A Systematic Literature Review on AC Microgrids
Abstract
:1. Introduction
2. Materials and Methods
- Research question 1 (RQ1): How have AC microgrids (ACMGs) evolved over five years? This question aims to find the most common structures of microgrids (MGs) and the tendency for the next years. It is too wide, so just two characteristics were considered: the nature of every distribution generation unit (DGU) employed and the nature of the AC bus.
- Research question 2 (RQ2): What are the standards for ACMGs? This question is intended to compile the current requirements of ACMGs.
- Research question 3 (RQ3): What are the different schemes for connecting MGs to the utility grid? This focuses on the method for grid connection. It may be direct with possible connecting relays or through different power converters.
- Research question 4 (RQ4): What are the different control schemes in ACMGs? The control system design depends on the source of energy, filters, and power converter employed.
- Research question 5 (RQ5): What is an appropriate way to show results when working with ACMGs? This question will be helpful in investigating ACMGs, so it can introduce the equipment required to lead an investigation.
- Mendeley reference manager: for reading, taking notes, and organizing papers along the process;
- Microsoft (MS) Excel: for arranging, evaluating, and extracting data.
2.1. Inclusion and Exclusion Criteria
2.1.1. Inclusion Criterion (IC)
- IC1: articles from journals written in English and that included ACMGs, especially if they are grid-tied, published between 2018 and 2022.
2.1.2. Exclusion Criteria (EC)
- EC1: not being in a Q1/Q2 journal—this is a guarantee of quality;
- EC2: abstract showing that it does not study a pure ACMG;
- EC3: the paper is a review—only primary sources were considered;
- EC4: lack of information to answer more than three research questions. The objective of this criterion is to reduce the number of articles included and to keep those with more information related to the study. It was included for three main reasons: (1) publications that include a real system or at least an experimental MG are considered more important to answer RQ1 than those that only have theoretical formulations (equations) or simulations of non-real systems; (2) RQ5 only makes sense when the study answers RQ1 and RQ3 or RQ4; (3) most of the works are high-quality papers, so they get a high score even when not answering any question.
2.2. Information Sources
2.3. Search Strategy
- Only journal papers, which have passed through a more rigorous revision process than other sources;
- Only articles published between 2018 and 2022 to ensure that the information used in the study was up to date;
- Only papers in English because English is considered to be the more extended language for scientific research;
- In Scopus, the query was applied to the title, abstract, or keywords to reduce the high number of articles presented without this restriction (3768 articles).
2.4. Selection Process
2.4.1. Q1/Q2 filtering
2.4.2. Title and Abstract Screening
2.4.3. Excluding Criterion 4 (EC4)
- Includes a grid-tied MG;
- Has real or experimental results (not just theoretical or simulation results);
- Answers three or more research questions.
2.4.4. Quality Evaluation
2.5. Data Collection Process
2.6. Data Items
2.7. Study Risk of Bias Assessment
2.8. Synthesis Methods
2.8.1. RQ1a
2.8.2. RQ1b
2.8.3. RQ2
2.8.4. RQ3
2.8.5. RQ4
2.8.6. RQ5
3. Results
3.1. Research Question 1 (RQ1): Evolution of AC Microgrids (ACMGs) over Five Years
3.1.1. RQ1a: Evolution of Distributed Generation (DG) in ACMGs over Five Years
3.1.2. RQ1b: Evolution of AC Buses in ACMGs over Five Years
- Low-voltage (LV): up to 1000 V;
- Medium-voltage (MV): between 1000 V and 45 kV.
3.2. Research Question 2 (RQ2): Standards for ACMGs
3.3. Research Question 3 (RQ3): Schemes for Connecting MGs to the Utility Grid
3.4. Research Question 4 (RQ4): Control Schemes in ACMGs
3.5. Research Question 5 (RQ5): Tools and Experimental Setups for ACMGs
4. Discussion
4.1. Limitation of Evidence
4.2. Interpretation
4.2.1. Research Question 1 (RQ1)
4.2.2. Research Question 2 (RQ2)
4.2.3. Research Question 3 (RQ3)
4.2.4. Research Question 4 (RQ4)
4.2.5. Research Question 5 (RQ5)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APF | Active power filter |
AC | Alternating current |
ACMG | AC microgrid |
DDG | Dispatchable distributed generation |
DG | Distributed generation |
DGU | Distributed generation unit |
EC | Exclusion criterion |
ESS | Energy storage system |
FCS-MPC | Model predictive control with finite control set |
FPGA | Field programmable gate array |
HF | High frequency |
HIL | Hardware in the loop |
HMG | Hybrid microgrid |
IC | Inclusion criterion |
JCR | Journal Citation Report |
LV | Low voltage |
MG | Microgrid |
MPPT | Maximum power point tracking |
MS | Microsoft |
MV | Medium voltage |
PD-CSI | Power decoupled current source inverter |
PI | Proportional-integral |
PR | Proportional-resonant |
PRI | Proportional-resonant-integral |
PV | Photovoltaic |
PV-UPQC | Photovoltaic unified power quality conditioner |
PWM | Pulse width modulation |
SG | Synchronous generator |
SJR | Scimago Journal Rank |
RES | Renewable energy source |
RQ | Research question |
VSG-MPC | Model-predictive-control-based virtual synchronous generator |
VSI | Voltage source inverter |
WoS | Web of Science |
WT | Wind turbine |
Appendix A
Journal | Article |
---|---|
Applied Sciences (Switzerland) | 3 |
Computers and Electrical Engineering | 2 |
Electric Power Systems Research | 4 |
Electricity Journal | 1 |
Electronics | 5 |
Electronics Letters | 1 |
Energies | 9 |
Energy Conversion and Management | 1 |
Energy Reports | 3 |
Heliyon | 1 |
IEEE Access | 7 |
IEEE Canadian Journal of Electrical and Computer Engineering | 1 |
IEEE Journal of Emerging and Selected Topics in Power Electronics | 3 |
IEEE Systems Journal | 4 |
IEEE Transactions on Circuits and Systems I: Regular Papers | 1 |
IEEE Transactions on Control Systems Technology | 1 |
IEEE Transactions on Industrial Electronics | 7 |
IEEE Transactions on Industrial Informatics | 2 |
IEEE Transactions on Industry Applications | 6 |
IEEE Transactions on Power Delivery | 1 |
IEEE Transactions on Power Electronics | 5 |
IEEE Transactions on Power Systems | 2 |
IEEE Transactions on Smart Grid | 11 |
IET Generation, Transmission and Distribution | 4 |
IET Power Electronics | 2 |
IET Renewable Power Generation | 3 |
International Journal of Electrical Power and Energy Systems | 9 |
International Journal of Energy Research | 1 |
International Journal of Hydrogen Energy | 1 |
International Review of Electrical Engineering | 1 |
International Transactions on Electrical Energy Systems | 6 |
Inventions | 1 |
Iranian Journal of Science and Technology-Transactions of Electrical Engineering | 1 |
Journal of Energy Storage | 1 |
Journal of Engineering | 1 |
Journal of Intelligent and Fuzzy Systems | 1 |
Journal of Modern Power Systems and Clean Energy | 1 |
Protection and Control of Modern Power Systems | 1 |
Renewable and Sustainable Energy Reviews | 2 |
Renewable Energy Focus | 1 |
Sustainable Cities and Society | 1 |
Sustainable Energy Technologies and Assessments | 1 |
Sustainable Energy, Grids, and Networks | 1 |
Systems and Control Letters | 1 |
TOTAL | 122 |
Appendix A.1. Registration and Protocol
Appendix A.2. Additional Data from This Work
References
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Min, J.; Ordonez, M. Bidirectional Resonant CLLC Charger for Wide Battery Voltage Range: Asymmetric Parameters Methodology. IEEE Trans. Power Electron. 2021, 36, 6662–6673. [Google Scholar] [CrossRef]
- Min, J.; Ordonez, M. Unified Bidirectional Resonant Frequency Tracking for CLLC Converters. IEEE Trans. Power Electron. 2022, 37, 5637–5649. [Google Scholar] [CrossRef]
- Bento, A.; Paraíso, G.; Costa, P.; Zhang, L.; Geury, T.; Pinto, S.F.; Silva, J. On the potential contributions of matrix converters for the future grid operation, sustainable transportation and electrical drives innovation. Appl. Sci. 2021, 11, 4597. [Google Scholar] [CrossRef]
- Malekjamshidi, Z.; Jafari, M.; Zhu, J.; Rivera, M. Design, Implementation, and Stability Analysis of a Space Vector Modulated Direct Matrix Converter for Power Flow Control in a More Reliable and Sustainable Microgrid. Sustainability 2020, 12, 8591. [Google Scholar] [CrossRef]
- Gontijo, G.; Soares, M.; Tricarico, T.; Dias, R.; Aredes, M.; Guerrero, J. Direct Matrix Converter Topologies with Model Predictive Current Control Applied as Power Interfaces in AC, DC, and Hybrid Microgrids in Islanded and Grid-Connected Modes. Energies 2019, 12, 3302. [Google Scholar] [CrossRef]
- Malekjamshidi, Z.; Jafari, M.; Zhu, J.; Xiao, D. Bidirectional power flow control with stability analysis of the matrix converter for microgrid applications. Int. J. Electr. Power Energy Syst. 2019, 110, 725–736. [Google Scholar] [CrossRef]
- Memon, A.A.; Kauhaniemi, K. A critical review of AC Microgrid protection issues and available solutions. Electr. Power Syst. Res. 2015, 129, 23–31. [Google Scholar] [CrossRef]
- Patnaik, B.; Mishra, M.; Bansal, R.C.; Jena, R.K. AC microgrid protection—A review: Current and future prospective. Appl. Energy 2020, 271, 115210. [Google Scholar] [CrossRef]
- Sarangi, S.; Sahu, B.K.; Rout, P.K. Review of distributed generator integrated AC microgrid protection: Issues, strategies, and future trends. Int. J. Energy Res. 2021, 45, 14117–14144. [Google Scholar] [CrossRef]
- Bui, D.M.; Chen, S.L.; Lien, K.Y.; Chang, Y.R.; Lee, Y.D.; Jiang, J.L. Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals. Renew. Sustain. Energy Rev. 2017, 75, 1417–1452. [Google Scholar] [CrossRef]
- Dagar, A.; Gupta, P.; Niranjan, V. Microgrid protection: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111401. [Google Scholar] [CrossRef]
- Rajesh, K.; Dash, S.; Rajagopal, R.; Sridhar, R. A review on control of ac microgrid. Renew. Sustain. Energy Rev. 2017, 71, 814–819. [Google Scholar] [CrossRef]
- Mohammed, A.; Refaat, S.S.; Bayhan, S.; Abu-Rub, H. AC Microgrid Control and Management Strategies: Evaluation and Review. IEEE Power Electron. Mag. 2019, 6, 18–31. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Agrawal, A.; Nalamati, C.S.; Gupta, R. Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration. IEEE Trans. Ind. Electron. 2019, 66, 9097–9107. [Google Scholar] [CrossRef]
- Che, Y.; Zhou, J.; Lin, T.; Li, W.; Xu, J. A simplified control method for tie-line power of DC micro-grid. Energies 2018, 11, 933. [Google Scholar] [CrossRef]
- Eisapour-Moarref, A.; Kalantar, M.; Esmaili, M. Power sharing in hybrid microgrids using a harmonic-based multidimensional droop. IEEE Trans. Ind. Inform. 2020, 16, 109–119. [Google Scholar] [CrossRef]
- Jin, X.; Shen, Y.; Zhou, Q. A systematic review of robust control strategies in DC microgrids. Electr. J. 2022, 35, 107125. [Google Scholar] [CrossRef]
- Khosravi, N.; Abdolmohammadi, H.R.; Bagheri, S.; Miveh, M.R. Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules. Renew. Sustain. Energy Rev. 2021, 143, 110898. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Liu, F.; Li, C.; Cao, Y.; Shahidehpour, M. Flexible Voltage Control Strategy Considering Distributed Energy Storages for DC Distribution Network. IEEE Trans. Smart Grid 2019, 10, 163–172. [Google Scholar] [CrossRef]
- Lin, B. Modular soft-switching converter in DC micro-grid system applications. Electron. Lett. 2018, 54, 649–651. [Google Scholar] [CrossRef]
- Liu, Q.; Caldognetto, T.; Buso, S. Flexible Control of Interlinking Converters for DC Microgrids Coupled to Smart AC Power Systems. IEEE Trans. Ind. Electron. 2019, 66, 3477–3485. [Google Scholar] [CrossRef]
- Nalamati, C.; Agrawal, A.; Gupta, R. Multiple parallel-connected dab-based solid-state transformer for hybrid dc/ac micrognd system. IET Gener. Transm. Distrib. 2020, 14, 6359–6370. [Google Scholar] [CrossRef]
- Nie, J.; Yuan, L.; Wen, W.; Duan, R.; Shi, B.; Zhao, Z. Communication-Independent Power Balance Control for Solid State Transformer Interfaced Multiple Power Conversion Systems. IEEE Trans. Power Electron. 2020, 35, 4256–4271. [Google Scholar] [CrossRef]
- Sadeghi, M.; Khederzadeh, M. Hybrid multi-DC-AC MG based on multilevel interlinking converter. IET Power Electron. 2019, 12, 1187–1194. [Google Scholar] [CrossRef]
- Sowmmiya, U.; Govindarajan, U. Control and power transfer operation of WRIG-based WECS in a hybrid AC/DC microgrid. IET Renew. Power Gener. 2018, 12, 359–373. [Google Scholar] [CrossRef]
- Tricarico, T.; Gontijo, G.; Neves, M.; Soares, M.; Aredes, M.; Guerrero, J. Control design, stability analysis and experimental validation of new application of an interleaved converter operating as a power interface in hybrid microgrids. Energies 2019, 12, 437. [Google Scholar] [CrossRef]
- Tricarico, T.; Gontijo, G.; Aredes, M.; Dias, R.; Guerrero, J. New hybrid-microgrid topology using a bidirectional interleaved converter as a robust power interface operating in grid-connected and islanded modes. IET Renew. Power Gener. 2020, 14, 134–144. [Google Scholar] [CrossRef]
- Adineh, B.; Keypour, R.; Davari, P.; Blaabjerg, F. Review of Harmonic Mitigation Methods in Microgrid: From a Hierarchical Control Perspective. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 3044–3060. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, W.; Lin, W.; Wen, J. Grid Forming Converters in Renewable Energy Sources Dominated Power Grid: Control Strategy, Stability, Application, and Challenges. J. Mod. Power Syst. Clean Energy 2021, 9, 1239–1256. [Google Scholar] [CrossRef]
- Prompinit, K.; Khomfoi, S. A battery energy storage system control technique with ramp rate and C-rate parameter consideration for AC microgrid applications. Int. Rev. Electr. Eng. 2018, 13. [Google Scholar] [CrossRef]
- Combe, Q.; Abasian, A.; Pierfederici, S.; Weber, M.; Dufour, S. Control of a Three-Phase Current Source Rectifier for H2 Storage Applications in AC Microgrids. Energies 2022, 15, 2436. [Google Scholar] [CrossRef]
- Acevedo-Arenas, C.Y.; Correcher, A.; Sánchez-Díaz, C.; Ariza, E.; Alfonso-Solar, D.; Vargas-Salgado, C.; Petit-Suárez, J.F. MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Convers. Manag. 2019, 186, 241–257. [Google Scholar] [CrossRef]
- Antunes, H.; Silva, S.; Brandao, D.; Machado, A.; Ferreira, R. A fault-tolerant grid-forming converter applied to AC microgrids. Int. J. Electr. Power Energy Syst. 2020, 121, 106072. [Google Scholar] [CrossRef]
- Barzegarkhoo, R.; Farhangi, M.; Lee, S.S.; Aguilera, R.P.; Siwakoti, Y.P.; Pou, J. Nine-Level Nine-Switch Common-Ground Switched-Capacitor Inverter Suitable for High-Frequency AC-Microgrid Applications. IEEE Trans. Power Electron. 2022, 37, 6132–6143. [Google Scholar] [CrossRef]
- Borrell, Á.; Velasco, M.; Miret, J.; Camacho, A.; Martí, P.; Castilla, M. Collaborative Voltage Unbalance Elimination in Grid-Connected AC Microgrids with Grid-Feeding Inverters. IEEE Trans. Power Electron. 2021, 36, 7189–7201. [Google Scholar] [CrossRef]
- Buduma, P.; Das, M.; Naayagi, R.; Mishra, S.; Panda, G. Seamless Operation of Master-Slave Organized AC Microgrid with Robust Control, Islanding Detection and Grid Synchronization. IEEE Trans. Ind. Appl. 2022, 58, 6724–6738. [Google Scholar] [CrossRef]
- Charalambous, A.; Hadjidemetriou, L.; Zacharia, L.; Bintoudi, A.; Tsolakis, A.; Tzovaras, D.; Kyriakides, E. Phase balancing and reactive power support services for microgrids. Appl. Sci. 2019, 9, 5067. [Google Scholar] [CrossRef]
- Chhor, J.; Sourkounis, C. Optimal voltage control strategy for grid-feeding power converters in AC microgrids. Electr. Power Syst. Res. 2019, 176, 105945. [Google Scholar] [CrossRef]
- Firuzi, M.F.; Roosta, A.; Gitizadeh, M. Stability analysis and decentralized control of inverter-based ac microgrid. Prot. Control Mod. Power Syst. 2019, 4, 6. [Google Scholar] [CrossRef]
- Campanhol, L.B.G.; Da Silva, S.A.O.; De Oliveira, A.A.; Bacon, V.D. Power Flow and Stability Analyses of a Multifunctional Distributed Generation System Integrating a Photovoltaic System with Unified Power Quality Conditioner. IEEE Trans. Power Electron. 2019, 34, 6241–6256. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O. Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach. J. Energy Storage 2018, 18, 459–466. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, X.; Chen, L.; Zheng, T.; Wang, J.; Mei, S. Functional-Rotation-Based Active Dampers in AC Microgrids with Multiple Parallel Interface Inverters. IEEE Trans. Ind. Appl. 2018, 54, 5206–5215. [Google Scholar] [CrossRef]
- Hou, X.; Sun, Y.; Lu, J.; Zhang, X.; Koh, L.H.; Su, M.; Guerrero, J.M. Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access 2018, 6, 77388–77401. [Google Scholar] [CrossRef]
- Hussain, N.; Khayat, Y.; Golestan, S.; Nasir, M.; Vasquez, J.; Guerrero, J.; Kauhaniemi, K. Ac microgrids protection: A digital coordinated adaptive scheme. Appl. Sci. 2021, 11, 7066. [Google Scholar] [CrossRef]
- Issa, W.R.; Khateb, A.H.E.; Abusara, M.A.; Mallick, T.K. Control Strategy for Uninterrupted Microgrid Mode Transfer during Unintentional Islanding Scenarios. IEEE Trans. Ind. Electron. 2018, 65, 4831–4839. [Google Scholar] [CrossRef]
- Jarrahi, M.; Samet, H.; Ghanbari, T. Novel Change Detection and Fault Classification Scheme for AC Microgrids. IEEE Syst. J. 2020, 14, 3987–3998. [Google Scholar] [CrossRef]
- Jarwar, A.; Soomro, A.; Memon, Z.; Odhano, S.; Uqaili, M.; Larik, A. High dynamic performance power quality conditioner for AC microgrids. IET Power Electron. 2019, 12, 550–556. [Google Scholar] [CrossRef]
- Jumani, T.; Mustafa, M.; Rasid, M.; Memon, Z. Dynamic response enhancement of grid-tied ac microgrid using salp swarm optimization algorithm. Int. Trans. Electr. Energy Syst. 2020, 30, e12321. [Google Scholar] [CrossRef]
- Kaushal, J.; Basak, P. A Novel Approach for Determination of Power Quality Monitoring Index of an AC Microgrid Using Fuzzy Inference System. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2018, 42, 429–450. [Google Scholar] [CrossRef]
- Kulkarni, S.; Gaonkar, D. Improved droop control strategy for parallel connected power electronic converter based distributed generation sources in an Islanded Microgrid. Electr. Power Syst. Res. 2021, 201, 107531. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Lu, J.; Qu, Y.; Guo, C. A Novel Strategy Based on Linear Active Disturbance Rejection Control for Harmonic Detection and Compensation in Low Voltage AC Microgrid. Energies 2019, 12, 3982. [Google Scholar] [CrossRef]
- Lim, J.U.; Kwon, I.S.; Kim, H.W.; Cho, K.Y. Seamless transfer algorithm of AC microgrid inverter compensating load current for weak grid. Energies 2019, 12, 728. [Google Scholar] [CrossRef]
- Ma, W.; Ouyang, S. Control strategy for inverters in microgrid based on repetitive and state feedback control. Int. J. Electr. Power Energy Syst. 2019, 111, 447–458. [Google Scholar] [CrossRef]
- Naderi, Y.; Hosseini, S.; Zadeh, S.; Mohammadi-Ivatloo, B.; Savaghebi, M.; Guerrero, J. An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement. Int. J. Electr. Power Energy Syst. 2019, 107, 496–506. [Google Scholar] [CrossRef]
- Neves, R.V.A.; Machado, R.Q.; Oliveira, V.A.; Wang, X.; Blaabjerg, F. Multitask Fuzzy Secondary Controller for AC Microgrid Operating in Stand-Alone and Grid-Tied Mode. IEEE Trans. Smart Grid 2019, 10, 5640–5649. [Google Scholar] [CrossRef]
- Panjaitan, S.D.; Kurnianto, R.; Sanjaya, B.W. Flexible Power-Sharing Control for Inverters-Based Microgrid Systems. IEEE Access 2020, 8, 177984–177994. [Google Scholar] [CrossRef]
- Pérez-Ibacache, R.; Yazdani, A.; Silva, C.; Agüero, J. Decentralized Unified Control for Inverter-Based AC Microgrids Subject to Voltage Constraints. IEEE Access 2019, 7, 157318–157329. [Google Scholar] [CrossRef]
- Sharma, R.; Kewat, S.; Singh, B. Robust 3IMPL control algorithm for power management of SyRG/PV/BES-Based distributed islanded microgrid. IEEE Trans. Ind. Electron. 2019, 66, 7765–7777. [Google Scholar] [CrossRef]
- Vilaisarn, Y.; Moradzadeh, M.; Abdelaziz, M.; Cros, J. An MILP formulation for the optimum operation of AC microgrids with hierarchical control. Int. J. Electr. Power Energy Syst. 2022, 137, 107674. [Google Scholar] [CrossRef]
- Wang, M.H.; Yang, T.B.; Tan, S.C.; Hui, S. Hybrid Electric Springs for Grid-Tied Power Control and Storage Reduction in AC Microgrids. IEEE Trans. Power Electron. 2019, 34, 3214–3225. [Google Scholar] [CrossRef]
- Wang, M.H.; He, Y.; Jia, Y.; Xu, Z. A Power-Decoupled Current-Source Inverter for PV Energy Harvest and Grid Voltage Regulation. IEEE Trans. Ind. Electron. 2021, 68, 9540–9549. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, Y.; Liu, D.; Deng, F.; Chen, Z. Efficiency-Prioritized Droop Control Strategy of AC Microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2936–2950. [Google Scholar] [CrossRef]
- Zhang, H.; Ke, C.; Zhi, N.; Cheng, Y. Compound control method for overcoming transmission delay impact on networked control inverter for AC microgrid. J. Intell. Fuzzy Syst. 2020, 38, 7875–7892. [Google Scholar] [CrossRef]
- Zheng, X.; Zeng, Y.; Zhao, M.; Venkatesh, B. Early Identification and Location of Short-Circuit Fault in Grid-Connected AC Microgrid. IEEE Trans. Smart Grid 2021, 12, 2869–2878. [Google Scholar] [CrossRef]
- Zheng, C.; Dragičević, T.; Blaabjerg, F. Model Predictive Control-Based Virtual Inertia Emulator for an Islanded Alternating Current Microgrid. IEEE Trans. Ind. Electron. 2021, 68, 7167–7177. [Google Scholar] [CrossRef]
- Abhinav, S.; Schizas, I.; Lewis, F.; Davoudi, A. Distributed noise-resilient networked synchrony of active distribution systems. IEEE Trans. Smart Grid 2018, 9, 836–846. [Google Scholar] [CrossRef]
- Alam, M. Overcurrent protection of AC microgrids using mixed characteristic curves of relays. Comput. Electr. Eng. 2019, 74, 74–88. [Google Scholar] [CrossRef]
- Alfergani, A.; Khalil, A.; Rajab, Z. Networked control of AC microgrid. Sustain. Cities Soc. 2018, 37, 371–387. [Google Scholar] [CrossRef]
- Ali, S.; Aamir, M.; Jafri, A.; Subramaniam, U.; Haroon, F.; Waqar, A.; Yaseen, M. Model predictive control—Based distributed control algorithm for bidirectional interlinking converter in hybrid microgrids. Int. Trans. Electr. Energy Syst. 2021, 31, e12817. [Google Scholar] [CrossRef]
- Aref, M.; Mossa, M.; Lan, N.; Quynh, N.; Oboskalov, V.; Ali, A. Improvement of Fault Current Calculation and Static Security Risk for Droop Control of the Inverter-Interfaced DG of Grid-Connected and Isolated Microgrids. Inventions 2022, 7, 52. [Google Scholar] [CrossRef]
- Cai, H.; Hu, G. Distributed Nonlinear Hierarchical Control of AC Microgrid via Unreliable Communication. IEEE Trans. Smart Grid 2018, 9, 2429–2441. [Google Scholar] [CrossRef]
- Cai, H.; Hu, G. Distributed Robust Hierarchical Power Sharing Control of Grid-Connected Spatially Concentrated AC Microgrid. IEEE Trans. Control Syst. Technol. 2019, 27, 1012–1022. [Google Scholar] [CrossRef]
- Cai, C.; Liu, H.; Tao, Y.; Deng, Z.; Dai, W.; Chen, J. Microgrid Equivalent Modeling Based on Long Short-Term Memory Neural Network. IEEE Access 2020, 8, 23120–23133. [Google Scholar] [CrossRef]
- Cao, W.; Ma, Y.; Wang, F.; Tolbert, L.; Xue, Y. Low-Frequency Stability Analysis of Inverter-Based Islanded Multiple-Bus AC Microgrids Based on Terminal Characteristics. IEEE Trans. Smart Grid 2020, 11, 3662–3676. [Google Scholar] [CrossRef]
- Dutta, R.; Samantaray, S. Assessment of impedance based fault locator for AC micro-grid. Renew. Energy Focus 2018, 26, 1–10. [Google Scholar] [CrossRef]
- Eyisi, C.; Li, Q. Load sharing scheme incorporating power security margins for parallel operation of voltage source inverters. Energies 2021, 14, 5825. [Google Scholar] [CrossRef]
- Gupta, S.; Maulik, A.; Das, D.; Singh, A. Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers. Renew. Sustain. Energy Rev. 2022, 155, 111861. [Google Scholar] [CrossRef]
- Habibi, S.; Bidram, A. Unfalsified Switching Adaptive Voltage Control for Islanded Microgrids. IEEE Trans. Power Syst. 2022, 37, 3394–3407. [Google Scholar] [CrossRef]
- Islam, M.; Yang, F.; Ekanayek, C.; Amin, M. Grid power fluctuation reduction by fuzzy control based energy management system in residential microgrids. Int. Trans. Electr. Energy Syst. 2019, 29, e2758. [Google Scholar] [CrossRef]
- Iyakaremye, J.D.D.; Nyakoe, G.N.; Wekesa, C.W. MPC-Based Arctan Droop Control Strategy of the Parallel Inverter System in an Islanded AC Microgrid. J. Eng. 2021, 2021, 1870590. [Google Scholar] [CrossRef]
- Jayachandran, M.; Ravi, G. Predictive power management strategy for PV/battery hybrid unit based islanded AC microgrid. Int. J. Electr. Power Energy Syst. 2019, 110, 487–496. [Google Scholar] [CrossRef]
- John, B.; Ghosh, A.; Goyal, M.; Zare, F. A DC Power Exchange Highway Based Power Flow Management for Interconnected Microgrid Clusters. IEEE Syst. J. 2019, 13, 3347–3357. [Google Scholar] [CrossRef]
- Kabalan, M.; Singh, P.; Niebur, D. A Design and Optimization Tool for Inverter-Based Microgrids Using Large-Signal Nonlinear Analysis. IEEE Trans. Smart Grid 2019, 10, 4566–4576. [Google Scholar] [CrossRef]
- Kryonidis, G.; Kontis, E.; Chrysochos, A.; Oureilidis, K.; Demoulias, C.; Papagiannis, G. Power Flow of Islanded AC Microgrids: Revisited. IEEE Trans. Smart Grid 2018, 9, 3903–3905. [Google Scholar] [CrossRef]
- Lenz, E.; Pagano, D.J.; Pou, J. Bifurcation Analysis of Parallel-Connected Voltage-Source Inverters with Constant Power Loads. IEEE Trans. Smart Grid 2018, 9, 5482–5493. [Google Scholar] [CrossRef]
- Memon, A.; Kauhaniemi, K. An adaptive protection for radial AC microgrid using IEC 61850 communication standard: Algorithm proposal using offline simulations. Energies 2020, 13, 5316. [Google Scholar] [CrossRef]
- Mohammadi, J.; Ajaei, F.B.; Stevens, G. Grounding the AC microgrid. IEEE Trans. Ind. Appl. 2019, 55, 98–105. [Google Scholar] [CrossRef]
- Mohammadshahi, S.; Boulaire, F.; Love, J.; Gorji, S.; Mackinnon, I. A flexible analytical model for operational investigation of solar hydrogen plants. Int. J. Hydrogen Energy 2022, 47, 782–808. [Google Scholar] [CrossRef]
- Moreira, A.; Paredes, H.; Souza, W.D.; Marafao, F.; Silva, L.D. Intelligent expert system for power quality improvement under distorted and unbalanced conditions in three-phase AC microgrids. IEEE Trans. Smart Grid 2018, 9, 6951–6960. [Google Scholar] [CrossRef]
- Nayak, A.; Maulik, A.; Das, D. An integrated optimal operating strategy for a grid-connected AC microgrid under load and renewable generation uncertainty considering demand response. Sustain. Energy Technol. Assessments 2021, 45, 101169. [Google Scholar] [CrossRef]
- Perez-Ibacache, R.; Cedeno, A.; Silva, C.; Carvajal, G.; Aguero, J.; Yazdani, A. Decentralized Model-Based Predictive Control for der Units Integration in AC Microgrids Subject to Operational and Safety Constraints. IEEE Trans. Power Deliv. 2021, 36, 2479–2489. [Google Scholar] [CrossRef]
- Rahman, A.; Syed, I.; Ullah, M. Small signal stability of a balanced three-phase AC microgrid using harmonic linearization: Parametric-based analysis. Electronics 2019, 8, 12. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.; López-Lezama, J.; Muñoz-Galeano, N. Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon 2021, 7, e06665. [Google Scholar] [CrossRef]
- Shaker, Y.; Yousri, D.; Osama, A.; Al-Gindy, A.; Tag-Eldin, E.; Allam, D. Optimal Charging/Discharging Decision of Energy Storage Community in Grid-Connected Microgrid Using Multi-Objective Hunger Game Search Optimizer. IEEE Access 2021, 9, 120774–120794. [Google Scholar] [CrossRef]
- Soundarya, G.; Sitharthan, R.; Sundarabalan, C.K.; Balasundar, C.; Karthikaikannan, D.; Sharma, J. Design and Modeling of Hybrid DC/AC Microgrid with Manifold Renewable Energy Sources. IEEE Can. J. Electr. Comput. Eng. 2021, 44, 130–135. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, S. Data driven approach for fault detection and Gaussian process regression based location prognosis in smart AC microgrid. Electr. Power Syst. Res. 2022, 208, 107889. [Google Scholar] [CrossRef]
- Torabi-Farsani, K.; Vafamand, N.; Razavi-Far, R.; Saif, M. Secure Frequency Regulation of Electric Vehicle-connected Microgrid System under Multiple Latency Attacks. Comput. Electr. Eng. 2022, 101, 108008. [Google Scholar] [CrossRef]
- Yang, T.; He, Y.; Liu, G.P. Distributed Voltage Restoration of AC Microgrids Under Communication Delays: A Predictive Control Perspective. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2614–2624. [Google Scholar] [CrossRef]
- Zholbaryssov, M.; Fooladivanda, D.; Domínguez-García, A. Resilient distributed optimal generation dispatch for lossy AC microgrids. Syst. Control Lett. 2019, 123, 47–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W. Decentralised coordination control strategy of the PV generator, storage battery and hydrogen production unit in islanded AC microgrid. IET Renew. Power Gener. 2020, 14, 1053–1062. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Abedi, M.; Gharehpetian, G.B. Power Flow Control of Interconnected AC–DC Microgrids in Grid-Connected Hybrid Microgrids Using Modified UIPC. IEEE Trans. Smart Grid 2019, 10, 6298–6307. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Abedi, M.; Gharehpetian, G.B. Robust Nonlinear State Feedback Control of Bidirectional Interlink Power Converters in Grid-Connected Hybrid Microgrids. IEEE Syst. J. 2020, 14, 1117–1124. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Abedi, M.; Gharehpetian, G.B.; Guerrero, J.M. Flatness-Based Decentralized Control of Bidirectional Interlink Power Converters in Grid-Connected Hybrid Microgrids Using Adaptive High-Gain PI-Observer. IEEE Syst. J. 2021, 15, 478–486. [Google Scholar] [CrossRef]
- Ahmad, S.; Mekhilef, S.; Mokhlis, H.; Karimi, M.; Pourdaryaei, A.; Ahmed, T.; Jhuma, U.; Afzal, S. Fuzzy logic-based direct power control method for pv inverter of grid-tied ac microgrid without phase-locked loop. Electronics 2021, 10, 3095. [Google Scholar] [CrossRef]
- Amirkhan, S.; Radmehr, M.; Rezanejad, M.; Khormali, S. A robust control technique for stable operation of a DC/AC hybrid microgrid under parameters and loads variations. Int. J. Electr. Power Energy Syst. 2020, 117, 105659. [Google Scholar] [CrossRef]
- Anand, A.; Affijulla, S. Ensemble empirical mode decomposition based differential protection scheme for islanded and grid-tied AC microgrid. IET Gener. Transm. Distrib. 2020, 14, 6674–6681. [Google Scholar] [CrossRef]
- Antunes, H.; Silva, S.; Brandao, D.; Machado, A.; Filho, B. A new multifunctional converter based on a series compensator applied to AC microgrids. Int. J. Electr. Power Energy Syst. 2018, 102, 160–170. [Google Scholar] [CrossRef]
- Aragon, C.A.; Guzman, R.; de Vicuña, L.G.; Miret, J.; Castilla, M. Constrained Predictive Control Based on a Large-Signal Model for a Three-Phase Inverter Connected to a Microgrid. IEEE Trans. Ind. Electron. 2022, 69, 6497–6507. [Google Scholar] [CrossRef]
- Awad, H.; Bayoumi, E.; Soliman, H.; Santis, M.D. Robust tracker of hybrid microgrids by the invariant-ellipsoid set. Electronics 2021, 10, 1794. [Google Scholar] [CrossRef]
- Barr, N.; Li, S.; Fu, X. Control of grid-connected inverters for circulating current suppression using artificial neural network and conventional control methods. Int. Trans. Electr. Energy Syst. 2021, 31. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, S. Communication-less protection scheme for AC microgrids using hybrid tripping characteristic. Electr. Power Syst. Res. 2020, 187, 106453. [Google Scholar] [CrossRef]
- Deng, F.; Yao, W.; Zhang, X.; Mattavelli, P. A Decentralized Current Sharing Strategy for Islanded Resistive Microgrids Based on Iterative Virtual Impedance Regulation. IEEE Trans. Ind. Inform. 2022, 18, 3958–3969. [Google Scholar] [CrossRef]
- Dheer, D.K.; Vijay, A.S.; Kulkarni, O.V.; Doolla, S. Improvement of Stability Margin of Droop-Based Islanded Microgrids by Cascading of Lead Compensators. IEEE Trans. Ind. Appl. 2019, 55, 3241–3251. [Google Scholar] [CrossRef]
- Dong, M.; Li, L.; Wang, L.; Song, D.; Liu, Z.; Tian, X.; Li, Z.; Wang, Y. A distributed secondary control algorithm for automatic generation control considering EDP and automatic voltage control in an AC microgrid. Energies 2018, 11, 932. [Google Scholar] [CrossRef]
- Ebrahim, M.A.; Ayoub, B.A.A.; Nashed, M.N.F.; Osman, F.A.M. A Novel Hybrid-HHOPSO Algorithm Based Optimal Compensators of Four-Layer Cascaded Control for a New Structurally Modified AC Microgrid. IEEE Access 2021, 9, 4008–4037. [Google Scholar] [CrossRef]
- Ebrahim, M.; Aziz, B.; Nashed, M.; Osman, F. Optimal design of controllers and harmonic compensators for three-level cascaded control in stationary reference frame for grid-supporting inverters-based AC microgrid. Energy Rep. 2022, 8, 860–877. [Google Scholar] [CrossRef]
- Heredero-Peris, D.; Chillón-Antón, C.; Pagès-Giménez, M.; Montesinos-Miracle, D.; Santamaría, M.; Rivas, D.; Aguado, M. An enhancing fault current limitation hybrid droop/V-f control for grid-tied four-wire inverters in AC microgrids. Appl. Sci. 2018, 8, 1725. [Google Scholar] [CrossRef]
- Jmii, H.; Abbes, M.; Meddeb, A.; Chebbi, S. Centralized VSM control of an AC meshed microgrid for ancillary services provision. Int. J. Electr. Power Energy Syst. 2020, 115, 105450. [Google Scholar] [CrossRef]
- Kumar, A.; Jha, B.K.; Dheer, D.K.; Singh, D.; Misra, R.K. Nested backward/forward sweep algorithm for power flow analysis of droop regulated islanded microgrids. IET Gener. Transm. Distrib. 2019, 13, 3086–3095. [Google Scholar] [CrossRef]
- Lenz, E.; Pagano, D.J.; Ruseler, A.; Heldwein, M.L. Two-Parameter Stability Analysis of Resistive Droop Control Applied to Parallel-Connected Voltage-Source Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3318–3332. [Google Scholar] [CrossRef]
- Li, T.; Su, C.; Zhang, Y. Multi-source residual capacity collaborative dynamic compensation strategy based on robust residual generator. Energy Rep. 2021, 7, 3318–3332. [Google Scholar] [CrossRef]
- Mahmud, K.; Sahoo, A.; Ravishankar, J.; Dong, Z. Coordinated Multilayer Control for Energy Management of Grid-Connected AC Microgrids. IEEE Trans. Ind. Appl. 2019, 55, 535–548. [Google Scholar] [CrossRef]
- Mi, Y.; Yan, L.; Cai, H.; Fu, Y.; Tian, S.; Jin, C. Reactive power sharing control for islanded AC microgrid based on fuzzy adaptive compensation method. IET Gener. Transm. Distrib. 2020, 14, 585–593. [Google Scholar] [CrossRef]
- Patankar, P.P.; Munshi, M.M.; Deshmukh, R.R.; Ballal, M.S. A Modified Control Method for Grid Connected Multiple Rooftop Solar Power Plants. IEEE Trans. Ind. Appl. 2021, 57, 3306–3316. [Google Scholar] [CrossRef]
- Pompodakis, E.; Kryonidis, G.; Demoulias, C.; Alexiadis, M. A Generic Power Flow Algorithm for Unbalanced Islanded Hybrid AC/DC Microgrids. IEEE Trans. Power Syst. 2021, 36, 1107–1120. [Google Scholar] [CrossRef]
- Souraki, H.P.; Radmehr, M.; Rezanejad, M. Distributed energy storage system-based control strategy for hybrid DC/AC microgrids in grid-connected mode. Int. J. Energy Res. 2019, 43, 6283–6295. [Google Scholar] [CrossRef]
- souraki, H.P.; Radmehr, M.; Rezanejad, M. Lypunov theory combined with small signal linearization for regulated operation of a hybrid DC/AC microgrid. Int. Trans. Electr. Energy Syst. 2020, 30. [Google Scholar] [CrossRef]
- Roncero-Clemente, C.; Gonzalez-Romera, E.; Barrero-González, F.; Milanés-Montero, M.I.; Romero-Cadaval, E. Power-Flow-Based Secondary Control for Autonomous Droop-Controlled AC Nanogrids with Peer-to-Peer Energy Trading. IEEE Access 2021, 9, 22339–22350. [Google Scholar] [CrossRef]
- Sahu, P.; Mishra, S.; Prusty, R.; Panda, S. Improved -salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid. Sustain. Energy, Grids Netw. 2018, 16, 380–392. [Google Scholar] [CrossRef]
- Serrano-Fontova, A.; Azab, M. Development and performance analysis of a multi-functional algorithm for AC microgrids: Simultaneous power sharing, voltage support and islanding detection. Int. J. Electr. Power Energy Syst. 2022, 135, 107341. [Google Scholar] [CrossRef]
- Sreelekshmi, R.; Lakshmi, R.; Nair, M. AC microgrid with battery energy storage management under grid connected and islanded modes of operation. Energy Rep. 2022, 8, 350–357. [Google Scholar] [CrossRef]
- Talapur, G.; Suryawanshi, H. A modified control scheme for power management in an AC microgrid with integration of multiple nanogrids. Electronics 2019, 8, 490. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, D.; Xiao, D.; Li, M. Modeling and Stability Analysis of a Novel Voltage-Oriented Power Coordination Controlled Constant-Frequency AC Microgrid System. Electronics 2021, 10, 1935. [Google Scholar] [CrossRef]
- Holari, Y.T.; Taher, S.; Mehrasa, M. Distributed energy storage system-based nonlinear control strategy for hybrid microgrid power management included wind/PV units in grid-connected operation. Int. Trans. Electr. Energy Syst. 2020, 30, e12237. [Google Scholar] [CrossRef]
- Xie, B.; Liu, Y.; Ji, Y.; Wang, J. Two-stage battery energy storage system (BESS) in AC microgrids with balanced state-of-charge and guaranteed small-signal stability. Energies 2018, 11, 322. [Google Scholar] [CrossRef]
- IEEE Std 1547-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. (Revision of IEEE Std 1547-2003). IEEE Standards Association: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- IEEE Std 519-2014; IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. (Revision of IEEE Std 519-1992). IEEE Standards Association: Piscataway, NJ, USA, 2014; pp. 1–29. [CrossRef]
- EN 50160; Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC (European Committee for Electrotechnical Standardization): Brussels, Belgium, 2022; pp. 1–34. [CrossRef]
- IEEE Std C37.118.1-2011; IEEE Standard for Synchrophasor Measurements for Power Systems. (Revision of IEEE Std C37.118-2005). IEEE Standards Association: Piscataway, NJ, USA, 2011; pp. 1–61. [CrossRef]
- IEEE Std 1159-1995; IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Standards Association: Piscataway, NJ, USA, 1995; pp. 1–80. [CrossRef]
- IEEE Std 2030.7-2017; IEEE Standard for the Specification of Microgrid Controllers. IEEE Standards Association: Piscataway, NJ, USA, 2018; pp. 1–43. [CrossRef]
- IEEE Std 1459-2010; IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. (Revision of IEEE Std 1459-2000). IEEE Standards Association: Piscataway, NJ, USA, 2010; pp. 1–50. [CrossRef]
- IEC 61000-2-2:2002; Electromagnetic compatibility (EMC)—Part 2-2: Environment—Compatibility Levels for Low-Frequency Conducted Disturbances and Signalling in Public Low-Voltage Power Supply Systems. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2002; pp. 1–57. Available online: https://webstore.iec.ch/en/publication/4133 (accessed on 21 May 2024).
- IEC 61000-3-2:2000; Electromagnetic Compatibility (EMC)—Part 3-2: Limits—Limits for Harmonic Current Emissions (Equipment Input Current <= 16 A per Phase). IEC (International Electrotechnical Commission): Geneva, Switzerland, 2000; pp. 1–55. Available online: https://webstore.iec.ch/en/publication/18724 (accessed on 21 May 2024).
- IEC 61727:2004; Photovoltaic (PV) Systems—Characteristics of the Utility Interface. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2004; pp. 1–23. Available online: https://webstore.iec.ch/en/publication/5736 (accessed on 21 May 2024).
- IEC 60831-1:2014; Shunt Power Capacitors of the Self-Healing Type for a.c. Systems Having a Rated Voltage Up to and Including 1000 V—Part 1: General—Performance, Testing and Rating—Safety Requirements—Guide for Installation and Operation. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2014; pp. 1–73. Available online: https://webstore.iec.ch/en/publication/22263 (accessed on 21 May 2024).
- IEC 60831-2:2014; Shunt Power Capacitors of the Self-Healing Type for a.c. Systems Having a Rated Voltage Up to and Including 000 V—Part 2: Ageing Test, Self-Healing Test and Destruction Test. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2014; pp. 1–22. Available online: https://webstore.iec.ch/en/publication/3610 (accessed on 21 May 2024).
- IEC 60255-1:2022; Measuring Relays and Protection Equipment—Part 1: Common Requirements. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2022; pp. 1–92. Available online: https://webstore.iec.ch/en/publication/59762 (accessed on 21 May 2024).
- IEC 61850-3:2013; Communication Networks and Systems for Power Utility Automation—Part 3: General Requirements. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2013; pp. 1–136. Available online: https://webstore.iec.ch/en/publication/6010 (accessed on 21 May 2024).
- IEC 62040-1:2017; Uninterruptible Power Systems (UPS)—Part 2: Electromagnetic Compatibility (EMC) Requirements. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2017; pp. 1–146. Available online: https://webstore.iec.ch/en/publication/31983 (accessed on 21 May 2024).
- VDE VERLAG. DIN VDE V 0126-1-1 VDE V 0126-1-1:2013-08. Automatic Disconnection Device between a Generator and the Public Low-Voltage Grid. 2013. Available online: https://www.vde-verlag.de/standards/0100178/din-vde-v-0126-1-1-vde-v-0126-1-1-2013-08.html (accessed on 21 May 2024).
- Ogg, F. Pico, Nano, Micro, Minigrids. 2015. Available online: https://www.researchgate.net/publication/282947314_Pico_nano_micro_minigrids (accessed on 21 May 2024).
- IRENA. Renewable Power Generation Costs in 2022. International Renewable Energy Agency, Abu Dhabi. 2023. Available online: https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (accessed on 21 May 2024).
- IREC. IEEE 1547-2018 Adoption Tracker-Interstate Renewable Energy Council (IREC). Available online: https://irecusa.org/resources/ieee-1547-2018-adoption-tracker/ (accessed on 3 June 2024).
- IEC 61000-4-15:2010 RLV; Electromagnetic Compatibility (EMC)—Part 4-15: Testing and Measurement Techniques—Flickermeter—Functional and Design Specifications. IEC (International Electrotechnical Commission): Geneva, Switzerland, 2010; pp. 1–190. Available online: https://webstore.iec.ch/en/publication/22269 (accessed on 3 June 2024).
- Barnes, M.; Kondoh, J.; Asano, H.; Oyarzabal, J.; Ventakaramanan, G.; Lasseter, R.; Hatziargyriou, N.; Green, T. Real-World MicroGrids-An Overview. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 16–18 April 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Panora, R.; Gehret, J.E.; Furse, M.M.; Lasseter, R.H. Real-World Performance of a CERTS Microgrid in Manhattan. IEEE Trans. Sustain. Energy 2014, 5, 1356–1360. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Li, R. Distributed Event-Triggered Control for Power Sharing in Grid-Connected AC Microgrid. IEEE Trans. Power Syst. 2024, 39, 770–778. [Google Scholar] [CrossRef]
- Arora, A.; Bhadu, M.; Kumar, A. Simultaneous Damping and Frequency Control in AC Microgrid Using Coordinated Control Considering Time Delay and Noise. Trans. Inst. Meas. Control 2024, 01423312241230735. [Google Scholar] [CrossRef]
- Kumar, A.; Bhadu, M.; Arabi, A.I.A.; Kamangar, S.; Bhutto, J.K.; Ali, M.A.; Kumar, S. Optimized robust control for improving frequency response of delay dependent AC microgrid with uncertainties. Electr. Power Syst. Res. 2024, 229, 110138. [Google Scholar] [CrossRef]
- Rafia, A.N.A.; Jayaprakash, R. Fractional Order Controller For Power Control in AC Islanded PV Microgrid using Electric Vehicles. Recent Adv. Electr. Electron. Eng. 2024, 17, 137–146. [Google Scholar] [CrossRef]
- Li, G.; Hu, T.; Liu, X. A Quasi-Disturbance Current-Based Droop Control Strategy for Enhancing Voltage Robustness of Islanded AC Microgrid. IEEE Trans. Ind. Inform. 2024, 1–11. [Google Scholar] [CrossRef]
- Jain, S.K.; Agrawal, S. Robust control of frequency considering operations of AC microgrid in islanded mode. Int. J. Eng. Syst. Model. Simul. 2024, 15, 1–10. [Google Scholar] [CrossRef]
- Kiani, S.; Salmanpour, A.; Hamzeh, M.; Kebriaei, H. Learning Robust Model Predictive Control for Voltage Control of Islanded Microgrid. IEEE Trans. Autom. Sci. Eng. 2024, 1–12. [Google Scholar] [CrossRef]
- Ding, K.; Zhu, Q.; Huang, T. Partial-Information-Based Non-Fragile Intermittent Estimator for Microgrids with Semi-Aperiodic DoS Attacks: Gain Stochastic Float. IEEE Trans. Power Syst. 2024, 39, 2271–2283. [Google Scholar] [CrossRef]
- Mahvash, H.; Taher, S.A.; Guerrero, J.M. Mitigation of severe false data injection attacks (FDIAs) in marine current turbine (MCT) type 4 synchronous generator renewable energy using promoted backstepping method. Renew. Energy 2024, 222, 120008. [Google Scholar] [CrossRef]
- Kharchouf, I.; Mohammed, O.A. Controller Hardware-in-the-Loop Testbed of a Distributed Consensus Multi-Agent System Control under Deception and Disruption Cyber-Attacks. Energies 2024, 17, 1669. [Google Scholar] [CrossRef]
- Akarne, Y.; Essadki, A.; Nasser, T.; Bhiri, B.E. Experimental Analysis of Efficient Dual-Layer Energy Management and Power Control in an AC Microgrid System. IEEE Access 2024, 12, 30577–30592. [Google Scholar] [CrossRef]
Paper | Weight | |
---|---|---|
Title | <15 words | 3 |
Keywords in the title | 3 | |
Abstract | Presents a logic structure | 3 |
Introduction | Context | 3 |
Implicit or explicit hypothesis | 3 | |
Problem | 3 | |
Explicit objective | 3 | |
Theoretical framework | State-of-the-art in a logical order | 3 |
Appropriate content | 3 | |
Detailed methodology | 3 | |
Results | Available data | 3 |
Results match objectives | 3 | |
Shows results with standardized metrics | 3 | |
Information in figures complements the text | 3 | |
Discussion | Findings related to the objectives | 3 |
Results are compared to those from the state-of-the-art | 3 | |
Conclusions | Correspond to the objectives | 3 |
Show future work | 3 | |
References | References match | 3 |
Complete references | 3 | |
EC4 | Includes a grid-tied MG | 14 |
Real or experimental application | 13 | |
Answer three or more research questions | 13 | |
Total | 100 |
Articles | |
---|---|
Included | [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Excluded—reviews | [31,32] |
Excluded—no pure AC | [17,18,19,20,21,22,23,24,25,26,27,28,29,30] |
Excluded—EC4 | [33,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106] |
Excluded—<80 | [34,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138] |
2018 | 2019 | 2020 | 2021 | 2022 | Sum | |
---|---|---|---|---|---|---|
LV 1- HF | [37] | 1 | ||||
LV 1- | [52] | [35,57,63] | [59] | [64] | 6 | |
LV 3- | [44,45,46,48] | [40,41,42,43,50,54,55,56,61] | [36,66] | [38,47,53,65,67,68] | [39,62] | 23 |
MV 3- | [60] | [49,51] | 3 | |||
Sum | 5 | 13 | 5 | 7 | 3 | 33 |
Standard | Name | Mentioned by |
---|---|---|
IEEE Standard 1547-2018 [139] | Standard for interconnection and interoperability of distributed energy resources with associated electric power system interfaces | [17,44,51,58,59,60] |
IEEE Standard 519-2014 [140] | IEEE recommended practices and requirements for harmonic control in electric power systems | [39,52,57,61] |
EN-50160 [141] | Voltage characteristics of electricity supplied by public electricity networks | [38,50] |
IEEE Std C37.118.1 [142] | IEEE standard for synchrophasor measurements for power systems | [38] |
IEEE 1159-1995 [143] | IEEE recommended practices for monitoring electric power quality | [50] |
IEEE 2030.7-2017 [144] | IEEE standard for the specifications of microgrid controllers | [40] |
IEEE 1459-2010 [145] | IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, and unbalanced conditions | [43] |
EN 61000-2-2 [146] | Electromagnetic compatibility (EMC)–part 2-2: environment—compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems | [50] |
EN IEC 61000-3-2 [147] | Electromagnetic compatibility (EMC)–part 3-2: limits—limits for harmonic current emissions (equipment input current <= 16 A per phase) | [50] |
IEC 61727 [148] | Photovoltaic (PV) systems—characteristics of the utility interface | [51] |
IEC 60831-1 [149] | Shunt power capacitors of the self-healing type for AC systems having a rated voltage up to and including 1 kV–part 1: general—performance, testing, and rating safety requirements guide for installation and operation | [52] |
IEC 60831-2 [150] | Shunt power capacitors of the self-healing type for AC systems with a rated voltage up to and including 1kV–part 2: aging test, self-healing test, and destruction test | [52] |
IEC 60255 [151] | Measuring relays and protection equipment–part 1: common requirements | [47] |
IEC 61850 [152] | Communication protocols for intelligent electronic devices at electrical substations | [47] |
IEC 62040-2 [153] | Uninterruptible power systems (UPSs)–part 2: electromagnetic compatibility (EMC) requirements | [68] |
VDE 0126-1-1 [154] | Automatic disconnection device between a generator and the public low-voltage grid | [64] |
Connection Scheme | Pros | Cons | Works |
---|---|---|---|
Direct | Easy connection and low cost | Little control | [35,38,41,44,45,46,48,51,52,53,55,57,58,59,60,66,67] |
Isolation transformer | Galvanic isolation | High cost | [40,42,47,49,50,62] |
Autotransformer | Efficiency and cost | No isolation | [39,41] |
Grid-tied inverter | Simple, quality of the AC bus voltage | High cost | [54] |
PV-UPQC system | Power quality of the grid | Depends on PV system | [43] |
Energy storage system | Palliates the intermittence of RESs | Highest cost | [63] |
H-bridge, active power decoupler | Power quality | Complex control and high cost | [64] |
Islanded | [36,37,56,61,65,68] |
0-Level | PI-resonant for current control [36], PI-resonant for voltage control [36], PI-resonant for voltage control [36], model predictive current control [41], active damping and LCL output current control [41], PR for voltage control [37], negative-sequence voltage elimination [38], negative-sequence current sharing [38], deadbeat current control [50], PI current control [51,55], PI voltage control [55], and hysteresis current controller [61] |
Primary level | Classic droop [48,58], PI for reactive power control [41], bilinear PI controller based on passivity-based formulations [44], bilevel functional-rotation-based active damping control [45], improved droop controller [53], repetitive and state feedback control combined with droop control [56], optimal direct control method (FCS-MPC current and voltage control for active power filter) [57], classic droop modification [59], linear quadratic Gaussian control [60], efficiency-prioritized droop control strategy [65], model-predictive-control-based virtual synchronous generator (VSG-MPC) [103], 3-phase improved-magnitude phase-locked-loop control [61] |
Secondary level | Microgrid central controller [40], distributed droop-based [46] distributed leader–follower control, fuzzy multitask secondary controller [58], droop [62], decentralized passive dynamic PI controllers [42] |
Tertiary level | MPC for optimal dispatch [35], supervisory control [46], master–slave configuration [39], PI power control [51,58] |
Hard to classify in hierarchical control schemes | Current and voltage control of PV-unified power quality conditioner [43], quasi-proportional-resonant-integral (PRI) current controller (grid-tied inverter with MPPT for PV) [63], quasi-proportional-resonant (PR) current controller (grid-tied inverter with MPPT for PV) [64], composite controller (internal model controller + quasi-PR controller with multiple resonance compensation) for grid-tied inverter [66] |
Proposal | Results | Simulation Tool | Works |
---|---|---|---|
Control scheme | Works commonly show figures of merit and figures of physical variables to show the tracking capability and response time | MATLAB | [39,41,44,48,50,54,59,66,68] |
PLECS | [65] | ||
PSCAD | [56] | ||
PSIM | [55] | ||
Power electronic system | Experimental prototype of their proposal | MATLAB | [21,43,62,124] |
PLECS | [37] | ||
Fault detection method | Works show tables of delay times for fault detection | MATLAB | [47,49] |
PSCAD | [67] | ||
Optimization method | Figures of physical variables | MATLAB | [51] |
Power quality monitoring index | Comparison to other indexes | MATLAB | [52] |
Proposal | Experimental Setup | Works |
---|---|---|
Control scheme | 2-parallel VSI | [39,54,58,60,61,65,68] |
3-parallel VSI | [38,45,66] | |
1-VSI | [40,50,56] | |
OPAL-RT simulated MG | [40] | |
Control in FPGA + dSPACE RT simulated scheme | [41] | |
Typhoon HIL emulated MG | [53] | |
Power electronic system | Solid state transformer | [43] |
Other converter | [36,37,63,64] | |
Fault detection method | Laboratory MG | [49,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Redondo, M.; Rivera, M.; Muñoz, J.; Wheeler, P. A Systematic Literature Review on AC Microgrids. Designs 2024, 8, 77. https://doi.org/10.3390/designs8040077
Gomez-Redondo M, Rivera M, Muñoz J, Wheeler P. A Systematic Literature Review on AC Microgrids. Designs. 2024; 8(4):77. https://doi.org/10.3390/designs8040077
Chicago/Turabian StyleGomez-Redondo, Marcos, Marco Rivera, Javier Muñoz, and Patrick Wheeler. 2024. "A Systematic Literature Review on AC Microgrids" Designs 8, no. 4: 77. https://doi.org/10.3390/designs8040077
APA StyleGomez-Redondo, M., Rivera, M., Muñoz, J., & Wheeler, P. (2024). A Systematic Literature Review on AC Microgrids. Designs, 8(4), 77. https://doi.org/10.3390/designs8040077