||
24 | 13.00 | 13.00 | 1.00 | −0.20 | 4.00 | 0.31 |
25 | 6.00 | 0.46 | ||||
26 | 8.00 | 0.62 | ||||
27 | 10.00 | 0.77 | ||||
28 | 12.00 | 0.92 | ||||
29 | 14.00 | 1.08 | ||||
30 | 16.00 | 1.23 | ||||
31 | 18.00 | 1.38 | ||||
32 | 20.00 | 1.54 | ||||
33 | 13.00 | 13.00 | 1.00 | −0.10 | 4.00 | 0.31 |
34 | 6.00 | 0.46 | ||||
35 | 8.00 | 0.62 | ||||
36 | 10.00 | 0.77 | ||||
37 | 12.00 | 0.92 | ||||
38 | 14.00 | 1.08 | ||||
39 | 16.00 | 1.23 | ||||
40 | 18.00 | 1.38 | ||||
41 | 20.00 | 1.54 | ||||
42 | 13.00 | 13.00 | 1.00 | 0.00 | 4.00 | 0.31 |
43 | 6.00 | 0.46 | ||||
44 | 8.00 | 0.62 | ||||
45 | 10.00 | 0.77 | ||||
46 | 12.00 | 0.92 | ||||
47 | 14.00 | 1.08 | ||||
48 | 16.00 | 1.23 | ||||
49 | 18.00 | 1.38 | ||||
50 | 20.00 | 1.54 | ||||
51 | 13.00 | 13.00 | 1.00 | 0.10 | 4.00 | 0.31 |
52 | 6.00 | 0.46 | ||||
53 | 8.00 | 0.62 | ||||
54 | 10.00 | 0.77 | ||||
55 | 12.00 | 0.92 | ||||
56 | 14.00 | 1.08 | ||||
57 | 16.00 | 1.23 | ||||
58 | 18.00 | 1.38 | ||||
59 | 20.00 | 1.54 | ||||
60 | 13.00 | 13.00 | 1.00 | 0.20 | 4.00 | 0.31 |
61 | 6.00 | 0.46 | ||||
62 | 8.00 | 0.62 | ||||
63 | 10.00 | 0.77 | ||||
64 | 12.00 | 0.92 | ||||
65 | 14.00 | 1.08 | ||||
66 | 16.00 | 1.23 | ||||
67 | 18.00 | 1.38 | ||||
68 | 20.00 | 1.54 |
Load | Normalized Form |
---|---|
Vertical load | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Peng, G.; Jiang, Z.; Chu, W.; He, B.; Shi, R.; Wang, C.; Meng, Q. Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications. Designs 2025, 9, 97. https://doi.org/10.3390/designs9040097
Ge X, Peng G, Jiang Z, Chu W, He B, Shi R, Wang C, Meng Q. Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications. Designs. 2025; 9(4):97. https://doi.org/10.3390/designs9040097
Chicago/Turabian StyleGe, Xiangming, Gao Peng, Zhenqiang Jiang, Weijiang Chu, Ben He, Ruilong Shi, Can Wang, and Qingxiang Meng. 2025. "Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications" Designs 9, no. 4: 97. https://doi.org/10.3390/designs9040097
APA StyleGe, X., Peng, G., Jiang, Z., Chu, W., He, B., Shi, R., Wang, C., & Meng, Q. (2025). Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications. Designs, 9(4), 97. https://doi.org/10.3390/designs9040097