Influence of Microclimate on Older Peoples’ Outdoor Thermal Comfort and Health during Autumn in Two European Cities
Abstract
:1. Introduction
- To evaluate how microclimate variables (air temperature, wind speed, mean radiant temperature, relative humidity and sky view factor) affect the thermal comfort of older people in public spaces during autumn in different climatic zones (Csa—Mediterranean Climate and Cfb—oceanic climate).
- To identify thermal comfort ranges for older adults in outdoor public spaces during autumn.
- To identify health risk via thermal stress (due to extrem cold or heat) for older adults in different climates during autumn according to PET and UTCI indexes.
2. Materials and Methods
2.1. Description of Case Studies
2.1.1. Madrid, Spain
2.1.2. Newcastle upon Tyne, United Kingdom
2.2. Environmental Measurements
2.3. Thermal Perception Assessment and Sample Selection
2.4. Thermal Comfort Indices
2.5. Statistical Analysis
3. Results and Discussion
3.1. Outdoor Environmental Conditions
3.2. Sample Description
3.3. Thermal Sensation of Older Adults in Outdoor Public Spaces
3.4. Influence of the Microclimate on Thermal Perception
3.5. Neutral Temperature and Comfort Zone
3.6. Thermal Comfort Indices (Physiological Equivalent Temperature) PET and Universal Thermal Index (UTC) vs. Thermal Sensation (TSV)
4. Conclusions
- A dense city has significant microclimatic differences in the variables of temperature, relative humidity, and wind, which must be assessed at the pedestrian level to be able to establish the appropriate bioclimatic recommendations for healthier urban spaces.
- Older people, the majority in most European cities, have intrinsic differences in their perception of both cold and heat. For this reason, both the definition of the comfort zone and the strategies must be qualified by considering age groups over 65 and over 80 years of age.
- The final thermal comfort of a group must always combine external data with the real perception of the people in situ due to the wide number of variables that affect perception.
- Due to the small sample size, these results can only be taken as a reference.
- There was a wide climatic variability in both cities.
- The exposure time to microclimate conditions was not considered for the acclimatisation of older people. Future research should consider this to obtain more accurate results and to avoid biases, as some authors has suggested.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014; Synthesis Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing Lengths of the Four Seasons by Global Warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Organización Iberoamericana de Seguridad Social. Boletín del Programa Iberoamericano de Cooperación Sobre Adultos Mayores. 2016. Available online: https://oiss.org/boletin-no-10-del-programa/ (accessed on 1 September 2022).
- Comission on Social Determinants of Health. Closing the Gap in a Generation: Health Equity through Action on the Social Determinants of Health. Final Report of the Commission on Social Determinants of Health, Geneva. 2008. Available online: http://www.who.int/social_determinants/final_report/csdh_finalreport_2008.pdf (accessed on 1 September 2022).
- Baquero Larriva, M.T.; Higueras García, E. Thermal comfort for the elderly: A systematic review of the scientific literature. Rev. Esp. Geriatr. Gerontol. 2019, 54, 280–295. [Google Scholar] [CrossRef]
- Novieto, D.; Zhang, Y. Thermal comfort implications of the aging effect on metabolism, cardiac output and body weight. Adapt. Chang. New Think. Comf. 2010, 1–9. Available online: https://acortar.link/UQQr7C (accessed on 1 September 2022).
- Fariña, J.; Higueras, E.; Román, E. Ciudad, Urbanismo y Salud. Criterios Generales de Diseño Urbano para Alcanzar los Objetivos de una Ciudad Saludable; Envejecimiento Activo, Instituto Juan de Herrera: Madrid, España, 2019. [Google Scholar]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings, 1st ed.; Routledge: London, UK, 2011. [Google Scholar] [CrossRef]
- Higueras, E. Urbanismo Bioclimático, GG, Barcelona. 2006. Available online: https://editorialgg.com/urbanismo-bioclimatico-libro.html (accessed on 1 September 2022).
- Neila, J. Arquitectura Bioclimática en un Entorno Construido; Munilla-Lería: Madrid, Spain, 2004; ISBN 84-89150-64-8. [Google Scholar]
- Kalmár, F. An indoor environment evaluation by gender and age using an advanced personalized ventilation system. Build. Serv. Eng. Res. Technol. 2017, 38, 505–521. [Google Scholar] [CrossRef]
- Havenith, G.; Holmér, I.; Parsons, K. Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Lak, A. Outdoor Thermal Comfort for Active Ageing in Urban Open Spaces: Reviewing the Concepts and Parameters. Ageing Int. 2022, 1–14. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Fernández, F.J.; Allende, F.; Rasilia, D.; Martilli, A. Alcaide, Estudio de Detalle del Clima Urbano de Madrid; Departamento de Geografía, Universidad Autónoma de Madrid: Madrid, Spain, 2016; Available online: https://acortar.link/tgKL6C (accessed on 1 September 2022).
- Gagge, A.; Fobelets, A.; Berglund, L. A standar predictive index of human response of thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Innternational Sciety of Biometeorology. UTCI Universal Thermal Climate Index. 2004. Available online: http://www.utci.org/ (accessed on 12 July 2019).
- Potchter, O.; Cohen, P.; Lin, T.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Manu, S.; Shukla, Y.; Rawal, R.; Thomas, L.; de Dear, R. Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Build. Environ. 2016, 98, 55–70. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.; Jusuf, S. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 2, 426–435. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- Fong, C.; Aghamohammadi, N.; Ramakreshnan, L.; Sulaiman, N.; Mohammadi, P. Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustain. Cities Soc. 2019, 46, 101428. [Google Scholar] [CrossRef]
- Departamento de Producción de la Agencia Estatal de Meteorología de España y Departamento de Meteorología e Clima de Portugal, Atlas Climático Ibérico. Temperatura del Aire y Precipitación (1971–2000), Closas-Orc. 2011. Available online: http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf (accessed on 2 June 2020).
- AEMET. Temperaturas Medias y su Comparación con las de los Últimos 30 Años. (Observatorio de Retiro), Banco Datos. Ayunt. Madrid Territ. y Medio Ambient. 2019. Available online: http://www-2.munimadrid.es/CSE6/control/seleccionDatos?numSerie=14020000020 (accessed on 22 March 2019).
- Time and Date, Climate & Weather Averages in Newcastle upon Tyne, England, United Kingdom. Annual Weather Avergages Near Newcastle upon Tyne. 2015. Available online: https://www.timeanddate.com/weather/uk/newcastle-upon-tyne/climate (accessed on 29 June 2020).
- International Standard Organization. ISO 7726: Ergonomics of the Thermal Environment. Instruments and Methods for Measuring Physical Quantities; International Standard Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Andrade, H.; Alcoforado, M. Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor. Appl. Climatol. 2008, 92, 225–237. [Google Scholar] [CrossRef]
- Hwang, R.; Lin, T.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Martinelli, L.; Lin, T.; Matzarakis, A. Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build. Environ. 2015, 92, 30–38. [Google Scholar] [CrossRef]
- Hwang, R.; Chen, C. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments. Indoor Air 2010, 20, 235–245. [Google Scholar] [CrossRef]
- ASHRAE. STANDARD 55—Thermal Enviornmental Conditions for Human Occupancy. 2020. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 1 December 2017).
- Mclntyre, D. A Guide to Thermal Comfort. Appl. Ergon. 1973, 4, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Larriva, M.B.; Higueras, E. Health risk for older adults in Madrid, by outdoor thermal and acoustic comfort. Urban Clim. 2020, 34, 100724. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal comfort and gender: A literature review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Indraganti, M.; Rao, K. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy Build. 2010, 42, 273–281. [Google Scholar] [CrossRef]
- Yao, F.; Fang, H.; Han, J.; Zhang, Y. Study on the outdoor thermal comfort evaluation of the elderly in the Tibetan plateau. Sustain. Cities Soc. 2022, 77, 103582. [Google Scholar] [CrossRef]
- Larriva, M.B. Confort Térmico y Acústico para la Tercera edad en Espacios Públicos de la Ciudad Consolidada del Clima Mediterráneo Continental: Caso de Estudio Barrio Arapiles. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2021. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Wong, L.; Fong, K.; Mui, K.; Wong, W.; Lee, L. A field survey of the expected desirable thermal environment for older people. Indoor Built Environ. 2009, 18, 336–345. [Google Scholar] [CrossRef]
- Bills, R.; Soebarto, V.; Williamson, T. Thermal experiences of older people during hot conditions in Adelaide. In Proceedings of the Revisiting the Role of Architectural Science in Design and Practice: 50th International Conference of the Architectural Science Association, Adelaide, Australia, 7–9 December 2016; pp. 657–664. [Google Scholar]
- Fan, G.; Xie, J.; Yoshino, H.; Yanagi, U.; Hasegawa, K. Investigation of indoor thermal environment in the homes with elderly people during heating season in Beijing, China. Build. Environ. 2017, 126, 288–303. [Google Scholar] [CrossRef]
- Ji, X.; Lou, W.; Dai, Z.; Wang, B.; Liu, S. Predicting thermal comfort in Shanghai’s non-air-conditioned buildings. Build. Res. Inf. 2006, 34, 507–514. [Google Scholar] [CrossRef]
- ASHRAE Standar 55-1966; Thermal Comfort Conditions. ASHRAE: Atlanta, GA, USA, 1966.
- Feriadi, H.; Wong, N.; Chandra, S.; Cheong, K. Adaptive behaviour and thermal comfort in Singapore’s naturally ventilated housing. Build. Res. Inf. 2010, 31, 37–41. [Google Scholar] [CrossRef]
- Błazejczyk, K.; Broede, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Misc. Geogr. 2010, 14, 91–102. [Google Scholar] [CrossRef] [Green Version]
- García, F.F.; Galán, E.; Cañada, R. Caracterización del régimen bioclimático medio del área metropolitana de Madrid, mediante la aplicación de la temperatura fisiológica (PET). Territoris 2012, 8, 83–101. Available online: https://raco.cat/index.php/Territoris/article/view/259755. (accessed on 5 February 2021).
Variable | Equipment | Measurement Range | Accuracy |
---|---|---|---|
Ta (°C) | Thermohydrometer data logger HOBO UX100 (HOBO, MA USA) | −20–70 °C | ±0.2 °C |
RH (%) | 1–95% | ±2.5% | |
Ws (m/s) | Anemometer Proster Digital MS6252a (Proster, Hong Kong) | 0.4–30 m/s | ±2% |
SVF | Rayman 1.2 software | ||
Tmrt (°C) |
City | Public Space | Ta °C | RH % | Ws m/s | Mrt °C | SVF |
---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean | Mean | ||
Madrid | PCVS | 20.9 | 38.3 | 1.5 | 35.0 | 0.04 |
CVH | 17.5 | 50.0 | 1.1 | 28.3 | 0.02 | |
PTG | 19.4 | 50.5 | 1.2 | 30.5 | 0.03 | |
Mean | 19.3 | 46.2 | 1.3 | 31.2 | 0.03 | |
Newcastle upon Tyne | OES | 13.3 | 60.8 | 1.6 | 22.7 | 0.01 |
NS | 15.9 | 54.7 | 1.9 | 20.3 | 0.02 | |
Mean | 14.6 | 57.8 | 1.7 | 21.5 | 0.01 |
Statistical Test | ||||
---|---|---|---|---|
Variable | Chi-Squared | Kruskal-Wallis | Student’s-t | |
Sig (Bilateral) | Sig (Bilateral) | Sig (Bilateral) | ||
Microclimatic | Ta (°C) | 0.000 ** | ||
HR (%) | 0.000 ** | |||
Ws (m/s) | 0.000 ** | |||
SVF | 0.080 | |||
Trm (°C) | 0.000 ** | |||
Personal | clo | 0.611 | ||
Age | 0.415 | |||
Gender | 0.274 | |||
Visit time | 0.001 ** | |||
Activity | 0.000 ** | |||
Frequency of visit | 0.000 ** | |||
Perception | Humidity perception | 0.239 | ||
Wind perception | 0.000 ** | |||
TSV | 0.023 * | |||
PT | 0.172 | |||
Thermal index | UTCI ‘Wellbeing’ | 0.0246 * | ||
PET ‘no thermal stress’ | 0.007 ** |
Variable | Pearson Correlation | |
---|---|---|
Madrid | Newcastle | |
Coef. Correlation | ||
Ta (°C) | 0.14 ** | 0.128 |
HR (%) | −0.13 ** | 0.177 |
Ws (m/s) | 0.10 * | −0.252 * |
SVF | −0.03 | −0.06 |
Trm (°C) | 0.24 ** | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baquero Larriva, M.T.; Higueras García, E. Influence of Microclimate on Older Peoples’ Outdoor Thermal Comfort and Health during Autumn in Two European Cities. Designs 2023, 7, 27. https://doi.org/10.3390/designs7010027
Baquero Larriva MT, Higueras García E. Influence of Microclimate on Older Peoples’ Outdoor Thermal Comfort and Health during Autumn in Two European Cities. Designs. 2023; 7(1):27. https://doi.org/10.3390/designs7010027
Chicago/Turabian StyleBaquero Larriva, María Teresa, and Ester Higueras García. 2023. "Influence of Microclimate on Older Peoples’ Outdoor Thermal Comfort and Health during Autumn in Two European Cities" Designs 7, no. 1: 27. https://doi.org/10.3390/designs7010027
APA StyleBaquero Larriva, M. T., & Higueras García, E. (2023). Influence of Microclimate on Older Peoples’ Outdoor Thermal Comfort and Health during Autumn in Two European Cities. Designs, 7(1), 27. https://doi.org/10.3390/designs7010027