Estimating the Buckling Load of Steel Plates with Center Cut-Outs by ANN, GEP and EPR Techniques
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Materials and Methods
2.1. Steel Setup and Experimental Data Collection
2.2. Collected Database and Statistical Analysis
- Aspect ratio (length/width) (L/W),
- Slenderness ratio (width/thickness) (W/t),
- Loss ratio (hole diameter/width) (D/W),
- Boundary conditions (buckling coefficient in width dir. x buckling coef. in length dir.) (Kx.Ky), where K = 2.00 for clamp-free, 1.00 for simple-simple, 0.75 for simple-clamp, and 0.50 for clamp-clamp,
- Relative buckling stress (buckling stress/yielding stress) (Fb/Fy), where buckling stress = buckling load/net area =
2.3. Research Program
3. Results and Discussion
3.1. Prediction of Relative Buckling Stress (Fb/Fy)
3.1.1. Model (1)—Using GEP Technique
3.1.2. Model (2)—Using ANN Technique
3.1.3. Model (3)—Using EPR Technique
4. Conclusions
- -
- Both ANN and EPR have the most similar prediction accuracy, 89.6% and 84.7%, respectively, while the GEP model has the lowest prediction accuracy (77.3%).
- -
- Although, the error percentage of the ANN and EPR models were so close, the output of the EPR model was closed form equations which could be manually used or as software unlike the ANN output which cannot be manually used.
- -
- The summation of the absolute weights of each neuron in the input layer of the developed (ANN) model indicated that aspect ratio (L/W) had major influences on the relative buckling stress rather than the slenderness ratio (W/t), while the loss ratio (D/W) and boundary conditions (Kx.Ky) had less impact on (Fb/Fy).
- -
- The GA technique successfully reduced the 70 terms of conventional polynomial regression quadrilateral formula to only 10 terms without significant impact on its accuracy.
- -
- Like any other regression technique, the generated formulas were valid within the considered range of parameter values, beyond this range the prediction accuracy should be verified.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Utilized Database
L/W. | W/t. | D/W. | Kx.Ky | Fb/Fy. | L/W. | W/t. | D/W. | Kx.Ky | Fb/Fy. |
1.5. | 48. | 0.20. | 4.0. | 0.25. | 1.5. | 48. | 0.35. | 1.0. | 0.08. |
1.5. | 48. | 0.50. | 4.0. | 0.25. | 1.5. | 48. | 0.20. | 4.0. | 0.25. |
1.5. | 48. | 0.40. | 4.0. | 0.24. | 5.0. | 200. | 0.10. | 0.5. | 0.02. |
1.0. | 63. | 0.08. | 1.0. | 1.02. | 1.5. | 48. | 0.10. | 4.0. | 0.23. |
1.5. | 48. | 0.10. | 4.0. | 0.29. | 1.7. | 600. | 0.10. | 0.5. | 0.02. |
1.5. | 48. | 0.40. | 4.0. | 0.26. | 1.5. | 48. | 0.30. | 4.0. | 0.28. |
1.5. | 48. | 0.25. | 1.0. | 0.07. | 1.5. | 48. | 0.50. | 4.0. | 0.30. |
1.0. | 83. | 0.11. | 1.0. | 0.95. | 1.5. | 48. | 0.70. | 4.0. | 0.37. |
1.5. | 48. | 0.50. | 4.0. | 0.30. | 1.5. | 48. | 0.10. | 4.0. | 0.24. |
1.0. | 50. | 0.16. | 1.0. | 0.90. | 1.0. | 42. | 0.16. | 1.0. | 0.96. |
1.6. | 48. | 0.10. | 4.0. | 0.17. | 2.5. | 400. | 0.10. | 0.5. | 0.02. |
1.0. | 63. | 0.14. | 1.0. | 0.95. | 2.0. | 100. | 0.50. | 1.0. | 0.17. |
1.1. | 48. | 0.10. | 4.0. | 0.45. | 10.0. | 50. | 0.10. | 0.5. | 0.07. |
1.5. | 48. | 0.30. | 4.0. | 0.24. | 1.5. | 48. | 0.30. | 4.0. | 0.25. |
1.0. | 63. | 0.11. | 1.0. | 1.01. | 1.5. | 48. | 0.15. | 4.0. | 0.13. |
2.5. | 80. | 0.10. | 0.5. | 0.39. | 1.5. | 48. | 0.08. | 1.0. | 0.05. |
1.5. | 48. | 0.30. | 4.0. | 0.26. | 3.3. | 300. | 0.10. | 0.5. | 0.02. |
1.5. | 48. | 0.50. | 4.0. | 0.31. | 1.5. | 48. | 0.10. | 4.0. | 0.20. |
1.0. | 50. | 0.14. | 1.0. | 0.79. | 1.4. | 700. | 0.10. | 0.5. | 0.01. |
2.0. | 100. | 0.10. | 0.5. | 0.39. | 10.0. | 100. | 0.10. | 0.5. | 0.02. |
1.0. | 83. | 0.14. | 1.0. | 0.93. | 1.5. | 48. | 0.60. | 4.0. | 0.22. |
1.1. | 48. | 0.10. | 4.0. | 0.49. | 2.0. | 100. | 0.60. | 1.0. | 0.20. |
1.0. | 100. | 0.08. | 1.0. | 0.98. | 1.1. | 48. | 0.10. | 4.0. | 0.51. |
1.7. | 120. | 0.10. | 0.5. | 0.38. | 2.0. | 100. | 0.30. | 1.0. | 0.14. |
2.0. | 100. | 0.40. | 1.0. | 0.15. | 1.5. | 48. | 0.10. | 4.0. | 0.28. |
1.5. | 48. | 0.10. | 4.0. | 0.23. | 1.5. | 48. | 0.50. | 4.0. | 0.34. |
1.5. | 48. | 0.20. | 4.0. | 0.23. | 2.0. | 250. | 0.10. | 0.5. | 0.06. |
1.0. | 83. | 0.08. | 1.0. | 0.99. | 1.1. | 48. | 0.10. | 4.0. | 0.51. |
2.1. | 48. | 0.10. | 4.0. | 0.09. | 2.0. | 100. | 0.10. | 1.0. | 0.11. |
2.1. | 48. | 0.10. | 4.0. | 0.09. | 1.5. | 48. | 0.40. | 4.0. | 0.28. |
2.1. | 48. | 0.10. | 4.0. | 0.09. | 3.3. | 60. | 0.10. | 0.5. | 0.40. |
1.0. | 83. | 0.16. | 1.0. | 0.90. | 1.5. | 48. | 0.40. | 1.0. | 0.16. |
1.5. | 48. | 0.08. | 4.0. | 0.12. | 2.1. | 48. | 0.10. | 4.0. | 0.08. |
1.4. | 350. | 0.10. | 0.5. | 0.06. | 1.0. | 50. | 0.08. | 1.0. | 1.03. |
3.3. | 150. | 0.10. | 0.5. | 0.07. | 2.0. | 500. | 0.10. | 0.5. | 0.02. |
1.5. | 48. | 0.40. | 4.0. | 0.29. | 10.0. | 20. | 0.10. | 0.5. | 0.44. |
1.5. | 48. | 0.60. | 4.0. | 0.31. | 1.6. | 48. | 0.10. | 4.0. | 0.19. |
1.0. | 100. | 0.11. | 1.0. | 0.93. | 1.7. | 300. | 0.10. | 0.5. | 0.06. |
2.1. | 48. | 0.10. | 4.0. | 0.09. | 1.0. | 63. | 0.16. | 1.0. | 0.90. |
1.4. | 140. | 0.10. | 0.5. | 0.35. | 1.6. | 48. | 0.10. | 4.0. | 0.20. |
1.0. | 42. | 0.11. | 1.0. | 1.02. | 1.5. | 48. | 0.15. | 1.0. | 0.06. |
1.5. | 48. | 0.10. | 4.0. | 0.22. | 1.5. | 48. | 0.60. | 4.0. | 0.31. |
1.6. | 48. | 0.10. | 4.0. | 0.17. | 1.5. | 48. | 0.45. | 1.0. | 0.20. |
1.5. | 48. | 0.20. | 4.0. | 0.25. | 1.5. | 48. | 0.50. | 1.0. | 0.23. |
2.0. | 100. | 0.20. | 1.0. | 0.12. | 1.5. | 48. | 0.10. | 4.0. | 0.22. |
1.5. | 48. | 0.25. | 4.0. | 0.14. | 5.0. | 100. | 0.10. | 0.5. | 0.07. |
1.5. | 48. | 0.90. | 4.0. | 0.52. | 1.0. | 42. | 0.14. | 1.0. | 1.02. |
1.5. | 48. | 0.10. | 4.0. | 0.21. | 2.5. | 200. | 0.10. | 0.5. | 0.06. |
1.0. | 100. | 0.14. | 1.0. | 0.92. | 1.0. | 50. | 0.11. | 1.0. | 1.01. |
1.1. | 48. | 0.10. | 4.0. | 0.49. | 1.6. | 48. | 0.10. | 4.0. | 0.19. |
1.5. | 48. | 0.38. | 4.0. | 0.21. | 5.0. | 40. | 0.10. | 0.5. | 0.41. |
1.0. | 100. | 0.16. | 1.0. | 0.88. | . | . | . | . | . |
References
- Gore, R.; Lokavarapu, B.R. Effect of Elliptical Cutout on Buckling Load for Isotropic Thin Plate. In Innovations in Mechanical Engineering; Narasimham, G.S.V.L., Babu, A.V., Reddy, S.S., Dhanasekaran, R., Eds.; Springer: Singapore, 2022; pp. 51–69. [Google Scholar]
- Al Qablan, H. Applicable Formulas for Shear and Thermal Buckling of Perforated Rectangular Panels. Adv. Civ. Eng. 2022, 2022, 3790462. [Google Scholar] [CrossRef]
- Dehadray, P.M.; Alampally, S.; Lokavarapu, B.R. Buckling Analysis of Thin Isotropic Square Plate with Rectangular Cut-Out. In Innovations in Mechanical Engineering; Narasimham, G.S.V.L., Babu, A.V., Reddy, S.S., Dhanasekaran, R., Eds.; Springer: Singapore, 2022; pp. 71–86. [Google Scholar]
- Taherian, I.; Ghalehnovi, M.; Jahangir, H. Analytical Study on Composite Steel Plate Walls Using a Modified Strip Model. In Proceedings of the 10th International Congress on Civil Engineering, Abriz, Iran, 5–7 May 2015. [Google Scholar]
- Sinha, V.; Patel, R.; Ghetiya, K.; Nair, M.; Trivedi, T.; Rao, L.B. Impact of Diamond-Shaped Cut-Out on Buckling Nature of Isotropic Stainless-Steel Plate. In Innovations in Mechanical Engineering; Narasimham, G.S.V.L., Babu, A.V., Reddy, S.S., Dhanasekaran, R., Eds.; Springer: Singapore, 2022; pp. 119–146. [Google Scholar]
- Soleymani, A.; Reza Esfahani, m. Effect of concrete strength and thickness of flat slab on preventing of progressive collapse caused by elimination of an internal column. J. Struct. Constr. Eng. 2019, 6, 24–40. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Khorshidi, K.; Amabili, M. Exact solution for linear buckling of rectangular Mindlin plates. J. Sound Vib. 2008, 315, 318–342. [Google Scholar] [CrossRef]
- Orun, A.E.; Guler, M.A. Effect of hole reinforcement on the buckling behaviour of thin-walled beams subjected to combined loading. Thin-Walled Struct. 2017, 118, 12–22. [Google Scholar] [CrossRef]
- Singh, T.G.; Chan, T.-M. Effect of access openings on the buckling performance of square hollow section module stub columns. J. Constr. Steel Res. 2021, 177, 106438. [Google Scholar] [CrossRef]
- Hasrati, E.; Ansari, R.; Rouhi, H. A numerical approach to the elastic/plastic axisymmetric buckling analysis of circular and annular plates resting on elastic foundation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 7041–7061. [Google Scholar] [CrossRef]
- Russell, M.J.; Lim, J.B.; Roy, K.; Clifton, G.C.; Ingham, J.M. Welded steel beam with novel cross-section and web openings subject to concentrated flange loading. Structures 2020, 24, 580–599. [Google Scholar] [CrossRef]
- Rao, L.B.; Rao, C.K. Buckling of Circular Plates with an Internal Elastic Ring Support and Elastically Restrained Guided Edge Against Translation. Mech. Based Des. Struct. Mach. 2009, 37, 60–72. [Google Scholar] [CrossRef]
- Jahangir, H.; Daneshvar Khorram, M.H.; Ghalehnovi, M. Influence of geometric parameters on perforated core buckling restrained braces behavior. J. Struct. Constr. Eng. 2019, 6, 75–94. [Google Scholar] [CrossRef]
- Daneshvar, M.H.; Saffarian, M.; Jahangir, H.; Sarmadi, H. Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method. Eng. Comput. 2022, 37, 1–21. [Google Scholar] [CrossRef]
- Jahangir, H.; Khatibinia, M.; Kavousi, M. Application of Contourlet Transform in Damage Localization and Severity Assessment of Prestressed Concrete Slabs. Soft Comput. Civ. Eng. 2021, 5, 39–67. [Google Scholar] [CrossRef]
- Muddappa, P.P.Y.; Rajanna, T.; Giridhara, G. Effect of reinforced cutouts on the buckling and vibration performance of hybrid fiber metal laminates. Mech. Based Des. Struct. Mach. 2021, 49, 1–21. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Choi, E.; Kim, W.J. Comprehensive investigation of buckling behavior of plates consider-ing effects of holes. Struct. Eng. Mech. 2018, 68, 261–275. [Google Scholar] [CrossRef]
- Abolghasemi, S.; Eipakchi, H.; Shariati, M. An analytical solution for buckling of plates with circular cutout subjected to non-uniform in-plane loading. Arch. Appl. Mech. Vol. 2019, 89, 2519–2543. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, D.-H.; Kim, S.-K.; Kim, J.-D.; Lee, J.-M. Lateral Deflection Behavior of Perforated Steel Plates: Experimental and Numerical Approaches. J. Mar. Sci. Eng. 2021, 9, 498. [Google Scholar] [CrossRef]
- Yidris, N.; Hassan, M. The effects of cut-out on thin-walled plates. In Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Philadelphia, PA, USA, 2019. [Google Scholar] [CrossRef]
- Kumar, M.S.; Alagusundaramoorthy, P.; Sundaravadivelu, R. Ultimate strength of square plate with rectangular opening under axial compression. J. Nav. Arch. Mar. Eng. 2007, 4, 15–26. [Google Scholar] [CrossRef]
- Maiorana, E.; Pellegrino, C.; Modena, C. Linear buckling analysis of perforated plates subjected to localised symmetrical load. Eng. Struct. 2008, 30, 3151–3158. [Google Scholar] [CrossRef]
- Singh, S.; Kulkarni, K.; Pandey, R.; Singh, H. Buckling analysis of thin rectangular plates with cutouts subjected to partial edge compression using FEM. J. Eng. Des. Technol. 2012, 10, 128–142. [Google Scholar] [CrossRef]
- Shariati, M.; Dadrasi, A. Numerical and Experimental Investigation of Loading Band on Buckling of Perforated Rectangular Steel Plates. Res. J. Recent Sci. 2012, 1, 63–71. [Google Scholar]
- Djelosevic, M.; Tepic, J.; Tanackov, I.; Kostelac, M. Mathematical Identification of Influential Parameters on the Elastic Buckling of Variable Geometry Plate. Sci. World J. 2013, 2013, 268673. [Google Scholar] [CrossRef] [Green Version]
- De Mauro Vasconcellos, R.; Liércio André, I.; Alexandra Pinto, D.; Daniel, H. Elastic and Elasto-Plastic Buckling Analysis of Perforated Steel Plates. Repositório Inst. 2013. Available online: https://repositorio.furg.br/handle/1/4929 (accessed on 1 May 2022).
- Behzad, M.; Noh, H.-C. Use of Buckling Coefficient in Predicting Buckling Load of Plates with and without Holes. J. Korean Soc. Adv. Compos. Struct. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Mohammadzadeh, B.; Noh, H.C. Investigation into the buckling coefficients of plates with holes considering variation of hole size and plate thickness. Mechanika 2016, 22, 167–175. [Google Scholar] [CrossRef]
- Shariati, M.; Faradjian, Y.; Mehrabi, H. Numerical and Experimental Study of Buckling of Rectangular Steel Plates with a Cutout. J. Solid Mech. 2016, 8, 116–129. [Google Scholar]
- Jana, P. Optimal design of uniaxially compressed perforated rectangular plate for maximum buckling load. Thin-Walled Struct. 2016, 103, 225–230. [Google Scholar] [CrossRef]
- Lorenzini, G.; Helbig, D.; Silva, C.; Real, M.; Santos, E.; Rocha, L. Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the constructal design method. Int. J. Heat Technol. 2016, 34, S9–S20. [Google Scholar] [CrossRef]
- Adah, D.E.; Onwuka, O.M. Ibearugbulem, Matlab Based Buckling Analysis of Thin Rectangular Flat Plates. Am. J. Eng. Res. 2019, 8, 224–228. [Google Scholar]
- Gracia, J.B.; Rammerstorfer, F.G. Increase in buckling loads of plates by introduction of cutouts. Acta Mech. 2019, 230, 2873–2889. [Google Scholar] [CrossRef]
- Da Silva, C.C.C.; Helbig, D.; Cunha, M.L.; dos Santos, E.D.; Rocha, L.A.O.; Real, M.D.V.; Isoldi, L.A. Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 309. [Google Scholar] [CrossRef]
- Rao, L.B.; Rao, C.K. Fundamental Buckling of Annular Plates with Elastically Restrained Guided Edges Against Translation. Mech. Based Des. Struct. Mach. 2011, 39, 409–419. [Google Scholar] [CrossRef]
- Rao, L.B.; Rao, C.K. Buckling of circular plate with foundation and elastic edge. Int. J. Mech. Mater. Des. 2015, 11, 149–156. [Google Scholar] [CrossRef]
- Rao, L.B.; Rao, C.K. Buckling of Annular Plates with Elastically Restrained External and Internal Edges. Mech. Based Des. Struct. Mach. 2013, 41, 222–235. [Google Scholar] [CrossRef]
- Fu, W.; Wang, B. A semi-analytical model on the critical buckling load of perforated plates with opposite free edges. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 4885–4894. [Google Scholar] [CrossRef]
- Hosseinpour, P.; Hosseinpour, M.; Sharifi, Y. Artificial neural networks for predicting ultimate strength of steel plates with a single circular opening under axial compression. Ships Offshore Struct. 2022, 17, 1–16. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Gere, J.M. Theory of Elastic Stability; Tata McGraw-Hill Education Pvt. Ltd.: New Delhi, India, 2010. [Google Scholar]
- Ebid, A.M.; El-Aghoury, M.A.; Onyelowe, K.C. Estimating the Optimum Weight for Latticed Power-Transmission Towers Using Different (AI) Techniques. Designs 2022, 6, 62. [Google Scholar] [CrossRef]
- Reda, M.A.; Ebid, A.M.; Ibrahim, S.M.; El-Aghoury, M.A. Strength of Composite Columns Consists of Welded Double CF Sigma-Sections Filled with Concrete—An Experimental Study. Designs 2022, 6, 82. [Google Scholar] [CrossRef]
- Nemeth, M.P. Buckling behavior of compression-loaded symmetrically laminated angle-ply plates with holes. AIAA J. 1988, 26, 330–336. [Google Scholar] [CrossRef]
- Faradjian Mohtaram, Y.; Taheri Kahnamouei, J.; Shariati, M.; Behjat, B. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts. J. Zhejiang Univ. Sci. A 2012, 13, 469–480. [Google Scholar] [CrossRef]
- Kelpša, Š.; Peltonen, S. Local Buckling Coefficient Calculation Method of Thin Plates with Round Holes. ce/Papers 2019, 3, 841–846. [Google Scholar] [CrossRef]
- Shi, J.; Guo, L.; Gao, S. Study on the buckling behavior of steel plate composite walls with diamond ar-ranged studs under axial compression. J. Build. Eng. 2022, 50, 2352–7102. [Google Scholar]
- Wu, Y.; Xing, Y.; Liu, B. Analysis of isotropic and composite laminated plates and shells using a differential quad-rature hierarchical finite element method. Compos. Struct. 2018, 205, 11–25. [Google Scholar] [CrossRef]
- Kabir, H.; Aghdam, M. A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams. Compos. Struct. 2019, 212, 184–198. [Google Scholar] [CrossRef]
- Sun, Z.; Lei, Z.; Bai, R.; Jiang, H.; Zou, J.; Ma, Y.; Yan, C. Prediction of compression buckling load and buckling mode of hat-stiffened panels using artificial neural network. Eng. Struct. 2021, 242, 112275. [Google Scholar] [CrossRef]
- Zhu, S.; Ohsaki, M.; Guo, X. Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning. Eng. Struct. 2020, 226, 111374. [Google Scholar] [CrossRef]
- Badarloo, B.; Jafari, F. A Numerical Study on the Effect of Position and Number of Openings on the Performance of Composite Steel Shear Walls. Buildings 2018, 8, 121. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Mandal, P.; Adil, M.T.; Naz, F. Application of artificial neural network to predict buckling load of thin cylindrical shells under axial compression. Eng. Struct. 2021, 248, 113221. [Google Scholar] [CrossRef]
- Abambres, M.; Rajana, K.; Tsavdaridis, K.D.; Ribeiro, T.P. Neural Network-Based Formula for the Buckling Load Prediction of I-Section Cellular Steel Beams. Computers 2018, 8, 2. [Google Scholar] [CrossRef]
- El-Aghoury, M.A.; Ebid, A.M.; Onyelowe, K.C. Optimum Design of Fully Composite, Unstiffened, Built-Up, Hybrid Steel Girder Using GRG, NLR, and ANN Techniques. J. Eng. 2022, 2022, 7439828. [Google Scholar] [CrossRef]
- Kadry, A.A.; Ebid, A.M.; Mokhtar, A.-S.A.; El-Ganzoury, E.N.; Haggag, S.A. Parametric study of Unstiffened multi-planar tubular KK-Joints. Results Eng. 2022, 14, 100400. [Google Scholar] [CrossRef]
(L/W) | (W/t) | (D/W) | (Kx.Ky) | (Fb/Fy) | |
---|---|---|---|---|---|
Training set | |||||
Min. | 1.00 | 41.67 | 0.08 | 0.50 | 0.01 |
Max. | 10.00 | 700.00 | 0.90 | 4.00 | 1.02 |
Avg | 1.80 | 92.10 | 0.21 | 2.51 | 0.36 |
SD | 1.51 | 113.76 | 0.17 | 1.60 | 0.32 |
Var | 0.83 | 1.24 | 0.82 | 0.64 | 0.88 |
Validation set | |||||
Min. | 1.0 | 20.0 | 0.1 | 0.5 | 0.0 |
Max. | 10.0 | 500.0 | 0.6 | 4.0 | 1.0 |
Avg | 2.1 | 90.0 | 0.2 | 2.0 | 0.3 |
SD | 1.8 | 98.5 | 0.2 | 1.6 | 0.3 |
Var | 0.82 | 1.09 | 0.83 | 0.79 | 0.91 |
L/W | W/t | D/W | Kx.Ky | Fb/Fy | |
---|---|---|---|---|---|
L/W | 1.00 | ||||
W/t | 0.04 | 1.00 | |||
D/W | −0.14 | −0.21 | 1.00 | ||
Kx.Ky | −0.28 | −0.44 | 0.28 | 1.00 | |
Fb/Fy | −0.31 | −0.27 | −0.11 | −0.23 | 1.00 |
H1 | H2 | H3 | H4 | ||
---|---|---|---|---|---|
(Bias) | 13.70 | 1.37 | 9.75 | 8.58 | |
L/W | 10.88 | −6.93 | 2.93 | 13.16 | |
W/t | −3.84 | 3.82 | 21.04 | −3.67 | |
D/W | −0.63 | −0.49 | −1.57 | 0.85 | |
Kx.Ky | −5.89 | 7.93 | −3.19 | −3.07 | |
H1 | H2 | H3 | H4 | (Bias) | |
Fb/Fy | −5.23 | −10.61 | −27.02 | −10.32 | −22.31 |
Technique | Developed Eq. | SSE | Error % | R2 |
---|---|---|---|---|
GEP | Equation (1) | 0.65 | 22.7 | 0.932 |
ANN | Figure 2 | 0.14 | 10.4 | 0.986 |
EPR | Equation (2) | 0.30 | 15.3 | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayabalan, J.; Dominic, M.; Ebid, A.M.; Soleymani, A.; Onyelowe, K.C.; Jahangir, H. Estimating the Buckling Load of Steel Plates with Center Cut-Outs by ANN, GEP and EPR Techniques. Designs 2022, 6, 84. https://doi.org/10.3390/designs6050084
Jayabalan J, Dominic M, Ebid AM, Soleymani A, Onyelowe KC, Jahangir H. Estimating the Buckling Load of Steel Plates with Center Cut-Outs by ANN, GEP and EPR Techniques. Designs. 2022; 6(5):84. https://doi.org/10.3390/designs6050084
Chicago/Turabian StyleJayabalan, Jagan, Manju Dominic, Ahmed M. Ebid, Atefeh Soleymani, Kennedy C. Onyelowe, and Hashem Jahangir. 2022. "Estimating the Buckling Load of Steel Plates with Center Cut-Outs by ANN, GEP and EPR Techniques" Designs 6, no. 5: 84. https://doi.org/10.3390/designs6050084
APA StyleJayabalan, J., Dominic, M., Ebid, A. M., Soleymani, A., Onyelowe, K. C., & Jahangir, H. (2022). Estimating the Buckling Load of Steel Plates with Center Cut-Outs by ANN, GEP and EPR Techniques. Designs, 6(5), 84. https://doi.org/10.3390/designs6050084