Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems
Abstract
:1. Introduction
2. Classification of SWRC Previous Research
2.1. According to Soil Type
2.1.1. Silty/Clayey Sand
2.1.2. Fine Grained Soil
2.1.3. Bentonite
2.1.4. Clay with Geo-Synthetics
2.1.5. Organic Soil
2.1.6. Lime and Gypseous Soil
2.1.7. Frozen
2.1.8. Claystone
2.2. According to Relationship with Soil Parameters
2.2.1. Particle Size
2.2.2. Consistency Limits
2.2.3. Temperature
2.2.4. Influence of Additives on the SWRC
2.2.5. Aging Effects on SWRC
2.2.6. Compaction Level
2.2.7. Matric Suction
2.2.8. Swelling Pressure
2.2.9. Stress History
2.2.10. Void Ratio
2.2.11. Micro-Structure
2.2.12. Electrical Resistivity
2.3. According to Measuring Tests
2.3.1. Laboratory Tests
Pressure Plate Test
Filter Paper Technique
Dewpoint Hygrometer
Tensiometer Technique
Axis-Translation Technique (ATT)
2.3.2. Field Tests
2.4. According to Prediction Technique
2.4.1. Empirical Formula Methods
2.4.2. Pedotransfer Functions
2.4.3. Fractal Equations
2.4.4. AI Techniques
3. Applications of SWRC/SWCC
3.1. Slope Stability and Landslides
3.2. Bearing Capacity (BC)
3.3. Settlement
3.4. Seepage
4. Conclusions
- Problematic soils, specifically expansive soil and loess, show a totally different retention behavior under hydraulic loading. There is much research in previous literature that considers the laboratory or numerical investigation on these soils. However, there are still no comprehensive frameworks that could investigate their retention mechanism based on macro and microstructural behavior.
- It is clear that the retention behavior and mechanism in a low and high suction range are different from each other. Due to the weaknesses of laboratory and field instruments, many previous scholars mainly consider the low to medium suction range behavior. Therefore, it is worth paying more attention to the high suction range of soils and their retention behavior.
- Hydraulic hysteresis is a fundamental issue in unsaturated soil that makes the difference between drying and wetting paths in SWRC. The causes of this phenomenon are still a question despite some previous investigation on this topic. It is necessary to better investigate it in both low and high suction range from laboratory, numerical, and analytical modeling frameworks.
- Most of the existing studies focused on investigating the effect of pure water on SWRCs. However, it is worth noting that osmotic suction is an important part of suction that could change the soil structures and, subsequently, liquid retention behavior. Therefore, it is significantly important to investigate the effects of pore fluid chemistry on the retention behavior of different soils.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Sadeghi, H.; Golaghaei Darzi, A. A review of different approaches to analytical modeling of soil-water retention curves. Sharif J. Civ. Eng. 2021, 37, 111–123. [Google Scholar] [CrossRef]
- Sadeghi, H.; Darzi, A.G. Modelling of soil-water retention curve considering the effects of existing salt solution in the pore fluid. MATEC Web Conf. 2021, 337, 02001. [Google Scholar] [CrossRef]
- Assouline, S.; Or, D. Conceptual and parametric representation of soil hydraulic properties: A review. Vadose Zone J. 2013, 12, 4. [Google Scholar] [CrossRef]
- Ma, K.C.; Lin, Y.J.; Tan, Y.C. The influence of salinity on hysteresis of soil water-retention curves. Hydrol. Process. 2013, 27, 2524–2530. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Tu, H.; Oh, W.T. Soil-water characteristic curve-based methods for predicting the swelling pressure and ground heave in expansive soils. In Proceedings of the Indian Geotechnical Conference, kakinada, India, 18–28 December 2014. [Google Scholar]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A. Estimation of air permeability function from soil-water characteristic curve. Can. Geotech. J. 2019, 56, 505–513. [Google Scholar] [CrossRef]
- Wen, H.; Wang, J.; Wen, V.-F.W.; Muhunthan, B. Soil–Water Characteristic Curves for Soils Stabilized with Class C Fly Ash. Transp. Res. Rec. 2015, 2473, 147–154. [Google Scholar] [CrossRef]
- Fredlund, D.; Fredlund, M. Application of ‘Estimation Procedures’ in Unsaturated Soil Mechanics. Geoscience 2020, 10, 364. [Google Scholar] [CrossRef]
- Zhou, A.N.; Sheng, D.; Carter, J.P. Modelling the effect of initial density on soil-water characteristic curves. Geotechnique 2012, 10, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Abbey, S.J.; Eyo, E.U.; Ng’ambi, S. Swell and microstructural characteristics of high-plasticity clay blended with cement. Bull. Eng. Geol. Environ. 2019, 79, 2119–2130. [Google Scholar] [CrossRef] [Green Version]
- Abbey, S.J.; Eyo, E.U.; Oti, J.; Amakye, S.Y.; Ngambi, S. Mechanical Properties and Microstructure of Fibre-Reinforced Clay Blended with By-Product Cementitious Materials. Geosciences 2020, 10, 241. [Google Scholar] [CrossRef]
- Al-Taie, A.; Disfani, M.; Evans, R.; Arulrajah, A.; Horpibulsuk, S. Volumetric behavior and soil-water characteristic curve of untreated and lime-stabilized reactive clay. Int. J. Geomech. 2019, 19, 1943–5622. [Google Scholar] [CrossRef]
- Ng, C.W.; Pang, Y.W. Experimental investigations of the soil-water characteristics of a volcanic soil. Can. Geotech. J. 2000, 37, 1252–1264. [Google Scholar] [CrossRef]
- Ng, C.W.; Pang, Y. Influence of stress state on soil-water characteristics and slope stability. J. Geotech. Geoenviron. Eng. 2000, 126, 157–166. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Seki, K. SWRC fit—A nonlinear fitting program with a water retention curve for soils 10 having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. 2007, 4, 407–411. [Google Scholar]
- Aneke, F.I. Behaviour Of Unsaturated Soils Fof Road Pavement Structure Under Cyclic Loading. Ph.D. Dissertation, Central University of Technology, Bloemfontein, South Africa, 2018. [Google Scholar]
- Fredlund, D.G. Unsaturated soil mechanics in engineering practice. J. Geotech. Geoenviron. Eng. 2006, 132, 286–321. [Google Scholar] [CrossRef] [Green Version]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons: Hoboken, NJ, USA, 1993; ISBN 0-471-85008-X. [Google Scholar]
- Leong, E.C.; Rahardjo, H. Permeability functions for unsaturated soils. J. Geotech. Geoenviron. Eng. 1997, 123, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.Q.; Fredlund, D.G.; Lee Barbour, S. A study of hysteresis models for soil-water characteristic curves. Can. Geotech. J. 2005, 42, 2005. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W. Unsaturated Soil Mechanics; John Wiley&Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Terzaghi, K. The shearing resistance of saturated soils and the angle between the planes of shear. In Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, 22–26 June 1936. [Google Scholar]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, A. Shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Rice, J.R.; Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 1976, 14, 227–241. [Google Scholar] [CrossRef]
- De Boer, R.; Ehlers, W. The development of the concept of effective stresses. Acta Mech. 1990, 83, 77–92. [Google Scholar] [CrossRef]
- Coussy, O.; Dormieux, L.; Detournay, E. From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 1998, 35, 4619–4635. [Google Scholar] [CrossRef]
- Atkinson, J. The Mechanics of Soils and Foundations; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Khalili, N.; Romero, E.; Marinho, F.A. State of the Art Report. Constitutive Modelling, Experimental Investigation, and Field Instrumentation: Advances in Unsaturated Soil Mechanics. 2022. Available online: https://docs.google.com/viewer?url=https%3A%2F%2Fwww.unsw.edu.au%2Fcontent%2Fdam%2Fzz-drop%2Fsingle-import%2Fengineering%2Fwarassamon-kate-brown%2F2022-05-20ICSMGE-Full-Paper-SOA-Final.pdf&pdf=true (accessed on 1 August 2022).
- Bishop, A.W. The principle of effective stress. Tek. Ukebl. 1959, 39, 859–863. [Google Scholar]
- Schrefler, B.A. The Finite Element Method in Soil Consolidation. Ph.D. Thesis, University College of Swansea, Skewen, Wales, 1984. [Google Scholar]
- Khalili, N.; Khabbaz, M.H. A unique relationship for χ for the determination of the shear strength of unsaturated soils. Geotechnique 1998, 48, 681–687. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng. 2006, 132, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Griffiths, D.V. Profiles of steady-state suction stress in unsaturated soils. J. Geotech. Geoenviron. Eng. 2004, 130, 1063–1076. [Google Scholar] [CrossRef]
- Kim, B.S.; Shibuya, S.; Park, S.W.; Kato, S. Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure. Can. Geotech. J. 2010, 47, 955–970. [Google Scholar] [CrossRef]
- Song, Y.S.; Hwang, W.K.; Jung, S.J.; Kim, T.H. A comparative study of suction stress between sand and silt under unsaturated conditions. Eng. Geol. 2012, 124, 90–97. [Google Scholar] [CrossRef]
- Song, Y.-S. Suction stress in unsaturated sand at different relative densities. Eng. Geol. 2014, 176, 1–10. [Google Scholar] [CrossRef]
- Dong, Y.; Lu, N. Measurement of suction-stress characteristic curve under drying and wetting conditions. Geotech. Test. J. 2017, 40, 107–121. [Google Scholar] [CrossRef]
- Fredlund, D.G. Volume Change Behavior of Unsaturated Soils. 1973. Available online: https://era.library.ualberta.ca/items/108fd903-873c-403b-bff6-5eb2a5db1c7e (accessed on 1 August 2022).
- Fredlund, D.G.; Morgenstern, N.R. Stress state variables for unsaturated soils. J. Geotech. Eng. 1977, 103, 447–466. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Pham, H.Q. A volume-mass constitutive model for unsaturated soils in terms of two independent stress state variables. In Unsaturated Soils, Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, AZ, USA, 2–6 April 2006; ASCE: Reston, VA, USA, 2006; Volume 2006, pp. 105–134. [Google Scholar]
- Lambe, T. The structure of compacted clay. J. Soil Mech. Found. 1958, 84, 1654-1–1654-34. [Google Scholar] [CrossRef]
- Gardner, W.R. Soil suction and water movement. In Pore Pressure and Suction in Soils/Conference Organized by the British National Society of the International Society of Soil Mechanics and Foundation Engineering; Butterworths: London, UK, 1961; pp. 137–140. [Google Scholar]
- Romero, E. A microstructural insight into compacted clayey soils and their hydraulic properties. Eng. Geol. 2013, 165, 3–19. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Paper No. 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Kosugi, K.I. Three-parameter lognormal distribution model for soil water retention. Water Resour. Res. 1994, 30, 891–901. [Google Scholar] [CrossRef]
- Kosugi, K.I. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 1996, 32, 2697–2703. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Arya, L.M.; Leij, F.J.; Shouse, P.J.; van Genuchten, M.T. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 1999, 63, 1063–1070. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Herkelrath, W.N.; Laguna Luna, A.M. Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models. Vadose Zone J. 2007, 6, 766–773. [Google Scholar] [CrossRef]
- Crawford, J.W.; Matsui, N.; Young, I.M. The relation between the moisture-release curve and the structure of soil. Eur. J. Soil Sci. 1995, 46, 369–375. [Google Scholar] [CrossRef]
- Olk, D.C.; Cassman, K.G.; Randall, E.W.; Kinchesh, P.; Sanger, L.J.; Anderson, J.M. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur. J. Soil Sci. 1996, 47, 293–303. [Google Scholar] [CrossRef]
- Assouline, S.; Rouault, Y. Modeling the relationships between particle and pore size distributions in multicomponent sphere packs: Application to the water retention curve. Colloids Surf. Physicochem. Eng. Asp. 1997, 127, 201–210. [Google Scholar] [CrossRef]
- Rawls, W.J.; Gish, T.J.; Brakensiek, D.L. Estimating soil water retention from soil physical properties and characteristics. Adv. Soil Sci. 1991, 16, 213–234. [Google Scholar]
- Timlin, D.J.; Pachepsky, Y.A.; Acock, B.; Whisler, F. Indirect estimation of soil hydraulic properties to predict soybean yield using GLYCIM. Agric. Syst. 1996, 52, 331–353. [Google Scholar] [CrossRef] [Green Version]
- Pachepsky, Y.; Rawls, W.J. (Eds.) Development of Pedotransfer Functions in Soil Hydrology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 30. [Google Scholar]
- Romano, N. Spatial structure of PTF estimates. Dev. Soil Sci. 2004, 30, 295–319. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M.T. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: A review. Vadose Zone J. 2010, 9, 795–820. [Google Scholar] [CrossRef]
- Beckett, C.T.S.; Augarde, C.E. Prediction of soil water retention properties using pore-size distribution and porosity. Can. Geotech. J. 2013, 50, 435–450. [Google Scholar] [CrossRef]
- Zhou, W.H.; Yuen, K.V.; Tan, F. Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities. Eng. Geol. 2014, 179, 1–9. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H. Estimation of permeability function from the soil-water characteristic curve. Eng. Geol. 2015, 2015, 148–156. [Google Scholar] [CrossRef]
- Lapierre, C.; Leroueil, S.; Locat, J. Mercury intrusion and permeability of Louiseville clay. Can. Geotech. J. 1990, 27, 761–773. [Google Scholar] [CrossRef]
- Simms, P.H.; Yanful, E.K. Estimation of soil–water characteristic curve of clayey till using measured pore-size distributions. J. Environ. Eng. 2004, 130, 847–854. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E. The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Geotechnique 1999, 49, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Marinho, F.A.M. Nature of Soil–Water Characteristic Curve for Plastic Soils. J. Geotech. Geoenviron. Eng. 2005, 131, 654–661. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, L.; Wei, Y. Influence of fine content on the soil–water characteristic curve of unsaturated soils. Geotech. Geol. Eng. 2020, 38, 1371–1378. [Google Scholar] [CrossRef]
- Shen, J.-H.; Hu, M.-J.; Wang, X.; Zhang, C.-Y.; Xu, D.-S. SWCC of Calcareous Silty Sand Under Different Fines Contents and dry Densities. Front. Environ. Sci. 2021, 9, 682907. [Google Scholar] [CrossRef]
- Colmenares Montanez, J.E. Suction and Volume Changes of Compacted Sand-Bentonite Mixtures. Ph.D. Thesis, Imperial College London, London, UK, 2002. [Google Scholar]
- Pei-yong, L.; Qing, Y. Test study on soil-water characteristic curve of bentonite-sand mixtures. EJGE 2009, 14, 1–8. [Google Scholar]
- Agus, S.; Schanz, T. Drying, wetting, and suction characteristic curves of a bentonite-sand mixture. In Unsaturated Soils, Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, AZ, USA, 2–6 April 2006; ASCE: Reston, VA, USA, 2006; pp. 1405–1414. [Google Scholar]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, C.; Kamchoom, V.; Chen, R. Gas permeability and water retention of a repacked silty sand amended with different particle sizes of peanut shell biochar. Soil Sci. Soc. Am. J. 2020, 84, 1630–1641. [Google Scholar] [CrossRef]
- Trifunovic, B.; Gonzales, H.B.; Ravi, S.; Sharratt, B.S.; Mohanty, S.K. Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degrad. Dev. 2018, 29, 884–893. [Google Scholar] [CrossRef]
- Liao, W.; Thomas, S.C. Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst. 2019, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Gallage, C.P.K.; Uchimura, T. Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils. Soils Found. 2010, 50, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Barus, R.M.N.; Jotisankasa, A.; Chaiprakaikeow, S.; Sawangsuriya, A. Laboratory and field evaluation of modulus-suction-moisture relationship for a silty sand subgrade. Transp. Geotech. 2019, 19, 126–134. [Google Scholar] [CrossRef]
- Delage, P.; Lefebvre, G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 1984, 21, 21–35. [Google Scholar] [CrossRef]
- Barbour, S.L. Nineteenth Canadian Geotechnical Colloquium: The soil-water characteristic curve: A historical perspective. Can. Geotech. J. 1998, 35, 873–894. [Google Scholar] [CrossRef]
- Mitchell, J. Fabric, structure, and proterty relationships. In Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 1976; pp. 222–252. [Google Scholar]
- Sillers, W.S.; Fredlund, D.G.; Zakerzadeh, N. Mathematical attributes of some soil—water characteristic curve models. In Unsaturated Soil Concepts and Their Application in Geotechnical Practice; Springer: Berlin/Heidelberg, Germany, 2001; pp. 243–283. [Google Scholar]
- Al Majou, H.; Muller, F.; Penhoud, P.; Bruand, A. Prediction of water retention properties of Syrian clayey soils. Arid Land Res. Manag. 2022, 36, 125–144. [Google Scholar] [CrossRef]
- Boivin, P.; Garnier, P.; Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 2004, 68, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Bruand, A.; Tessier, D. Water retention properties of the clay in soils developed on clayey sediments: Significance of parent material and soil history. Eur. J. Soil Sci. 2000, 51, 679–688. [Google Scholar] [CrossRef]
- Tessier, D.; Lajudie, A.; Petit, J.-C. Relation between the macroscopic behavior of clays and their microstructural properties. Appl. Geochem. 1992, 7, 151–161. [Google Scholar] [CrossRef]
- Croney, D.; Coleman, J. Soil structure in relation to soil suction (pF). J. Soil Sci. 1954, 5, 75–84. [Google Scholar] [CrossRef]
- Tinjum, J.M.; Benson, C.H.; Blotz, L.R. Soil-water characteristic curves for compacted clays. J. Geotech. Geoenviron. Eng. 1997, 123, 1060–1069. [Google Scholar] [CrossRef]
- Miller, C.J.; Yesiller, N.; Yaldo, K.; Merayyan, S. Impact of soil type and compaction conditions on soil water characteristic. J. Geotech. Geoenviron. Eng. 2002, 128, 733–742. [Google Scholar] [CrossRef]
- Thakur, V.K.; Sreedeep, S.; Singh, D.N. Parameters affecting soil–water characteristic curves of fine-grained soils. J. Geotech. Geoenviron. Eng. 2005, 131, 521–524. [Google Scholar] [CrossRef]
- Romero, E.; Vaunat, J. Retention curves of deformable clays. In Experimental Evidence and Theoretical Approaches in Unsaturated Soils; CRC Press: Boca Raton, FL, USA, 2000; pp. 99–114. [Google Scholar]
- Romero, E.; Gens, A.; Lloret, A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng. Geol. 1999, 54, 117–127. [Google Scholar] [CrossRef]
- Mariamma, J. A Study on the Water Retention Characteristics of Soils and their Improvements. Ph.D. Thesis, Cochin University of Science and Technology, Kochi, India, 2010. [Google Scholar]
- Dorel, M.; Roger-Estrade, J.; Manichon, H.; Delvaux, B. Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manag. 2006, 16, 133–140. [Google Scholar] [CrossRef]
- Birle, E.; Heyer, D.; Vogt, N. Influence of the initial water content and dry density on the soil–water retention curve and the shrinkage behavior of a compacted clay. Acta Geotech. 2008, 3, 191–200. [Google Scholar] [CrossRef]
- D’Angelo, B.; Bruand, A.; Qin, J.; Peng, X.; Hartmann, C.; Sun, B.; Hao, H.; Rozenbaum, O.; Muller, F. Origin of the high sensitivity of Chinese red clay soils to drought: Significance of the clay characteristics. Geoderma 2014, 223, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Balbino, L.C.; Bruand, A.; Cousin, I.; Brossard, M.; Quétin, P.; Grimaldi, M. Change in the hydraulic properties of a Brazilian clay Ferralsol on clearing for pasture. Geoderma 2004, 120, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Reatto, A.; Bruand, A.; da Silva, E.; Martins, E.; Brossard, M. Hydraulic properties of the diagnostic horizon of Latosols of a regional toposequence across the Brazilian Central Plateau. Geoderma 2007, 139, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Tawornpruek, S.; Kheoruenromne, I.; Suddhiprakarn, A.; Gilkes, R. Microstructure and water retention of Oxisols in Thailand. Soil Res. 2005, 43, 973–986. [Google Scholar] [CrossRef]
- Krisnanto, S.; Rahardjo, H.; Fredlund, D.; Leong, E. Mapping of cracked soils and lateral water flow characteristics through a network of cracks. Eng. Geol. 2014, 172, 12–25. [Google Scholar] [CrossRef]
- Krisnanto, S.; Rahardjo, H.; Fredlund, D.; Leong, E. Water content of soil matrix during lateral water flow through cracked soil. Eng. Geol. 2016, 210, 168–179. [Google Scholar] [CrossRef]
- Rayhani, M.; Yanful, E.; Fakher, A. Physical modeling of desiccation cracking in plastic soils. Eng. Geol. 2008, 97, 25–31. [Google Scholar] [CrossRef]
- Yesiller, N.; Miller, C.; Inci, G.; Yaldo, K. Desiccation and cracking behavior of three compacted landfill liner soils. Eng. Geol. 2000, 57, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.H.; Zhang, L.M.; Li, X.; Cai, C.Z. Measuring water retention curves for rough joints with random apertures. Geotech. Test. J. 2013, 36, 929–938. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Houston, S.L.; Nguyen, Q.; Fredlund, M.D. Moisture movement through cracked clay soil profiles. Geotech. Geol. Eng. 2010, 28, 865–888. [Google Scholar] [CrossRef]
- Miao, L.; Liu, S.; Lai, Y. Research of soil—Water characteristics and shear strength features of Nanyang expansive soil. Eng. Geol. 2002, 65, 261–267. [Google Scholar] [CrossRef]
- Puppala, A.J.; Punthutaecha, K.; Vanapalli, S.K. Soil-water characteristic curves of stabilized expansive soils. J. Geotech. Geoenviron. Eng. 2006, 132, 736–751. [Google Scholar] [CrossRef]
- Li, J.H.; Lu, Z.; Guo, L.B.; Zhang, L.M. Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Eng. Geol. 2017, 218, 70–76. [Google Scholar] [CrossRef]
- Wang, Z.; Feyen, J.; Ritsema, C.J. Susceptibility and predictability of conditions for preferential flow. Water Resour. Res. 1998, 34, 2169–2182. [Google Scholar] [CrossRef]
- Sun, D.; You, G.; Annan, Z.; Daichao, S. Soil–water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay. Bull. Eng. Geol. Environ. 2016, 75, 781–791. [Google Scholar] [CrossRef]
- Ma, S.; Huang, M.; Hu, P.; Yang, C. Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay. J. Cent. South Univ. 2013, 20, 1412–1419. [Google Scholar] [CrossRef]
- Iyer, K.K.; Joseph, J.; Lopes, B.C.; Singh, D.; Tarantino, A. Water retention characteristics of swelling clays in different compaction states. Geomech. Geoengin. 2018, 13, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Sun, D. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction. Comput. Geotech. 2017, 91, 17–26. [Google Scholar] [CrossRef]
- Gu, T.; Zhang, M.; Wang, J.; Wang, C.; Xu, Y.; Wang, X. The effect of irrigation on slope stability in the Heifangtai Platform, Gansu Province, China. Eng. Geol. 2019, 248, 346–356. [Google Scholar] [CrossRef]
- Hou, X.; Vanapalli, S.K.; Li, T. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in Heifangtai loess highland, China. Eng. Geol. 2018, 234, 27–37. [Google Scholar] [CrossRef]
- Hou, X.; Vanapalli, S.K.; Li, T. Wetting-induced collapse behavior associated with infiltration: A case study. Eng. Geol. 2019, 258, 105146. [Google Scholar] [CrossRef]
- Peng, J.; Ma, P.; Wang, Q.; Zhu, X.; Zhang, F.; Tong, X.; Huang, W. Interaction between landsliding materials and the underlying erodible bed in a loess flowslide. Eng. Geol. 2018, 234, 38–49. [Google Scholar] [CrossRef]
- Wen, B.-P.; Yan, Y.-J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng. Geol. 2014, 168, 46–58. [Google Scholar] [CrossRef]
- Muñoz-Castelblanco, J.; Pereira, J.-M.; Delage, P.; Cui, Y.-J. The water retention properties of a natural unsaturated loess from northern France. Géotechnique 2012, 62, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.W.W.; Sadeghi, H.; Hossen, S.B.; Chiu, C.; Alonso, E.E.; Baghbanrezvan, S. Water retention and volumetric characteristics of intact and re-compacted loess. Can. Geotech. J. 2016, 53, 1258–1269. [Google Scholar] [CrossRef]
- Hou, X.; Qi, S.; Li, T.; Guo, S.; Wang, Y.; Li, Y.; Zhang, L. Microstructure and soil-water retention behavior of compacted and intact silt loess. Eng. Geol. 2020, 277, 105814. [Google Scholar] [CrossRef]
- Uchaipichat, A.; Khalili, N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Géotechnique 2009, 59, 339–353. [Google Scholar] [CrossRef]
- Ghembaza, M.-S.; Taïbi, S.; Fleureau, J.-M. Effet de la température sur le comportement des sols non saturés sur les chemins de drainage et d’humidification. Can. Geotech. J. 2007, 44, 1064–1081. [Google Scholar] [CrossRef]
- Belal, T.; Ghembaza, M.S.; Bellia, Z. An investigation of the effects of cementation and temperature on the water retention curve of compacted silt. Int. J. Geotech. Eng. 2022, 16, 33–43. [Google Scholar] [CrossRef]
- Villar, M.V. Water retention of two natural compacted bentonites. Clays Clay Miner. 2007, 55, 311–322. [Google Scholar] [CrossRef]
- Li, J.H.; Guo, L.B.; Cai, C.Z. Influence of water content and soil type on soil cracking. In Proceedings of the 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM’ 12), Seoul, Korea, 26–30 August 2012. [Google Scholar]
- Wan, M.; Ye, W.-M.; Chen, Y.; Cui, Y.-J.; Wang, J. Influence of temperature on the water retention properties of compacted GMZ01 bentonite. Environ. Earth Sci. 2015, 73, 4053–4061. [Google Scholar] [CrossRef]
- Agus, S.S.; Arifin, Y.F.; Tripathy, S.; Schanz, T. Swelling pressure–suction relationship of heavily compacted bentonite–sand mixtures. Acta Geotech. 2013, 8, 155–165. [Google Scholar] [CrossRef]
- Gatabin, C.; Talandier, J.; Collin, F.; Charlier, R.; Dieudonné, A.-C. Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Appl. Clay Sci. 2016, 121, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Tuller, M.; Or, D. Water films and scaling of soil characteristic curves at low water contents. Water Resour. Res. 2005, 41, 9. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, Y.-J.; Yang, J.; Mokni, N.; Ye, W.-M.; He, Y. Water retention and compression behavior of MX80 bentonite pellet. Acta Geotech. 2021, 17, 2435–2447. [Google Scholar] [CrossRef]
- Liu, Z.-R.; Cui, Y.-J.; Ye, W.-M.; Chen, B.; Wang, Q.; Chen, Y.-G. Investigation of the hydro-mechanical behaviour of GMZ bentonite pellet mixtures. Acta Geotech. 2020, 15, 2865–2875. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, W.; Wang, Q.; Lu, Y.; Chen, Y. Anisotropic volume change behaviour of uniaxial compacted GMZ bentonite under free swelling condition. Eng. Geol. 2020, 278, 105821. [Google Scholar] [CrossRef]
- Gapak, Y.; Tadikonda, V.B. Hysteretic Water-Retention Behavior of Bentonites. J. Hazard. Toxic Radioact. Waste 2018, 22, 04018008. [Google Scholar] [CrossRef]
- Ye, W.-M.; Wan, M.; Chen, B.; Chen, Y.; Cui, Y.; Wang, J. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite. Environ. Earth Sci. 2013, 68, 281–288. [Google Scholar] [CrossRef]
- Ye, W.M.; Zhang, F.; Chen, B.; Chen, Y.-G.; Wang, Q.; Cui, Y.-J. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite. Environ. Earth Sci. 2014, 72, 2621–2630. [Google Scholar] [CrossRef]
- Shirazi, S.; Kazama, H.; Salman, F.A.; Othman, F.; Akib, S. Permeability and swelling characteristics of bentonite. Int. J. Phys. Sci. 2010, 5, 1647–1659. [Google Scholar]
- Sun, H.; Mašín, D.; Najser, J.; Scaringi, G. Water retention of a bentonite for deep geological radioactive waste repositories: High-temperature experiments and thermodynamic modeling. Eng. Geol. 2020, 269, 105549. [Google Scholar] [CrossRef]
- Ravi, K.; Rao, S.M. Influence of infiltration of sodium chloride solutions on SWCC of compacted bentonite–sand specimens. Geotech. Geol. Eng. 2013, 31, 1291–1303. [Google Scholar] [CrossRef]
- Mata Mena, C. Hydraulic Behaviour of Bentonite Based Mixtures in Engineered Barriers: The Backfill and Plug Test at the Äspö Hrl (Sweden); Universitat Politècnica de Catalunya: Barcelona, Spain, 2003; ISBN 84-689-1966-7. [Google Scholar]
- Mokni, N.; Olivella, S.; Valcke, E.; Mariën, A.; Smets, S.; Li, X. Deformation and flow driven by osmotic processes in porous materials: Application to bituminised waste materials. Transp. Porous Media 2011, 86, 635–662. [Google Scholar] [CrossRef]
- Thyagaraj, T.; Rao, S.M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay. J. Geotech. Geoenviron. Eng. 2010, 136, 1695–1702. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.-G.; Ye, W.-M.; Chen, B.; Cui, Y.-J. Influence of salt concentration on volume shrinkage and water retention characteristics of compacted GMZ bentonite. Environ. Earth Sci. 2016, 75, 535. [Google Scholar] [CrossRef]
- He, Y.; Ye, W.M.; Chen, Y.G.; Chen, B.; Ye, B.; Cui, Y.-J. Influence of pore fluid concentration on water retention properties of compacted GMZ01 bentonite. Appl. Clay Sci. 2016, 129, 131–141. [Google Scholar] [CrossRef]
- Touze-Foltz, N.; Duquennoi, C.; Gaget, E. Hydraulic and mechanical behavior of GCLs in contact with leachate as part of a composite liner. Geotext. Geomembr. 2006, 24, 188–197. [Google Scholar] [CrossRef]
- Bouazza, A.; Vangpaisal, T. Laboratory investigation of gas leakage rate through a GM/GCL composite liner due to a circular defect in the geomembrane. Geotext. Geomembr. 2006, 24, 110–115. [Google Scholar] [CrossRef]
- Barroso, M.; Touze-Foltz, N.; von Maubeuge, K.; Pierson, P. Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner. Geotext. Geomembr. 2006, 24, 139–155. [Google Scholar] [CrossRef]
- Bouazza, A.; Rouf, M.A. Hysteresis of the water retention curves of geosynthetic clay liners in the high suction range. Geotext. Geomembr. 2021, 49, 1079–1084. [Google Scholar] [CrossRef]
- Hanson, J.; Risken, J.; Yesiller, N. Moisture-suction relationships for geosynthetic clay liners. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 3025–3028. [Google Scholar]
- Beddoe, R.A.; Take, W.A.; Rowe, R.K. Water-retention behavior of geosynthetic clay liners. J. Geotech. Geoenviron. Eng. 2011, 137, 1028–1038. [Google Scholar] [CrossRef]
- Abuel-Naga, H.; Bouazza, A. A novel laboratory technique to determine the water retention curve of geosynthetic clay liners. Geosynth. Int. 2010, 17, 313–322. [Google Scholar] [CrossRef]
- Siemens, G.; Take, W.; Rowe, R.; Brachman, R. Effect of confining stress on the transient hydration of unsaturated GCLs. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 1187–1190. [Google Scholar]
- Bannour, H.; Stoltz, G.; Delage, P.; Touze-Foltz, N. Effect of stress on water retention of needlepunched geosynthetic clay liners. Geotext. Geomembr. 2014, 42, 629–640. [Google Scholar] [CrossRef]
- Risken, J.L. Development and Use of Moisture-Suction Relationships for Geosynthetic Clay Liners. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2014. [Google Scholar]
- Tincopa, M.; Bouazza, A. Water retention curves of a geosynthetic clay liner under non-uniform temperature-stress paths. Geotext. Geomembr. 2021, 49, 1270–1279. [Google Scholar] [CrossRef]
- Bouazza, A.; Ali, M.A.; Rowe, R.K.; Gates, W.P.; El-Zein, A. Heat mitigation in geosynthetic composite liners exposed to elevated temperatures. Geotext. Geomembr. 2017, 45, 406–417. [Google Scholar] [CrossRef]
- Indrawan, I.; Williams, D.; Scheuermann, A. Effects of saline coal seam gas water on consistency limits, compaction characteristics and hydraulic conductivities of clays used for liners. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2016, 27, 227–237. [Google Scholar] [CrossRef]
- Bradshaw, S.L.; Benson, C.; Scalia, J. Cation exchange during subgrade hydration and effect on hydraulic conductivity of geosynthetic clay liners. J. Geotech. Geoenviron. Eng. 2013, 139, 526–538. [Google Scholar] [CrossRef]
- Shackelford, C.D.; Benson, C.H.; Katsumi, T.; Edil, T.B.; Lin, L. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 2000, 18, 133–161. [Google Scholar] [CrossRef]
- Petrov, R.J.; Rowe, R.K. Geosynthetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Can. Geotech. J. 1997, 34, 863–885. [Google Scholar] [CrossRef]
- Acikel, A.S.; Gates, W.P.; Singh, R.M.; Bouazza, A.; Fredlund, D.G.; Rowe, R.K. Time-dependent unsaturated behaviour of geosynthetic clay liners. Can. Geotech. J. 2018, 55, 1824–1836. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide, S.P. The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Process. 2017, 31, 891–901. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hergert, G.W.; Nielsen, R.A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 2015, 79, 212–223. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar]
- Arriaga, F.J.; Lowery, B. Soil physical properties and crop productivity of an eroded soil amended with cattle manure. Soil Sci. 2003, 168, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Yabushita, Y.; Saito, H.; Nishimura, T. Effect of long-term swine-manure application on soil hydraulic properties and heavy metal behaviour. Eur. J. Soil Sci. 2012, 63, 368–376. [Google Scholar] [CrossRef]
- Yang, X.; Li, P.; Zhang, S.; Sun, B.; Xinping, C. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J. Plant Nutr. Soil Sci. 2011, 174, 775–784. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Wiss, M.; Grip, H.; Lövdahl, L. Changes in physical properties of a loess soil in China following two long-term fertilization regimes. Geoderma 2006, 136, 579–587. [Google Scholar] [CrossRef]
- Sommerfeldt, T.; Chang, C. Soil-water properties as affected by twelve annual applications of cattle feedlot manure. Soil Sci. Soc. Am. J. 1987, 51, 7–9. [Google Scholar] [CrossRef]
- Obi, M.; Ebo, P. The effects of organic and inorganic amendments on soil physical properties and maize production in a severely degraded sandy soil in southern Nigeria. Bioresour. Technol. 1995, 51, 117–123. [Google Scholar] [CrossRef]
- Rawls, W.; Pachepsky, Y.A.; Ritchie, J.; Sobecki, T.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A. Organic carbon effects on available water capacity of three soil textural groups. Soil Sci. Soc. Am. J. 1992, 56, 248–254. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Rolston, D.E. Coupling diazinon volatilization and water evaporation in unsaturated soils: II. Diazinon transport. Soil Sci. 2000, 165, 690–698. [Google Scholar] [CrossRef]
- Jackson, R.D. Water vapor diffusion in relatively dry soil: I. Theoretical considerations and sorption experiments. Soil Sci. Soc. Am. J. 1964, 28, 172–176. [Google Scholar] [CrossRef]
- Arthur, E.; Tuller, M.; Moldrup, P.; De Jonge, L. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma 2015, 243, 175–182. [Google Scholar] [CrossRef]
- Arthur, E.; Tuller, M.; Moldrup, P.; Greve, M.; Knadel, M.; de Jonge, L. Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area. Eur. J. Soil Sci. 2018, 69, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Hu, K.; Arthur, E.; Ren, T. Modeling soil water retention curves in the dry range using the hygroscopic water content. Vadose Zone J. 2014, 13, 1–7. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, C.; Wang, D.; Arthur, E.; Zhang, Z.; Guo, Z.; Peng, X.; Mooney, S.J. Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol. Soil Tillage Res. 2020, 202, 104663. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Hati, K.; Biswas, A.; Bandyopadhyay, K.; Misra, A. Soil properties and crop yields on a vertisol in India with application of distillery effluent. Soil Tillage Res. 2007, 92, 60–68. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, X.; Gao, X.; Zhang, S.; Wu, P. The Effects of Long-term Fertiliser Applications on Soil Organic Carbon and Hydraulic Properties of a Loess Soil in China. Land Degrad. Dev. 2016, 27, 60–67. [Google Scholar] [CrossRef]
- Nong, X.F.; Rahardjo, H.; Lee, D.T.T.; Leong, E.C.; Fong, Y.K. Effects of organic content on soil-water characteristic curve and soil shrinkage. Environ. Geotech. 2019, 8, 442–451. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.; Van der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission: Brussels, Belgium, 2010; Volume 24099, p. 162. [Google Scholar]
- Joseph, S.; Peacocke, C.; Lehmann, J.; Munroe, P. Developing a biochar classification and test methods. Biochar Environ. Manag. Sci. Technol. 2009, 1, 107–126. [Google Scholar]
- Uzoma, K.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143. [Google Scholar]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Moragues-Saitua, L.; Arias-González, A.; Gartzia-Bengoetxea, N. Effects of biochar and wood ash on soil hydraulic properties: A field experiment involving contrasting temperate soils. Geoderma 2017, 305, 144–152. [Google Scholar] [CrossRef]
- Du, Z.; Chen, X.; Qi, X.; Li, Z.; Nan, J.; Deng, J. The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: A field study of four consecutive wheat–maize rotations. J. Soils Sediments 2016, 16, 2050–2058. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249, 1–11. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Bordoloi, S.; Garg, A.; Sreedeep, S.; Lin, P.; Mei, G. Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour. Technol. 2018, 263, 665–677. [Google Scholar] [CrossRef]
- Wong, J.T.F.; Chen, Z.; Chen, X.; Ng, C.W.W.; Wong, M.H. Soil-water retention behavior of compacted biochar-amended clay: A novel landfill final cover material. J. Soils Sediments 2017, 17, 590–598. [Google Scholar] [CrossRef]
- Hussain, R.; Ravi, K.; Garg, A. Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures. Soil Tillage Res. 2020, 204, 104713. [Google Scholar] [CrossRef]
- Ahamad, A.; Raju, N.J.; Madhav, S.; Gossel, W.; Wycisk, P. Impact of non-engineered Bhalswa landfill on groundwater from Quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India. Quat. Int. 2019, 507, 352–369. [Google Scholar] [CrossRef]
- Reddy, K.R.; Hettiarachchi, H.; Giri, R.K.; Gangathulasi, J. Effects of degradation on geotechnical properties of municipal solid waste from Orchard Hills Landfill, USA. Int. J. Geosynth. Ground Eng. 2015, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Swati, M.; Joseph, K. Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills. Waste Manag. 2008, 28, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.A.; Borthakur, A.; Ravi, K. Investigation of Soil Suction Characteristics Induced by the Degradation of Organic Matter. Geotech. Geol. Eng. 2021, 40, 2371–2378. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Soil–Water Characteristic Curve of Gypseous Soil. Geotech. Geol. Eng. 2015, 33, 123–135. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Herrero, J. Effect of gypsum content on soil water retention. J. Hydrol. 2015, 528, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Alzaidy, M. Effect of gypsum content on unsaturated engineering properties of clayey soil. Int. J. Eng. 2020, 9, 84–91. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.-F. Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Appl. Clay Sci. 2010, 50, 191–198. [Google Scholar] [CrossRef]
- Boardman, D.; Glendinning, S.; Rogers, C. Development of stabilisation and solidification in lime–clay mixes. Geotechnique 2001, 51, 533–543. [Google Scholar] [CrossRef]
- Consoli, N.C.; da Silva Lopes Jr, L.; Heineck, K.S. Key parameters for the strength control of lime stabilized soils. J. Mater. Civ. Eng. 2009, 21, 210–216. [Google Scholar] [CrossRef]
- Russo, G. Water retention curves of lime stabilised soils. In Advanced Experimental Unsaturated Soil Mechanics: Proceedings of the International Symposium on Advanced Experimental Unsaturated Soil Mechanics, Trento, Italy, 27–29 June 2005; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Tang, A.M.; Vu, M.; Cui, Y.-J. Effects of the maximum soil aggregates size and cyclic wetting–drying on the stiffness of a lime-treated clayey soil. Géotechnique 2011, 61, 421–429. [Google Scholar] [CrossRef]
- Tran, T.D.; Cui, Y.-J.; Tang, A.M.; Audiguier, M.; Cojean, R. Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. J. Rock Mech. Geotech. Eng. 2014, 6, 399–404. [Google Scholar] [CrossRef]
- Romero, E.; Della Vecchia, G.; Jommi, C. An insight into the water retention properties of compacted clayey soils. Géotechnique 2011, 61, 313–328. [Google Scholar] [CrossRef]
- Mavroulidou, M.; Zhang, X.; Gunn, M.J.; Cabarkapa, Z. Water Retention and Compressibility of a Lime-Treated, High Plasticity Clay. Geotech. Geol. Eng. 2013, 31, 1171–1185. [Google Scholar] [CrossRef]
- Khattab, S.; Al-Mukhtar, M.; Fleureau, J.-M. Long-term stability characteristics of a lime-treated plastic soil. J. Mater. Civ. Eng. 2007, 19, 358–366. [Google Scholar] [CrossRef]
- Tedesco, D.; Russo, G. Time dependency of the water retention properties of a lime stabilised compacted soil. In Unsaturated Soils. Advances in Geo-Engineering, Proceedings of the 1st European Conference on Unsaturated Soils, Durham, UK, 2–4 July 2008; CRC Press: London, UK, 2008; pp. 277–282. [Google Scholar]
- Khattab, S.; Al-Taie, L.K.I. Soil-water characteristic curves (SWCC) for lime treated expansive soil from Mosul City. In Unsaturated Soils, Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, AZ, USA, 2–6 April 2006; ASCE: Reston, VA, USA, 2006; pp. 1671–1682. [Google Scholar]
- El-Rawi, N.M.; Awad, A.A. Permeability of lime stabilized soils. Transp. Eng. J. ASCE 1981, 107, 25–35. [Google Scholar] [CrossRef]
- Nalbantoglu, Z.; Tuncer, E.R. Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can. Geotech. J. 2001, 38, 154–160. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.J.; Tang, A.M.; Benahmed, N. Aggregate size effect on the water retention properties of a lime-treated compacted silt during curing. E3S Web Conf. 2016, 9, 11013. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.-J.; Tang, A.M.; Loiseau, C.; Delage, P. Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts ABC 2008, 33, S462–S471. [Google Scholar] [CrossRef] [Green Version]
- Della Vecchia, G.; Dieudonné, A.-C.; Jommi, C.; Charlier, R. Accounting for evolving pore size distribution in water retention models for compacted clays: Evolving pore size distribution in water retention modelling. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 702–723. [Google Scholar] [CrossRef] [Green Version]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Soil–water characteristic curve of lime treated gypseous soil. Appl. Clay Sci. 2014, 102, 128–138. [Google Scholar] [CrossRef]
- Beck, K.; Rozenbaum, O.; Al-Mukhtar, M.; Plançon, A. Multi-scale characterization of monument limestones. arXiv 2006, arXiv:physics/0609111. [Google Scholar]
- Ying, Z.; Cui, Y.-J.; Benahmed, N.; Duc, M. Investigating the salinity effect on water retention property and microstructure changes along water retention curves for lime-treated soil. Constr. Build. Mater. 2021, 303, 124564. [Google Scholar] [CrossRef]
- Cuisinier, O.; Masrouri, F.; Stoltz, G.; Russo, G. Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. In Unsaturated Soils: Research & Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 441–447. [Google Scholar]
- Al-Mahbashi, A.M.; Elkady, T.Y.; Alrefeai, T.O. Soil water characteristic curve and improvement in lime treated expansive soil. Geomech. Eng. 2015, 8, 687–706. [Google Scholar] [CrossRef]
- Sun, B.; Ren, F.; Ding, W.; Zhang, G.; Huang, J.; Li, J.; Zhang, L. Effects of freeze-thaw on soil properties and water erosion. Soil Water Res. 2021, 16, 205–216. [Google Scholar] [CrossRef]
- Kværnø, S.H.; Øygarden, L. The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 2006, 67, 175–182. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Ding, L.Q.; Han, Z.; Zou, W.L.; Wang, X.Q. Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles. Transp. Geotech. 2020, 24, 100392. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, K.; Jabro, J.; Ren, L.; Liu, H. Freeze–thaw cycles effects on soil physical properties under different degraded conditions in Northeast China. Environ. Earth Sci. 2019, 78, 321. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, H.; Li, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Gao, Y.; Yu, P. Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas. Sci. Total Environ. 2019, 694, 133732. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Luo, S.; Qian, J.; Li, J.; Xiao, H. Soil-Water Characteristics of the Low Liquid Limit Silt considering Compaction and Freeze-Thaw Action. Adv. Civ. Eng. 2020, 2020, 8823666. [Google Scholar] [CrossRef]
- Ferrari, A.; Favero, V.; Marschall, P.; Laloui, L. Experimental analysis of the water retention behaviour of shales. Int. J. Rock Mech. Min. Sci. 2014, 72, 61–70. [Google Scholar] [CrossRef]
- Gimmi, T.; Churakov, S.V. Water retention and diffusion in unsaturated clays: Connecting atomistic and pore scale simulations. Appl. Clay Sci. 2019, 175, 169–183. [Google Scholar] [CrossRef]
- Menaceur, H.; Delage, P.; Tang, A.M.; Talandier, J. The Status of Water in Swelling Shales: An Insight from the Water Retention Properties of the Callovo-Oxfordian Claystone. Rock Mech. Rock Eng. 2016, 49, 4571–4586. [Google Scholar] [CrossRef]
- Middelhoff, M.; Cuisinier, O.; Masrouri, F.; Talandier, J. Hydro-mechanical path dependency of claystone/bentonite mixture samples characterized by different initial dry densities. Acta Geotech. 2021, 16, 3161–3176. [Google Scholar] [CrossRef]
- Savoye, S.; Page, J.; Puente, C.; Imbert, C.; Coelho, D. New experimental approach for studying diffusion through an intact and unsaturated medium: A case study with Callovo-Oxfordian argillite. Environ. Sci. Technol. 2010, 44, 3698–3704. [Google Scholar] [CrossRef]
- Savoye, S.; Beaucaire, C.; Fayette, A.; Herbette, M.; Coelho, D. Mobility of cesium through the callovo-oxfordian claystones under partially saturated conditions. Environ. Sci. Technol. 2012, 46, 2633–2641. [Google Scholar] [CrossRef]
- Savoye, S.; Imbert, C.; Fayette, A.; Coelho, D. Experimental study on diffusion of tritiated water and anions under variable water-saturation and clay mineral content: Comparison with the Callovo-Oxfordian claystones. Geol. Soc. Lond. Spec. Publ. 2014, 400, 579–588. [Google Scholar] [CrossRef]
- Savoye, S.; Lefevre, S.; Fayette, A.; Robinet, J.-C. Effect of water saturation on the diffusion/adsorption of 22Na and cesium onto the Callovo-Oxfordian claystones. Geofluids 2017, 2017, 1683979. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Delage, P.; Tang, A.M.; Talandier, J. Water retention properties of the Callovo-Oxfordian claystone. Int. J. Rock Mech. Min. Sci. 2013, 64, 96–104. [Google Scholar] [CrossRef]
- Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.-F.; Talandier, J.; Berne, P. Pore gas connectivity analysis in Callovo-Oxfordian argillite. Appl. Clay Sci. 2008, 42, 276–283. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Rothfuchs, T.; Su, K.; Hoteit, N. Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Clay Nat. Eng. Barriers Radioact. Waste Confin.-Part 2 2007, 32, 957–965. [Google Scholar] [CrossRef]
- M’Jahad, S.; Davy, C.A.; Skoczylas, F.; Talandier, J. Characterization of transport and water retention properties of damaged Callovo-Oxfordian claystone. Geol. Soc. Lond. Spec. Publ. 2017, 443, 159–177. [Google Scholar] [CrossRef]
- Muñoz, J.J. Thermo-Hydro-Mechanical Analysis of Soft Rock. Application to a Large Scale Heating Test and Large Scale Ventilation Test; Universitat Politècnica de Catalunya: Barcelona, Spain, 2007; ISBN 84-690-7124-6. [Google Scholar]
- Villar, M.; Romero, F. Opalinus clay 2-phase flow parameters. FORGE Rep. D 2013, 5, 14. [Google Scholar]
- Romero, E.; Senger, R.; Marschall, P. Air Injection Laboratory Experiments on Opalinus Clay. Experimental Techniques, Results and Analyses; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2012; p. cp-275. [Google Scholar]
- da Silva, M.R.; Schroeder, C.; Verbrugge, J.-C. Unsaturated rock mechanics applied to a low-porosity shale. Eng. Geol. 2008, 97, 42–52. [Google Scholar] [CrossRef]
- Nuth, M.; Laloui, L. Advances in modelling hysteretic water retention curve in deformable soils. Comput. Geotech. 2008, 35, 835–844. [Google Scholar] [CrossRef]
- Jotisankasa, A. Collapse Behaviour of a Compacted Silty Clay. Ph.D. Dissertation, University of London, London, UK, 2005. [Google Scholar]
- Indrawan, I.; Rahardjo, H.; Leong, E.C. Effects of coarse-grained materials on properties of residual soil. Eng. Geol. 2006, 82, 154–164. [Google Scholar] [CrossRef]
- Rahardjo, H.; Satyanaga, A.; D’Amore, G.A.R.; Leong, E.-C. Soil–water characteristic curves of gap-graded soils. Eng. Geol. 2012, 125, 102–107. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, Y.; Zhou, H.; Feng, X.; Huang, Z. Effects of void ratio and grain size distribution on water retention properties of compacted infilled joint soils. Soils Found. 2017, 57, 50–59. [Google Scholar] [CrossRef]
- Chen, X.; Hu, K.; Chen, J.; Zhao, W. Laboratory Investigation of the Effect of Initial Dry Density and Grain Size Distribution on Soil–Water Characteristic Curves of Wide-Grading Gravelly Soil. Geotech. Geol. Eng. 2017, 36, 885–896. [Google Scholar] [CrossRef]
- Marinho, F.; Chandler, R. Aspects of the Behavior of Clays on Drying; ASCE: Reston, VA, USA, 1993; pp. 77–90. [Google Scholar]
- Zapata, C.E.; Houston, W.N.; Houston, S.L.; Walsh, K.D. Soil–water characteristic curve variability. In Advances in Unsaturated Geotechnics; ASCE: Reston, VA, USA, 2000; pp. 84–124. [Google Scholar]
- Malaya, C.; Sreedeep, S. Critical Review on the Parameters Influencing Soil-Water Characteristic Curve. J. Irrig. Drain. Eng. 2012, 138, 55–62. [Google Scholar] [CrossRef]
- Chahal, R. Effect of temperature and trapped air on the energy status of water in porous media. Soil Sci. 1964, 98, 107–112. [Google Scholar] [CrossRef]
- Chahal, R. Effect to temperature and trapped air on matric suction. Soil Sci. 1965, 100, 262–266. [Google Scholar] [CrossRef]
- Haridasan, M.; Jensen, R. Effect of temperature on pressure head-water content relationship and conductivity of two soils. Soil Sci. Soc. Am. J. 1972, 36, 703–708. [Google Scholar] [CrossRef]
- Hopmans, J.; Dane, J. Effect of temperature-dependent hydraulic properties on soil water movement. Soil Sci. Soc. Am. J. 1985, 49, 51–58. [Google Scholar] [CrossRef]
- Shao, M.; Horton, R. Integral method for estimating soil hydraulic properties. Soil Sci. Soc. Am. J. 1998, 62, 585–592. [Google Scholar] [CrossRef]
- Li, P.; Li, T.; Wang, H.; Liang, Y. Soil-water characteristic curve and permeability perdiction on Childs & Collis-Geroge model of unsaturated loess. Rock Soil Mech. 2013, 34, 184–189. [Google Scholar]
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nover, D.; Duan, W.; Fukushi, K. Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; He, B.; Duan, W.; Takara, K.; Nover, D. Impact assessment of rainfall scenarios and land-use change on hydrologic response using synthetic Area IDF curves. J. Flood Risk Manag. 2018, 11, S84–S97. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhou, M.; Deng, H.; Lyu, J.; Cao, W.; Takara, K.; Nover, D.; Schladow, S.G. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018, 615, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Ghavam-Nasiri, A.; El-Zein, A.; Airey, D.; Rowe, R.K. Water retention of geosynthetics clay liners: Dependence on void ratio and temperature. Geotext. Geomembr. 2019, 47, 255–268. [Google Scholar] [CrossRef]
- Adriano, D.; Page, A.; Elseewi, A.; Chang, A.; Straughan, I. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. J. Environ. Qual. 1980, 9, 333–344. [Google Scholar] [CrossRef]
- Aitken, R.; Campbell, D.; Bell, L. Properties of Australian fly ashes relevant to their agronomic utilization. Soil Res. 1984, 22, 443–453. [Google Scholar] [CrossRef]
- Gangloff, W.; Ghodrati, M.; Sims, J.; Vasilas, B. Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil. Water. Air. Soil Pollut. 2000, 119, 231–245. [Google Scholar] [CrossRef]
- Pathan, S.; Aylmore, L.; Colmer, T. Properties of several fly ash materials in relation to use as soil amendments. J. Environ. Qual. 2003, 32, 687–693. [Google Scholar] [CrossRef]
- Kalra, N.; Jain, M.; Joshi, H.; Choudhary, R.; Harit, R.; Vatsa, B.; Sharma, S.; Kumar, V. Flyash as a soil conditioner and fertilizer. Bioresour. Technol. 1998, 64, 163–167. [Google Scholar] [CrossRef]
- Sharma, P.; Carter, F.; Halvorson, G. Water retention by soils containing coal. Soil Sci. Soc. Am. J. 1993, 57, 311–316. [Google Scholar] [CrossRef]
- Aggelides, S.; Londra, P. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Al-Darby, A.; El-Shafei, Y.; Shalaby, A.; Mursi, M. Influence of a gel-forming conditioner on water retention, infiltration capacity, and water distribution in uniform and stratified sandy soils. Arid Land Res. Manag. 1992, 6, 145–161. [Google Scholar] [CrossRef]
- Hoyos, L.; Thudi, H.; Puppala, A. Soil-water retention properties of cement treated clay. In Problematic Soils and Rocks and In Situ Characterization; ASCE: Reston, VA, USA, 2007; pp. 1–8. [Google Scholar]
- Wang, Y.; Cui, Y.J.; Tang, A.M.; Tang, C.S.; Benahmed, N. Effects of aggregate size on water retention capacity and microstructure of lime-treated silty soil. Géotech. Lett. 2015, 5, 269–274. [Google Scholar] [CrossRef]
- Suganya, S. Moisture retention and cation exchange capacity of sandy soil as influenced by soil additives. J. Appl. Sci. Res. 2006, 2, 949–951. [Google Scholar]
- Epstein, E.; Taylor, J.; Chaney, R. Effects of Sewage Sludge and Sludge Compost Applied to Soil on Some Soil Physical and Chemical Properties. J. Environ. Qual. 1976, 5, 422–426. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K. Effect of organic amendments on water retention characteristic of Stagnic Gleysol soil. Pol. J. Soil Sci. 2009, 42, 111–120. [Google Scholar]
- Gupta, S.C.; Dowdy, R.; Larson, W. Hydraulic and thermal properties of a sandy soil as influenced by incorporation of sewage sludge. Soil Sci. Soc. Am. J. 1977, 41, 601–605. [Google Scholar] [CrossRef]
- Illera, V.; Cala, V.; Walter, I.; Cuevas, G. Biosolid and municipal solid waste effects on physical and chemical properties of a degraded soil [Spain]. Agrochim 1999, 43, 178–186. [Google Scholar]
- Joshua, W.; Michalk, D.; Curtis, I.; Salt, M.; Osborne, G. The potential for contamination of soil and surface waters from sewage sludge (biosolids) in a sheep grazing study, Australia. Geoderma 1998, 84, 135–156. [Google Scholar] [CrossRef]
- Kladivko, E.; Nelson, D. Changes in soil properties from application of anaerobic sludge. J. Water Pollut. Control Fed. 1979, 51, 325–332. [Google Scholar]
- Kumar, S.; Malik, R.; Dahiya, I. Influence of different organic wastes upon water retention, transmission and contact characteristics of a sandy soil. Soil Res. 1985, 23, 131–136. [Google Scholar] [CrossRef]
- Morel, J.; Guckert, A.; Sedogo, M. Effects de l’epandage des boues residuaires urbaines sur l’etat physic du sol. In Proceedings of the 11th Congress of Int. Society of Soil Sciences, Edmonton, AB, Canada, 19–27 June 1978. [Google Scholar]
- Ojeda, G.; Mattana, S.; Alcañiz, J.; Marando, G.; Bonmatí, M.; Woche, S.; Bachmann, J. Wetting process and soil water retention of a minesoil amended with composted and thermally dried sludges. Geoderma 2010, 156, 399–409. [Google Scholar] [CrossRef]
- Tsadilas, C.; Mitsios, I.; Golia, E. Influence of biosolids application on some soil physical properties. Commun. Soil Sci. Plant Anal. 2005, 36, 709–716. [Google Scholar] [CrossRef]
- Agus, S.S.; Schanz, T.; Fredlund, D.G. Measurements of suction versus water content for bentonite–sand mixtures. Can. Geotech. J. 2010, 47, 583–594. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, M.; Simota, C. Modelling the environmental impacts of soil compaction: A review. Soil Tillage Res. 1995, 35, 69–84. [Google Scholar] [CrossRef]
- Soane, B.; Van Ouwerkerk, C. Implications of soil compaction in crop production for the quality of the environment. Soil Tillage Res. 1995, 35, 5–22. [Google Scholar] [CrossRef]
- Horton, R.; Ankeny, M.; Allmaras, R. Effects of compaction on soil hydraulic properties. Dev. Agric. Eng. 1994, 11, 141–165. [Google Scholar]
- Ngo-Cong, D.; Antille, D.L.; van Genuchten, M.T.; Tekeste, M.Z.; Baillie, C.P. Predicting the hydraulic properties of compacted soils: Model validation. In Proceedings of the 2021 ASABE Annual International Virtual Meeting, Virtual, 12–16 July 2021; p. 1. [Google Scholar]
- Tian, Z.; Gao, W.; Kool, D.; Ren, T.; Horton, R.; Heitman, J.L. Approaches for estimating soil water retention curves at various bulk densities with the extended van Genuchten model. Water Resour. Res. 2018, 54, 5584–5601. [Google Scholar] [CrossRef]
- Hill, J.; Sumner, M. Effect of bulk density on moisture characteristics of soils. Soil Sci. 1967, 103, 234–238. [Google Scholar] [CrossRef]
- Smith, C.W.; Johnston, M.A.; Lorentz, S.A. The effect of soil compaction on the water retention characteristics of soils in forest plantations. South Afr. J. Plant Soil 2001, 18, 87–97. [Google Scholar] [CrossRef]
- Connolly, R.; Freebairn, D.; Bridge, B. Change in infiltration characteristics associated with cultivation history of soils in south-eastern Queensland. Soil Res. 1997, 35, 1341–1358. [Google Scholar] [CrossRef]
- Benson, C.; Daniel, D. Influence of clods on the hydraulic conductivity of compacted clay. J. Geotech. Eng. 1990, 116, 1231–1248. [Google Scholar] [CrossRef]
- Gao, L.; Luan, M.; Yang, Q. Experimental Study on Permeability of Unsaturated Remolded Clay”, EJGE, 13, Bund. 2008. Available online: https://r.search.yahoo.com/_ylt=AwrC3HxdDv5ilzQASgAnnIlQ;_ylu=Y29sbwNiZjEEcG9zAzEEdnRpZAMEc2VjA3Ny/RV=2/RE=1660845789/RO=10/RU=https%3a%2f%2fwww.researchgate.net%2fpublication%2f297129698_Experimental_study_on_permeability_of_unsaturated_remolded_clay/RK=2/RS=E13TlLiad4kO.xTzLuqZS_AL3Pg- (accessed on 1 August 2022).
- Yang, H.; Rahardjo, H.; Leong, E.-C.; Fredlund, D.G. Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Can. Geotech. J. 2004, 41, 908–920. [Google Scholar] [CrossRef]
- Agus, S.S.; Schanz, T. Comparison of four methods for measuring total suction. Vadose Zone J. 2005, 4, 1087–1095. [Google Scholar] [CrossRef]
- Box, J.E.; Taylor, S. Influence of soil bulk density on matric potential. Soil Sci. Soc. Am. J. 1962, 26, 119–122. [Google Scholar] [CrossRef]
- Marinho, F.A.; Stuermer, M.M. The influence of the compaction energy on the SWCC of a residual soil. In Advances in Unsaturated Geotechnics; ASCE: Reston, VA, USA, 2000; pp. 125–141. [Google Scholar]
- Sreedeep, S.; Singh, D. A study to investigate the influence of soil properties on suction. J. Test. Eval. 2005, 33, 61–66. [Google Scholar] [CrossRef]
- Blatz, J.; Graham, J.; Chandler, N. Influence of suction on the strength and stiffness of compacted sand bentonite. Can. Geotech. J. 2002, 39, 1005–1015. [Google Scholar] [CrossRef]
- Swanson, D.; Barbour, S. The effects of loading on the moisture characteristic curve and permeability-suction relationship for unsaturated soils. In Proceedings of the Canadian Society for Civil Engineering Annual Conference; Canadian Society for Civil Engineering: Pointe Claire, QC, Canada, 1991; pp. 194–203. [Google Scholar]
- Veyera, G.; Martin, J. Composition, Density and Fabric Effects on Bulky Waste Capillary Retention Characteristics. In Role of the Unsaturated Zone in Radioactive and Hazardous Waste Disposal; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1983. [Google Scholar]
- Malaya, C.; Sreedeep, S. A study on the influence of measurement procedures on suction-water content relationship of a sandy soil. J. Test. Eval. 2010, 38, 691–699. [Google Scholar]
- Zhan, L.; Chen, P.; Ng, C.W.W. Effect of suction change on water content and total volume of an expansive clay. J. Zhejiang Univ.-Sci. A 2007, 8, 699–706. [Google Scholar] [CrossRef]
- Tuller, M.; Or, D. Water Retention And Characteristic Curve. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 278–289. [Google Scholar] [CrossRef]
- Baker, R.; Frydman, S. Unsaturated soil mechanics: Critical review of physical foundations. Eng. Geol. 2009, 106, 26–39. [Google Scholar] [CrossRef]
- Aubertin, M.; Mbonimpa, M.; Bussière, B.; Chapuis, R. A model to predict the water retention curve from basic geotechnical properties. Can. Geotech. J. 2003, 40, 1104–1122. [Google Scholar] [CrossRef]
- Jotisankasa, A.; Vathananukij, H.; Coop, M. Soil-water retention curves of some silty soils and their relations to fabrics. In Proceedings of the 4th Asia Pacific Conference on Unsaturated Soils, Newcastle, Australia, 23–25 November 2009; pp. 263–268. [Google Scholar]
- Liang, W.; Yan, R.; Xu, Y.; Zhang, Q.; Tian, H.; Wei, C. Swelling pressure of compacted expansive soil over a wide suction range. Appl. Clay Sci. 2021, 203, 106018. [Google Scholar] [CrossRef]
- Lee, I.-M.; Sung, S.-G.; Cho, G.-C. Effect of stress state on the unsaturated shear strength of a weathered granite. Can. Geotech. J. 2005, 42, 624–631. [Google Scholar] [CrossRef]
- Thu, T.M.; Rahardjo, H.; Leong, E.-C. Soil-water characteristic curve and consolidation behavior for a compacted silt. Can. Geotech. J. 2007, 44, 266–275. [Google Scholar] [CrossRef]
- Alonso, E.E.; Gens, A.; Josa, A. A constitutive model for partially saturated soils. Géotechnique 1990, 40, 405–430. [Google Scholar] [CrossRef] [Green Version]
- Gens, A.; Alonso, E. A framework for the behaviour of unsaturated expansive clays. Can. Geotech. J. 1992, 29, 1013–1032. [Google Scholar] [CrossRef]
- Elkady, T.Y.; Al-Mahbashi, A.M.; Al-Refeai, T.O. Stress-dependent soil-water characteristic curves of lime-treated expansive clay. J. Mater. Civ. Eng. 2015, 27, 04014127. [Google Scholar] [CrossRef]
- Zhang, X.; Mavroulidou, M.; Gunn, M.J. A study of the water retention curve of lime-treated London Clay. Acta Geotech. 2017, 12, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Pedarla, A.; Puppala, A.J.; Hoyos, L.R.; Vanapalli, S.K.; Zapata, C. SWRC modelling framework for evaluating volume change behavior of expansive soils. In Unsaturated Soils: Research and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 221–228. [Google Scholar]
- Tu, H.; Vanapalli, S.K. Prediction of the variation of swelling pressure and one-dimensional heave of expansive soils with respect to suction using the soil-water retention curve as a tool. Can. Geotech. J. 2016, 53, 1213–1234. [Google Scholar] [CrossRef]
- Khorshidi, M.; Lu, N. Determination of cation exchange capacity from soil water retention curve. J. Eng. 2017, 143, 6. [Google Scholar] [CrossRef]
- Haeri, S.M.; Garakani, A.A.; Roohparvar, H.R.; Desai, C.S.; Ghafouri, S.M.H.S.; Kouchesfahani, K.S. Testing and constitutive modeling of lime-stabilized collapsible loess. Exp. Investig. 2019, 19, 4. [Google Scholar]
- Zhang, F.; Zhao, C.; Lourenço, S.D.N.; Dong, S.; Jiang, Y. Factors affecting the soil–water retention curve of Chinese loess. Bull. Eng. Geol. Environ. 2021, 80, 717–729. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.A.; Han, X.; Liu, Z. Spatial variability of soil parameters of the van Genuchten model at a regional scale. CLEAN–Soil Air Water 2015, 43, 271–278. [Google Scholar] [CrossRef]
- Romero, E.; Simms, P.H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 2008, 26, 705–727. [Google Scholar] [CrossRef]
- Tarantino, A. A water retention model for deformable soils. Géotechnique 2009, 59, 751–762. [Google Scholar] [CrossRef]
- Gallipoli, D.; Wheeler, S.J.; Karstunen, M. Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique 2003, 53, 105–112. [Google Scholar] [CrossRef]
- Gallipoli, D.; Bruno, A.W.; D’onza, F.; Mancuso, C. A bounding surface hysteretic water retention model for deformable soils. Géotechnique 2015, 65, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Gallipoli, D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio. Geotechnique 2012, 62, 605–616. [Google Scholar] [CrossRef]
- Kawai, K.; Kato, S.; Karube, D. The model of water retention curve considering effects of void ratio. In Unsaturated Soils for Asia; CRC Press: Boca Raton, FL, USA, 2020; pp. 329–334. [Google Scholar]
- Qian, J.; Lin, Z.; Shi, Z. Soil-water retention curve model for fine-grained soils accounting for void ratio–dependent capillarity. Can. Geotech. J. 2022, 59, 498–509. [Google Scholar] [CrossRef]
- Dieudonne, A.-C.; Della Vecchia, G.; Charlier, R. Water retention model for compacted bentonites. Can. Geotech. J. 2017, 54, 915–925. [Google Scholar] [CrossRef]
- Chen, Y. Soil–water retention curves derived as a function of soil dry density. GeoHazards 2018, 1, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Tuttolomondo, A.; Lu, X.; Laloui, L.; Ding, W. A generalized water retention model with soil fabric evolution. Geomech. Energy Environ. 2021, 25, 5. [Google Scholar] [CrossRef]
- D’elia, B.; Picarelli, L.; Leroueil, S.; Vaunat, J. Geotechnical characterisation of slope movements in structurally complex clay soils and stiff jointed clays. Riv. Ital. Geotec. 1998, 32, 5–47. [Google Scholar]
- Feda, J. Physical models of soil behaviour. Eng. Geol. 2004, 72, 121–129. [Google Scholar] [CrossRef]
- Feng, W.; Li, S.-Q.; Gao, L.-X.; Zhang, Y. Study on relationship between microstructure and soil-water characteristics of remolded clay. Guangxi Daxue Xuebao Ziran Kexue Ban 2013, 38, 170–175. [Google Scholar]
- Li, P.; Li, T.; Vanapalli, S. Prediction of soil–water characteristic curve for Malan loess in Loess Plateau of China. J. Cent. South Univ. 2018, 25, 432–447. [Google Scholar] [CrossRef]
- Mu, Q.; Dong, H.; Liao, H.; Dang, Y.; Zhou, C. Water-retention curves of loess under wetting−drying cycles. Géotech. Lett. 2020, 10, 135–140. [Google Scholar] [CrossRef]
- Xie, X.; Li, P.; Hou, X.; Li, T.; Zhang, G. Microstructure of Compacted Loess and Its Influence on the Soil-Water Characteristic Curve. Adv. Mater. Sci. Eng. 2020, 2020, 3402607. [Google Scholar] [CrossRef] [Green Version]
- Guney, Y.; Sari, D.; Cetin, M.; Tuncan, M. Impact of cyclic wetting–drying on swelling behavior of lime-stabilized soil. Build. Environ. 2007, 42, 681–688. [Google Scholar] [CrossRef]
- Lemaire, K.; Deneele, D.; Bonnet, S.; Legret, M. Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng. Geol. 2013, 166, 255–261. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Liu, S.; ShangGuan, Y.; Fu, H.; Ma, B.; Chen, H.; Yuan, X. Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling. Cold Reg. Sci. Technol. 2019, 161, 32–42. [Google Scholar] [CrossRef]
- Locat, J.; Bérubé, M.-A.; Choquette, M. Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development. Can. Geotech. J. 1990, 27, 294–304. [Google Scholar] [CrossRef]
- Russo, G.; Vecchio, S.D.; Mascolo, G. Microstructure of a lime stabilised compacted silt. In Experimental Unsaturated Soil Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 49–56. [Google Scholar]
- Russo, G.; Modoni, G. Fabric changes induced by lime addition on a compacted alluvial soil. Géotech. Lett. 2013, 3, 93–97. [Google Scholar] [CrossRef]
- Cuisinier, O.; Auriol, J.-C.; Le Borgne, T.; Deneele, D. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng. Geol. 2011, 123, 187–193. [Google Scholar] [CrossRef]
- Wang, Y.; Duc, M.; Cui, Y.-J.; Tang, A.M.; Benahmed, N.; Sun, W.J.; Ye, W.M. Aggregate size effect on the development of cementitious compounds in a lime-treated soil during curing. Appl. Clay Sci. 2017, 136, 58–66. [Google Scholar] [CrossRef]
- Ying, Z.; Cui, Y.-J.; Benahmed, N.; Duc, M. Changes in microstructure and water retention property of a lime-treated saline soil during curing. Acta Geotech. 2022, 17, 319–326. [Google Scholar] [CrossRef]
- Cecconi, M.; Russo, G. Prediction of soil-water retention properties of a lime stabilised compacted silt. In Proceedings of the 1st European Conference, Durham, UK, 2–4 July 2008; CRC Press: London, UK, 2008; pp. 287–292. [Google Scholar]
- Wang, Y.; Cui, Y.-J.; Tang, A.M.; Tang, C.-S.; Benahmed, N. Changes in thermal conductivity, suction and microstructure of a compacted lime-treated silty soil during curing. Eng. Geol. 2016, 202, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- De Lima, O.; Niwas, S. Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. J. Hydrol. 2000, 235, 12–26. [Google Scholar] [CrossRef]
- Huntley, D. Relations between permeability and electrical resistivity in granular aquifers. Groundwater 1986, 24, 466–474. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.A.; Fam, M.A. Soils and Waves; John Wiley & Sons: New York, NY, USA, 2001; ISBN 0-471-49058-X. [Google Scholar]
- Abu-Hassanein, Z.S.; Benson, C.H.; Blotz, L.R. Electrical resistivity of compacted clays. J. Geotech. Eng. 1996, 122, 397–406. [Google Scholar] [CrossRef]
- Kibria, G.; Hossain, M. Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. J. Geotech. Geoenviron. Eng. 2012, 138, 1520–1529. [Google Scholar] [CrossRef]
- Bai, W.; Kong, L.; Guo, A. Effects of physical properties on electrical conductivity of compacted lateritic soil. J. Rock Mech. Geotech. Eng. 2013, 5, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.; Dias, A.S. Study of the electrical resistivity of compacted kaolin based on water potential. Eng. Geol. 2017, 226, 1–11. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H.; Fredlund, M.D. Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice; John Wiley & Sons: New York, NY, USA, 2012; pp. 286–321. [Google Scholar]
- ASTM D1883-16; Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International: West Conshohocken, PA, USA, 2016.
- Türkmen, M. Prediction of Water Retention Curves Using Neural Network. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2020. [Google Scholar]
- Toker, N.K.; Germaine, J.T.; Sjoblom, K.J.; Culligan, P.J. A new technique for rapid measurement of continuous soil moisture characteristic curves. Géotechnique 2004, 54, 179–186. [Google Scholar] [CrossRef]
- Toll, D.G. The behaviour of unsaturated soil. In Handbook of Tropical Residual Soils Engineering; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gardner, R. A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Sci. 1937, 43, 277–284. [Google Scholar] [CrossRef]
- Ridley, A.M.; Burland, J.B. A new instrument for the measurement of soil moisture suction. Géotechnique 1993, 43, 321–324. [Google Scholar] [CrossRef]
- Al Haj, K.M.A.; Standing, J.R. Soil water retention curves representing two tropical clay soils from Sudan. Géotechnique 2016, 66, 71–84. [Google Scholar] [CrossRef]
- Hamblin, A.P. Filter-paper method for routine measurement of field water potential. J. Hydrol. 1981, 53, 355–360. [Google Scholar] [CrossRef]
- Chandler, R.J.; Gutierrez, C.I. The filter-paper method of suction measurement. Geotechnique 1986, 36, 265–268. [Google Scholar] [CrossRef]
- Kim, H.; Prezzi, M.; Salgado, R. Calibration of Whatman Grade 42 filter paper for soil suction measurement. Can. J. Soil Sci. 2016, 97, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Decagon Devices, Inc. WP4C Water Potential Meter; Meter Group, Inc.: Pullman, WA, USA, 2015. [Google Scholar]
- Hilf, J.W. An Investigation of Pore-Water Pressure in Compacted Cohesive Soils; University of Colorado at Boulder: Boulder, CO, USA, 1956; ISBN 1-08-354472-1. [Google Scholar]
- Murray, E.J.; Sivakumar, V. Unsaturated Soils: A Fundamental Interpretation of Soil Behaviour; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 1-4443-2504-3. [Google Scholar]
- Fredlund, D. Negative pore-water pressures in slope stability. In Proceedings of the Simposio Suramericano de Deslizamiento, Paipa, Colombia, 7–10 August 1989; Volume 1989, pp. 1–31. [Google Scholar]
- Bordoni, M.; Bittelli, M.; Valentino, R.; Chersich, S.; Meisina, C. Improving the estimation of complete field soil water characteristic curves through field monitoring data. J. Hydrol. 2017, 552, 283–305. [Google Scholar] [CrossRef]
- Bittelli, M. Measuring soil water content: A review. HortTechnology 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Lourenço, S.D.N. Suction Measurements and Water Retention in Unsaturated Soils. Ph.D. Dissertation, Durham University, Durham, UK, 2008. [Google Scholar]
- Springman, S.M.; Thielen, A.; Kienzler, P.; Friedel, S. A long-term field study for the investigation of rainfall-induced landslides. Geotechnique 2013, 63, 1177–1193. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Harris, J.; Davenport, F.; Lehane, B. Seasonal variations of soil suction profiles in the Perth metropolitan area. Aust. Geomech. J. 2013, 48, 65–73. [Google Scholar]
- Casagli, N.; Rinaldi, M.; Gargini, A.; Curini, A. Pore water pressure and stream bank stability: Results from a monitoring site on the Sieve River, Italy. Earth Surf. Process. Landf. 1999, 24, 1095–1114. [Google Scholar] [CrossRef]
- Mendes, J.; Toll, D.G.; Augarde, C.E.; Gallipoli, D. A system for field measurement of suction using high capacity tensiometers. In Proceedings of the 1st European Conference on Unsaturated Soils, Durham, UK, 2–4 July 2008; Augarde, C.E., Toll, D.G., Gallipoli, D., Wheeler, S.J., Eds.; CRC Press: London, UK, 2008; pp. 219–225. [Google Scholar]
- Tarantino, A.; Gallipoli, D.; Jommi, C.; Mendes, J.; Capotosto, A.; Amabile, A.; Pedrotti, M.; Pozzato, A.; Beneš, V.; Bottaro, F.; et al. Advances in the monitoring of geo-structure subjected to climate loading. In E-UNSAT 2016, Proceedings of the 3rd European Conference on Unsaturated Soils, Paris, France, 12–14 September 2016; Delage, P., Cui, Y.J., Ghabezloo, S., Pereira, J.M., Tang, A.M., Eds.; EDP Sciences: Les Ulis, France, 2016; Volume 9, p. 04001. [Google Scholar]
- Gottardi, G.; Gragnano, C.G.; Rocchi, I.; Bittelli, M. Assessing river embankment stability under transient seepage conditions. Procedia Eng. 2016, 158, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Mojtahedi, F.F.; Ali, K.; Nazari, A.; Rezvani, S.; Khatami, A.; Ahmadi, N. Measurement of Moisture and Temperature Profiles in Different Layers of Soil. IFCEE 2018, 2018, 266–278. [Google Scholar]
- Yin, P.; Vanapalli, S.K. Model for predicting tensile strength of unsaturated cohesionless soils. Can. Geotech. J. 2018, 55, 1313–1333. [Google Scholar] [CrossRef]
- Alsherif, N.A.; McCartney, J.S. Thermal behaviour of unsaturated silt at high suction magnitudes. Géotechnique 2015, 65, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudabadi, V.; Ravichandran, N. Coupled geotechnical-climatic design procedure for drilled shaft subjected to axial load. Eng. Geol. 2020, 264, 7. [Google Scholar] [CrossRef]
- Shahrokhabadi, S.; Vahedifard, F.; Ghazanfari, E.; Foroutan, M. Earth pressure profiles in unsaturated soils under transient flow. Eng. Geol. 2019, 260, 8. [Google Scholar] [CrossRef]
- Alowaisy, A.; Yasufuku, N.; Ishikura, R.; Hatakeyama, M.; Kyono, S. Continuous pressurization method for a rapid determination of the soil water characteristics curve for remolded and undisturbed cohesionless soils. Soils Found. 2020, 60, 634–647. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Rafraf, S.; Guellouz, L.; Guiras, H.; Bouhlila, R. A new model using dynamic contact angle to predict hysteretic soil water retention curve. Soil Sci. Soc. Am. J. 2016, 80, 1433–1442. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 1989, 53, 987–996. [Google Scholar] [CrossRef]
- Ghanbarian-Alavijeh, B.; Liaghat, A.; Huang, G.H.; Van Genuchten, M.T. Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere 2010, 20, 456–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Z.; Weng, X.; Xie, Y. A new soil-water characteristic curve model for unsaturated loess based on wetting-induced pore deformation. Geofluids 2019, 2019, 1672418. [Google Scholar] [CrossRef]
- Tao, G.; Chen, Y.; Xiao, H.; Chen, Y.; Peng, W. Comparative analysis of soil-water characteristic curve in fractal and empirical models. Adv. Mater. Sci. Eng. 2020, 2020, 1970314. [Google Scholar] [CrossRef]
- Pham, K.; Kim, D.; Yoon, Y.; Choi, H. Analysis of neural network based pedotransfer function for predicting soil water characteristic curve. Geoderma 2019, 351, 92–102. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Chen, F. Bayesian approach for predicting soil-water characteristic curve from particle-size distribution data. Energies 2019, 12, 2992. [Google Scholar] [CrossRef] [Green Version]
- Madi, R.; de Rooij, G.H.; Mielenz, H.; Mai, J. Parametric soil water retention models: A critical evaluation of expressions for the full moisture range. Hydrol. Earth Syst. Sci. 2018, 22, 1193–1219. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.W. A simple extension of two-phase characteristic curves to include the dry region. Water Resour. Res. 2000, 36, 1425–1430. [Google Scholar] [CrossRef]
- Silva, O.; Grifoll, J. A soil-water retention function that includes the hyper-dry region through the bet adsorption isotherm. Water Resour. Res. 2007, 43, W11420. [Google Scholar] [CrossRef]
- Nimmo, J.R. Comment on the treatment of residual water content in “A consistent set of parametric models for the twophase flow of immiscible fluids in the subsurface” by L. Luckner et al. Water Resour. Res. 1991, 27, 661–662. [Google Scholar] [CrossRef]
- Groenevelt, P.; Grant, C. A new model for the soil-water retention curve that solves the problem of residual water contents. Eur. J. Soil Sci. 2004, 55, 479–485. [Google Scholar] [CrossRef]
- Gee, G.W.; Campbell, M.D.; Campbell, G.S.; Campbell, J.H. Rapid measurement of low soil water potentials using a water activity meter. Soil Sci. Soc. Am. J. 1992, 56, 1068–1070. [Google Scholar] [CrossRef]
- Schneider, M.; Goss, K.U. Prediction of the water sorption isotherm in air dry soils. Geoderma 2012, 170, 64–69. [Google Scholar] [CrossRef]
- Iden, S.C.; Durner, W. Comment on “simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters Water Resour. Res. 2014, 50, 7530–7534. [Google Scholar] [CrossRef]
- Campbell, G.S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Ross, P.J.; Williams, J.; Bristow, K.L. Equation for extending water-retention curves to dryness. Soil Sci. Soc. Am. J. 1991, 55, 923–927. [Google Scholar] [CrossRef]
- Morel-Seytoux, H.J.; Nimmo, J.R. Soil water retention and maximum capillary drive from saturation to oven dryness. Water Resour. Res. 1999, 35, 2031–2041. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.F. Soil water retention and relative permeability for conditions from oven-dry to full saturation. Vadose Zone J. 2011, 10, 1299–1308. [Google Scholar] [CrossRef]
- Peters, A. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res. 2013, 49, 6765–6780. [Google Scholar] [CrossRef]
- Dan, K.J.; Tuller, M.; de Jonge, L.W.; Arthur, E.; Moldrup, P. A new two-stage approach to predicting the soil water characteristic from saturation to oven-dryness. J. Hydrol. 2015, 521, 498–507. [Google Scholar]
- Rossi, C.; Nimmo, J.R. Modeling of soil water retention from saturation to oven dryness. Water Resour. Res. 1994, 30, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, K. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 1999, 63, 270–277. [Google Scholar] [CrossRef]
- Campbell, G.S.; Shiozawa, S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. In Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, USA, 11–13 October 1992; pp. 317–328. [Google Scholar]
- Botula, Y.D.; Cornelis, W.M.; Baert, G.; Van Ranst, E. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (DR Congo). Agric. Water Manag. 2012, 111, 1–10. [Google Scholar] [CrossRef]
- Silva, A.C.; Armindo, R.A.; Brito, A.; Schaap, M.G. An assessment of pedotransfer function performance for the estimation of spatial variability of key soil hydraulic properties. Vadose Zone J. 2017, 16, 1–10. [Google Scholar] [CrossRef]
- Van den Berg, M.; Klamt, E.; Van Reeuwijk, L.; Sombroek, W. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 1997, 78, 161–180. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci. 1998, 163, 190–202. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G.; Rossato, L. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J. 2000, 64, 327–338. [Google Scholar] [CrossRef]
- Medeiros, J.C.; Cooper, M.; Rosa, J.D.; Grimaldi, M.; Coquet, Y. Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Rev. Bras. Ciênc. Solo 2014, 38, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer functions in earth system science: Challenges and perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Ungaro, F.; Calzolari, C.; Busoni, E. Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: Water retention properties. Geoderma 2005, 124, 293–317. [Google Scholar] [CrossRef]
- Haghverdi, A.; Cornelis, W.M.; Ghahraman, B. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 2012, 442, 46–54. [Google Scholar] [CrossRef]
- Cornelis, W.M.; Ronsyn, J.; van Meirvenne, M.; Hartmann, R. Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 2001, 65, 638–648. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Taslimitehrani, V.; Dong, G.; Pachepsky, Y. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity. J. Hydrol. 2015, 528, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarian, B.; Taslimitehrani, V.; Pachepsky, Y. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity. Catena 2017, 149, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. The Australian soil texture boomerang: A comparison of the Australian and USDA/FAO soil particle-size classification systems. Soil Res. 2001, 39, 1443–1451. [Google Scholar] [CrossRef]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Martins, J.C.; Pereira, L.S. Development of ternary diagrams for estimating water retention properties using geostatistical approaches. Geoderma 2014, 230, 229–242. [Google Scholar] [CrossRef]
- Nemes, A.; Wösten, J.H.M.; Lilly, A.; Oude Voshaar, J.H. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 1999, 90, 187–202. [Google Scholar] [CrossRef]
- Hwang, S.I.; Lee, K.P.; Lee, D.S.; Powers, S.E. Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J. 2002, 66, 1143–1150. [Google Scholar] [CrossRef]
- Burdine, N.T. Relative Permeability Calculations from Pore-Size Distribution Data. Trans Am 1953, 198, 71–79. [Google Scholar] [CrossRef]
- Turcotte, D.L. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Borodich, F.M. Some Fractal Models of Fracture. J. Mech. Phys. Solids 1997, 45, 239–259. [Google Scholar] [CrossRef]
- Rieu, M.; Sposito, G. Fractal Fragmentation, Soil Porosity and Soil Water Properties: I. Theory Soil Sci 1991, 55, 1231–1238. [Google Scholar]
- Perfect, E.; McLaughlin, N.B.; Kay, B.D.; Topp, G.C. Reply to the Comment on “An Improved Fractal Equation for the Soil Water Retention Curve”. Water Resour Res 1998, 34, 933–935. [Google Scholar] [CrossRef]
- Gime’nez, D.; Perfect, E.; Rawls, W.J.; Pachepsky, Y. Fractal Models for Predicting Soil Hydraulic Properties: A Review. Eng. Geol. 1997, 48, 161–183. [Google Scholar] [CrossRef]
- Xu, Y.F.; Sun, D.A. A Fractal Model for Soil Pores and Its Application to Determination of Water Permeability. Phys. A 2002, 316, 56–64. [Google Scholar] [CrossRef]
- Toledo, P.G.; Novy, R.A.; Davis, H.T.; Scriven, L.E. Hydraulic Conductivity of Porous Media at Low Water Content. Soil Sci 1990, 54, 673–679. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Process in Soil Water Retention. Water Resour. Res 1990, 26, 1047–1054. [Google Scholar] [CrossRef]
- Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Comegna, V.; Damiani, P.; Sommella, A. Scaling the Saturated Hydraulic Conductivity of a Vertic Ustorthens Soil under Conventional and Minimum Tillage. Soil Tillage Res. 2000, 54, 1–9. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Sci. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Huang, G.H.; Zhan, W.H. Fractal Property of Soil Particle Size Distribution and Its Application. Acta Pedol. Sin. 2002, 39, 490–497. [Google Scholar]
- Huang, G.; Zhang, R. Evaluation of Soil Water Retention Curve with the Pore-Solid Fractal Model. Geoderma 2005, 127, 52–61. [Google Scholar] [CrossRef]
- Perfect, E. Modeling the Primary Drainage Curve of Prefractal Porous Media. Vadose Zone J. 2005, 4, 959–966. [Google Scholar] [CrossRef]
- Cihan, A.; Perfect, E.; Tyner, J.S. Water Retention Models For Scale-Variant and ScaleInvariant Drainage of Mass Prefractal Porous Media. Vadose Zone J. 2007, 6, 786–792. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Liaghat, A.M.; Huang, G.H. Prediction of Soil Water Retention Curve: A Sensitivity Analysis and Calibration of SWRC Fractal Model; EGU General Assembly: Ienna, Austria, 2008. [Google Scholar]
- Ghanbarian-Alavijeh, B.; Hunt, A.G. Estimation of Soil-Water Retention from Particle-Size Distribution: Fractal Approaches. Soil Sci. 2012, 177, 321–326. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.C.; Yu, N. Feasibility Research on Estimating the Soil Water Retention Curve of Brown Earth with Fractal Method. J. Shenyang Agric. Univ. 2005, 36, 570–574. [Google Scholar]
- Van Damme, H. Scale Invariance and Hydric Behaviour of Soils and Clays. CR Acad. Sci. 1995, 320, 665–681. [Google Scholar]
- Ren, J.; Vanapalli, S.K.; Han, Z.; Omenogor, K.O.; Bai, Y. The resilient moduli of five Canadian soils under wetting and freeze-thaw conditions and their estimation by using an artificial neural network model. Cold Reg. Sci. Technol. 2019, 168, 4. [Google Scholar] [CrossRef]
- Jin, Y.F.; Yin, Z.Y. An intelligent multi-objective EPR technique with multi-step model selection for correlations of soil properties. Acta Geotech. 2020, 15, 2053–2073. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- de Melo, M.T.; Pedrollo, O.C. Artificial Neural Networks for Estimating Soil Water Retention Curve Using Fitted and Measured Data. Appl. Environ. Soil Sci. 2015, 2015, 535216. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Singh, V.P.; Van Genuchten, M.T. Analysis of soil water retention data using artificial neural networks. J. Hydrol. Eng. 2004, 9, 415–420. [Google Scholar] [CrossRef]
- Tripathy, S.; Tadza, M.Y.M.; Thomas, H.R. Soil-water characteristic curves of clays. Can. Geotech. J. 2014, 51, 869–883. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.F.; Ng, C.W. Coupled water retention and shrinkage properties of a compacted silt under isotropic and deviatoric stress paths. Can. Geotech. J. 2012, 49, 928–938. [Google Scholar] [CrossRef]
- Burton, G.J.; Sheng, D.; Airey, D.W. Critical state behaviour of an unsaturated high-plasticity clay. Géotechnique 2020, 70, 161–172. [Google Scholar] [CrossRef]
- Amanabadi, S.; Vazirinia, M.; Vereecken, H.; Vakilian, K.A.; Mohammadi, M. Comparative study of statistical, numerical and machine learning-based pedotransfer functions of water retention curve with particle size distribution data. Eurasian Soil Sci. 2019, 52, 1555–1571. [Google Scholar] [CrossRef]
- D’Emilio, A.; Aiello, R.; Consoli, S.; Vanella, D.; Iovino, M. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water 2018, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.M.; Haghverdi, A.; De Pue, J.; Botula, Y.D.; Le, K.V.; Waegeman, W.; Cornelis, W.M. Comparison of statistical regression and data-mining techniques in estimating soil water retention of tropical delta soils. Biosyst. Eng. 2017, 153, 12–27. [Google Scholar] [CrossRef]
- Lamorski, K.; Šimůnek, J.; Sławiński, C.; Lamorska, J. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method. Water Resour. Res. 2017, 53, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, A.; Öztürk, H.S.; Cornelis, W.M. Revisiting Pseudo Continuous Pedotransfer Funct. Concept Impact Data Qual. Data Min. Method. Geoderma 2014, 226, 31–38. [Google Scholar] [CrossRef]
- Mukhlisin, M.; El-Shafie, A.; Taha, M.R. Regularized versus non-regularized neural network model for prediction of saturated soil-water content on weathered granite soil formation. Neural Comput. Appl. 2012, 21, 543–553. [Google Scholar] [CrossRef]
- Zhanga, Y.; Yu, N. Prediction of soil water retention and available water of sandy soils using pedotransfer functions. Procedia Eng. 2012, 37, 49–53. [Google Scholar]
- Patil, N.G.; Pal, D.K.; Mandal, C.; Mandal, D.K. Soil water retention characteristics of vertisols and pedotransfer functions based on nearest neighbor and neural networks approaches to estimate AWC. J. Irrig. Drain. Eng. 2012, 138, 177–184. [Google Scholar] [CrossRef]
- Eyo, E.U.; Ng’ambi, S.; Abbey, S.J. An overview of soil–water characteristic curves of stabilised soils and their influential factors. J. King Saud Univ.-Eng. Sci. 2022, 34, 31–45. [Google Scholar] [CrossRef]
- Antinoro, C.; Arnone, E.; Noto, L.V. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015; Volume 17, p. 12436. [Google Scholar]
- Ross, P.J.; Krj, S. Describing Soil Hydraulic Properties with Sums of Simple Functions. Soil Sci. Soc. Am. J. 1993, 57, 26–29. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A.; Richard, G.; Reszkowska, A. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma 2008, 143, 243–253. [Google Scholar] [CrossRef]
- Comegna, L.; Rianna, G.; Lee, S.G.; Picarelli, L. Influence of the wetting path on the mechanical response of shallow unsaturated sloping covers. Comput. Geotech. 2016, 73, 164–169. [Google Scholar] [CrossRef]
- Cai, H.; Yang, Z.J.; Wang, L.Y.; Lei, X.Q.; Fu, X.L.; Liu, S.H.; Qiao, J.P. An Experimental Study on the Hydromechanical Behaviours of the Evolution of post-earthquake Landslide Deposits. Geofluids 2019, 2019, 3032494. [Google Scholar] [CrossRef]
- Ahmed, F.S.; Bryson, L.S. Influence of Hydrologic Behavior in Assessing Rainfall-Induced Landslides. Geo-Congress 2019, 2019, 194–204. [Google Scholar]
- Ip, S.C.Y.; Rahardjo, H.; Alfrendo, S. Three-dimensional slope stability analysis incorporating unsaturated soil properties in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 15, 2. [Google Scholar] [CrossRef]
- Reid, M.E.; Christian, S.B.; Brien, D.L.; Henderson, S. Scoops 3D–Software to Analyze Three-Dimensional Slope Stability Throughout a Digital Landscape; U.S. Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Feng, C.; Tian, B.; Lu, X.; Beer, M.; Broggi, M.; Bi, S.; Xiong, B.; He, T. Bayesian Updating of Soil–Water Character Curve Parameters Based on the Monitor Data of a Large-Scale Landslide Model Experiment. Appl. Sci. 2020, 10, 5526. [Google Scholar] [CrossRef]
- Li, D.Q.; Wang, L.; Cao, Z.J.; Qi, X.H. Reliability analysis of unsaturated slope stability considering SWCC model selection and parameter uncertainties. Eng. Geol. 2019, 260, 105207. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fmo, M. Bearing Capacity of Model Footings in Unsaturated Soils. In Experimental Unsaturated Soil Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 483–493. [Google Scholar]
- Trista, J.; Cristia, W.; Sotolongo, G. Bearing capacity of footings in unsaturated soils employing analytic methods. Ing. Desarro. 2017, 35, 417–430. [Google Scholar]
- Vanapalli, S.K.; Oh, W.T. Analytical and numerical methods for prediction of the bearing capacity of shallow foundations in unsaturated soils. Soils Rocks 2021, 44, 1–18. [Google Scholar] [CrossRef]
- Oh, W.T.; Vanapalli, S.K. Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands. Can. Geotech. J. 2011, 48, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Taiebat, H.A.; Senetakis, K. Effective stress based bearing capacity equations for shallow foundations on unsaturated soils. J. GeoEngin. 2017, 12, 59–64. [Google Scholar]
- Jeb, J.; Burland, J.B. Limitations to the Use of Effective Stresses in Partly Saturated Soils. Géotechnique 1962, 12, 125–144. [Google Scholar]
- Du, D.; Zhuang, Y.; Sun, Q.; Yang, X.; Dias, D. Bearing capacity evaluation for shallow foundations on unsaturated soils using discretization technique. Comput. Geotech. 2021, 137, 9. [Google Scholar] [CrossRef]
- Vahedifard, F.; Robinson, J.D. Unified Method for Estimating the Ultimate Bearing Capacity of Shallow Foundations in Variably Saturated Soils under Steady Flow. J. Geotech. Geoenviron. Eng. 2016, 142, 04015095. [Google Scholar] [CrossRef]
- Tang, Y.; Taiebat, H.A.; Russell, A.R. Bearing Capacity of Shallow Foundations in Unsaturated Soil Considering Hydraulic Hysteresis and Three Drainage Conditions. Int. J. Geomech. 2017, 17, 04016142. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Akbari, F. Determining the bearing capacity factor due to nonlinear matric suction distribution in the soil. Can. J. Soil Sci. 2019, 99, 434–446. [Google Scholar] [CrossRef]
- Safarzadeh, Z.; Aminfar, M.H. Experimental study on bearing capacity of shallow footings based on sand in saturated and unsaturated conditions. J. Civ. Environ. Eng. 2020, 50, 23–32. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W.; Wu, D.T. A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 2010, 46, W05515. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, Y.; Park, H.; Kim, J. Effects of rainfall infiltration and hysteresis on the settlement of shallow foundations in unsaturated soil. Environ. Earth Sci. 2018, 77, 494. [Google Scholar] [CrossRef]
- Oh, W.T.; Vanapalli, S.K.; Puppala, A.J. Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils. Can. Geotech. J. 2009, 48, 903–914. [Google Scholar] [CrossRef]
- Rahardjo, H.; Melinda, F.; Leong, E.C.; Rezaur, R.B. Stiffness of a compacted residual soil. Eng. Geol. 2011, 120, 60–67. [Google Scholar] [CrossRef]
- Oh, W.T.; Vanapalli, S.K. Modeling the stress versus settlement behavior of shallow foundations in unsaturated cohesive soils extending the modified total stress approach. Soils Found. 2018, 58, 382–397. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, S.; Kim, J. Coupled infiltration model of unsaturated porous media for steady rainfall. Soils Found. 2016, 56, 1073–1083. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Jeong, S. Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustainability 2017, 9, 1417. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudabadi, V.; Ravichandran, N. Coupled geotechnical-hydrological design of shallow foundation considering site specific data—Theoretical framework and application. J. GeoEngin 2018, 13, 93–103. [Google Scholar]
- Thongpong, R.; Nuntasarn, R.; Hormdee, D.; Punrattanasin, P. the Settlement Behavior of Isolated Foundation on Khon Kaen Loess. Int. J. GEOMATE 2021, 20, 162–170. [Google Scholar] [CrossRef]
- Phoon, K.K.; Santoso, A.; Quek, S.T. Probabilistic analysis of soil-water characteristic curves. J. Geotech. Geoenviron. Eng. 2010, 136, 445–455. [Google Scholar] [CrossRef]
- Bishop, A.W.; Blight, G.E. Some aspects of effective stress in saturated and unsaturated soils. Geotechnique 1963, 13, 177–197. [Google Scholar] [CrossRef]
- Saadeldin, R.; Henni, A. A novel modeling approach for the simulation of soil–water interaction in a highly plastic clay. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Wang, X.; Khoshnevisan, S.; Hou, X.; Zha, F. Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Eng. Geol. 2017, 228, 260–269. [Google Scholar] [CrossRef]
- Walshire, L.A.; Robbins, B.; Taylor, O.D.S. Assessing the Influence of Errors in SWCC Prediction Methods on Transient Seepage Analyses. In Proceedings of the Second Pan-American Conference on Unsaturated Soils, Dallas, TX, USA, 12–15 November 2017; pp. 155–164. [Google Scholar]
- Perera, Y.Y.; Zapata, C.E.; Houston, W.N.; Houston, S.L. Prediction of the soil-water characteristic curve based on grain-size-distribution and index properties. Adv. Pavement Eng. 2005, 130, 49–60. [Google Scholar]
- Sleep, M.D. Analysis of Transient Seepage through Levees. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyelowe, K.C.; Mojtahedi, F.F.; Azizi, S.; Mahdi, H.A.; Sujatha, E.R.; Ebid, A.M.; Darzi, A.G.; Aneke, F.I. Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs 2022, 6, 69. https://doi.org/10.3390/designs6050069
Onyelowe KC, Mojtahedi FF, Azizi S, Mahdi HA, Sujatha ER, Ebid AM, Darzi AG, Aneke FI. Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs. 2022; 6(5):69. https://doi.org/10.3390/designs6050069
Chicago/Turabian StyleOnyelowe, Kennedy C., Farid Fazel Mojtahedi, Sadra Azizi, Hisham A. Mahdi, Evangelin Ramani Sujatha, Ahmed M. Ebid, Ali Golaghaei Darzi, and Frank I. Aneke. 2022. "Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems" Designs 6, no. 5: 69. https://doi.org/10.3390/designs6050069
APA StyleOnyelowe, K. C., Mojtahedi, F. F., Azizi, S., Mahdi, H. A., Sujatha, E. R., Ebid, A. M., Darzi, A. G., & Aneke, F. I. (2022). Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs, 6(5), 69. https://doi.org/10.3390/designs6050069