Novel Design of Assistive Technologies Based on the Interconnection of Motion Capture and Virtual Reality Systems to Foster Task Performance of the Ageing Workforce
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. First Analysis and Creation of the Lines of Research
3.2. Research Area 1: Training, Learning, and Communication
3.3. Research Area 2: Design of Workplace and Ergonomic Analysis
3.4. Challenges
3.5. Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Felice, F.; Longo, F.; Padovano, A.; Falcone, D.; Baffo, I. Proposal of a multidimensional risk assessment methodolgy to assess ageing workforce in a manufacturing industry: A pilot case study. Saf. Sci. 2022, 149, 105681. [Google Scholar] [CrossRef]
- Alves, J.; Lima, T.M.; Gaspar, P.D. The sociodemographic challenge in human-centred production systems–a systematic literature review. Theor. Issues Ergon. Sci. 2022, 1–23. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; Silvera-Natera, E.; Petrillo, A.; Gul, M.; Yucesan, M. A multicriteria approach to integrating occupational safety & health performance and industry systems productivity in the context of aging workforce: A case study. Saf. Sci. 2022, 152, 105764. [Google Scholar] [CrossRef]
- ISO Standard No. 25550:2022; Ageing Societies-General Requirements and Guidelines for Ana Age-Inclusive Workforce. International Organization for Standardization: Geneva, Switzerland, 2022.
- Nygaard, N.-P.B.; Thomsen, G.F.; Rasmussen, J.; Skadhauge, L.R.; Gram, B. Workability in the ageing workforce—A population-based cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 12656. [Google Scholar] [CrossRef] [PubMed]
- Norheim, K.L.; Samani, A.; Madeleine, P. The effects of age on response time, accuracy, and shoulder/arm kinematics during hammering. Appl. Ergon. 2020, 90, 103157. [Google Scholar] [CrossRef]
- Gruevski, K.M.; Callaghan, J.P. The effect of age, prolonged seated work and sex on posture and perceived effort during a lifting task. Appl. Ergon. 2020, 89, 103198. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, H.; Chand, S.; Xia, W.; Liu, Z.; Xu, X.; Wang, L.; Qin, Z.; Bao, J. Outlook on human-centric manufacturing towards Industry 5.0. J. Manuf. Syst. 2022, 62, 612–627. [Google Scholar] [CrossRef]
- Manghisi, V.M.; Evangelista, A.; Uva, A.E. A Virtual Reality Approach for Assisting Sustainable Human-Centered Ergonomic Design: The ErgoVR tool. Procedia Comput. Sci. 2022, 200, 1338–1346. [Google Scholar] [CrossRef]
- Grabowski, A.; Jankowski, J.; Wodzyński, M. Teleoperated mobile robot with two arms: The influence of a human-machine interface, VR training and operator age. Int. J. Hum. Comput. Stud. 2021, 156, 102707. [Google Scholar] [CrossRef]
- Kačerová, I.; Kubr, J.; Hořejší, P.; Kleinová, J. Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit. Appl. Sci. 2022, 12, 2150. [Google Scholar] [CrossRef]
- Liagkou, V.; Salmas, D.; Stylios, C. Stylios, Realizing Virtual Reality Learning Environment for Industry 4.0. Procedia CIRP 2019, 79, 712–717. [Google Scholar] [CrossRef]
- Babadi, S.Y.; Daneshmandi, H. Effects of virtual reality versus conventional balance training on balance of the elderly. Exp. Gerontol. 2021, 153, 111498. [Google Scholar] [CrossRef]
- Abuwarda, Z.; Mostafa, K.; Oetomo, A.; Hegazy, T.; Morita, P. Wearable devices: Cross benefits from healthcare to construction. Autom. Constr. 2022, 142, 104501. [Google Scholar] [CrossRef]
- McDevitt, S.; Hernandez, H.; Hicks, J.; Lowell, R.; Bentahaikt, H.; Burch, R.; Ball, J.; Chander, H.; Freeman, C.; Taylor, C.; et al. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering 2022, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.; Gaspar, P.D.; Lima, T.M. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends. Machines 2022, 10, 702. [Google Scholar] [CrossRef]
- Lemos, J.; Gaspar, P.D.; Lima, T.M. Individual Environmental Risk Assessment and Management in Industry 4.0: An IoT-Based Model. Appl. Syst. Innov. 2022, 5, 88. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual (Version 1.6.17); Univeristeit Leiden: Leiden, The Netherlands, 2021; pp. 1–53. Available online: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf (accessed on 9 January 2023).
- Calzavara, M.; Battini, D.; Bogataj, D.; Sgarbossa, F.; Zennaro, I. Ageing workforce management in manufacturing systems: State of the art and future research agenda. Int. J. Prod. Res. 2019, 58, 729–747. [Google Scholar] [CrossRef]
- Giakoumis, D.; Votis, K.; Altsitsiadis, E.; Segkouli, S.; Paliokas, I.; Tzovaras, D. Smart, personalized and adaptive ICT solutions for active, healthy and productive ageing with enhanced workability. In PETRA ’19: Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments; Association for Computing Machinery: New York, NY, USA, 2019; pp. 442–447. [Google Scholar] [CrossRef]
- Mark, B.G.; Rauch, E.; Matt, D.T. Worker assistance systems in manufacturing: A review of the state of the art and future directions. J. Manuf. Syst. 2021, 59, 228–250. [Google Scholar] [CrossRef]
- Santamaría-Bonfil, G.; Ibáñez, M.B.; Pérez-Ramírez, M.; Arroyo-Figueroa, G.; Martínez-Álvarez, F. Learning analytics for student modeling in virtual reality training systems: Lineworkers case. Comput. Educ. 2020, 151, 103871. [Google Scholar] [CrossRef]
- Forest, D.D. Training the next generation of operators: AFPM immersive learning. Process. Saf. Prog. 2021, 40, 219–223. [Google Scholar] [CrossRef]
- Cheung, J.C.W.; Ni, M.; Tam, A.Y.C.; Chan, T.T.C.; Cheung, A.K.Y.; Tsang, O.Y.H.; Yip, C.B.; Lam, W.K.; Wong, D.W.C. Virtual reality based multiple life skill training for intellectual disability: A multicenter randomized controlled trial. Eng. Regen. 2022, 3, 121–130. [Google Scholar] [CrossRef]
- Van Benthem, K.; Herdman, C.M. A virtual reality cognitive health screening tool for aviation: Managing accident risk for older pilots. Int. J. Ind. Ergon. 2021, 85, 103169. [Google Scholar] [CrossRef]
- Trappey, A.J.; Trappey, C.V.; Chao, M.H.; Wu, C.T. Wu, VR-enabled engineering consultation chatbot for integrated and intelligent manufacturing services. J. Ind. Inf. Integr. 2022, 26, 100331. [Google Scholar] [CrossRef]
- Wolfartsberger, J.; Zenisek, J.; Wild, N. Supporting teamwork in industrial virtual reality applications. Procedia Manuf. 2020, 42, 2–7. [Google Scholar] [CrossRef]
- Simonetto, M.; Arena, S.; Peron, M. A methodological framework to integrate motion capture system and virtual reality for assembly system 4.0 workplace design. Saf. Sci. 2021, 146, 105561. [Google Scholar] [CrossRef]
- Arkouli, Z.; Michalos, G.; Makris, S. On the Selection of Ergonomics Evaluation Methods for Human Centric Manufacturing Tasks. Procedia CIRP 2022, 107, 89–94. [Google Scholar] [CrossRef]
- Spook, S.M.; Koolhaas, W.; Bültmann, U.; Brouwer, S. Implementing sensor technology applications for workplace health promotion: A needs assessment among workers with physically demanding work. BMC Public Health 2019, 19, 1100. [Google Scholar] [CrossRef] [Green Version]
- Porta, M.; Orrù, P.F.; Pau, M. Use of wearable sensors to assess patterns of trunk flexion in young and old workers in the Metalworking Industry. Ergonomics 2021, 64, 1543–1554. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef]
- Umer, W.; Li, H.; Lu, W.; Szeto, G.P.Y.; Wong, A.Y. Development of a tool to monitor static balance of construction workers for proactive fall safety management. Autom. Constr. 2018, 94, 438–448. [Google Scholar] [CrossRef]
- Tammana, A.; McKay, C.; Cain, S.M.; Davidson, S.P.; Vitali, R.V.; Ojeda, L.; Stirling, L.; Perkins, N.C. Load-embedded inertial measurement unit reveals lifting performance. Appl. Ergon. 2018, 70, 68–76. [Google Scholar] [CrossRef]
- Giannini, P.; Bassani, G.; Avizzano, C.A.; Filippeschi, A. Wearable sensor network for biomechanical overload assessment in manual material handling. Sensors 2020, 20, 3877. [Google Scholar] [CrossRef]
- Bortolini, M.; Faccio, M.; Gamberi, M.; Pilati, F. Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Comput. Ind. Eng. 2018, 139, 105485. [Google Scholar] [CrossRef]
- Wahyudi, M.A.; Dania, W.A.P.; Silalahi, R.L.R. Work Posture Analysis of Manual Material Handling Using OWAS Method. Agric. Agric. Sci. Procedia 2015, 3, 195–199. [Google Scholar] [CrossRef]
- McAtamney, L.; Hignett, S. Rapid Entire Body Assessment. Handb. Hum. Factors Ergon. Methods 2000, 31, 201–205. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Yang, X.; Kong, L.; Luo, X.; Wong, A.Y.L. An automatic and non-invasive physical fatigue assessment method for construction workers. Autom. Constr. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- McAtamney, L.; Corlett, N.E. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Caporaso, T.; Grazioso, S.; Di Gironimo, G. Development of an Integrated Virtual Reality System with Wearable Sensors for Ergonomic Evaluation of Human–Robot Cooperative Workplaces. Sensors 2022, 22, 2413. [Google Scholar] [CrossRef]
- Daria, B.; Martina, C.; Alessandro, P.; Fabio, S.; Valentina, V.; Zennaro, I. Integrating mocap system and immersive reality for efficient human-centred workstation design. IFAC-PapersOnLine 2018, 51, 188–193. [Google Scholar] [CrossRef]
- Manghisi, V.M.; Uva, A.E.; Fiorentino, M.; Gattullo, M.; Boccaccio, A.; Evangelista, A. Automatic ergonomic postural risk monitoring on the factory shopfloor -The Ergosentinel tool. Procedia Manuf. 2020, 42, 97–103. [Google Scholar] [CrossRef]
- Berti, N.; Finco, S.; Guidolin, M.; Reggiani, M.; Battini, D. Real-time postural training effects on single and multi-person ergonomic risk scores. IFAC-PapersOnLine 2022, 55, 163–168. [Google Scholar] [CrossRef]
- Battini, D.; Berti, N.; Finco, S.; Guidolin, M.; Reggiani, M.; Tagliapietra, L. WEM-Platform: A real-time platform for full-body ergonomic assessment and feedback in manufacturing and logistics systems. Comput. Ind. Eng. 2022, 164, 107881. [Google Scholar] [CrossRef]
- Segkouli, S.; Giakoumis, D.; Votis, K.; Triantafyllidis, A.; Paliokas, I.; Tzovaras, D. Smart Workplaces for older adults: Coping ‘ethically’ with technology pervasiveness. Univers. Access Inf. Soc. 2021, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.; Schall, M.C.; Chen, H.; Gallagher, S.; Davis, G.A.; Sesek, R. Manufacturing worker perceptions of using wearable inertial sensors for multiple work shifts. Appl. Ergon. 2021, 98, 103579. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Hum. Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Dickinson, K.J.; Gronseth, S.L. Application of Universal Design for Learning (UDL) Principles to Surgical Education During the COVID-19 Pandemic. J. Surg. Educ. 2020, 77, 1008–1012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, J.; Lima, T.M.; Gaspar, P.D. Novel Design of Assistive Technologies Based on the Interconnection of Motion Capture and Virtual Reality Systems to Foster Task Performance of the Ageing Workforce. Designs 2023, 7, 23. https://doi.org/10.3390/designs7010023
Alves J, Lima TM, Gaspar PD. Novel Design of Assistive Technologies Based on the Interconnection of Motion Capture and Virtual Reality Systems to Foster Task Performance of the Ageing Workforce. Designs. 2023; 7(1):23. https://doi.org/10.3390/designs7010023
Chicago/Turabian StyleAlves, Joel, Tânia M. Lima, and Pedro D. Gaspar. 2023. "Novel Design of Assistive Technologies Based on the Interconnection of Motion Capture and Virtual Reality Systems to Foster Task Performance of the Ageing Workforce" Designs 7, no. 1: 23. https://doi.org/10.3390/designs7010023
APA StyleAlves, J., Lima, T. M., & Gaspar, P. D. (2023). Novel Design of Assistive Technologies Based on the Interconnection of Motion Capture and Virtual Reality Systems to Foster Task Performance of the Ageing Workforce. Designs, 7(1), 23. https://doi.org/10.3390/designs7010023