1. Introduction
Along with social change, the development of information and communication technology (ICT) has continuously changed the concept of housing [
1,
2,
3]. With the recent advancement of new technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT), the universalization of mobile phones and tablets, and the popularization of smart devices, interest and demand for a smart home is increasing further [
4,
5,
6,
7]. In particular, the elderly are the most predicted customers to generate demand for services of smart home technologies [
8,
9,
10,
11], and the implementation of many smart housing technologies (SHT) is targeting the elderly as the main target [
12,
13]. When deciding whether to stay in their home or move to an institutional facility, seniors aged 60 and over strongly hope to stay in their home for as long as possible [
14,
15,
16]. Therefore, for the elderly with features such as functional and cognitive impairments, chronic diseases, reduction of social networks, and low physical activity, SHT improves the quality of life, reduces medical expenses, and allows them to live a more sustainable independent life at home [
17,
18]. Much effort has been made in developing technologies to support the health of the elderly, such as sensor-based networks for measuring physiological signals, monitoring activities, and detecting falls and roaming [
19,
20,
21]. Despite the rapid development and growth of SHT over the past decade, smart home research so far has been mainly focused on technology development [
22,
23,
24]. Numerous research projects have focused on implementing various prototypes and developing new technologies and capabilities such as sensors, algorithms, and intelligent devices [
25,
26]. However, recent research results show that there is considerable resistance from users to the increase in information technology in homes [
27,
28]. Residents lack a well-known concept of new and innovative information technology and a lack of understanding of technology-based solutions, and it is very difficult to introduce SHT, especially for conservative users such as the elderly [
29,
30,
31].
For example, Home Telehealth Service, which combines ICT with the medical industry, is expected to save time and medical expenses for the elderly who need chronic diseases care, and to ensure a safe and independent life [
32,
33]. Users perceived remote medical services in their homes as potentially useful, but in reality, it was found that in many cases they refused or gave up access to personal health records, bio-signal measurement, and daily life monitoring through various sensing systems [
34,
35]. Users expressed their fear of using unfamiliar technology rather than the technical benefits provided by a customized residential environment that autonomously tracks and records even without adjustment [
36,
37]. In addition, concerns were raised that many areas were unnecessarily monitored, and privacy was not protected [
38,
39]. Shachar et al. (2020) pointed out that privacy is a major factor hindering the acceptance of technology, and that our society sometimes neglects or ignores personal information protection in order to emphasize the necessity of technology [
40]. The United Arab Emirates, a regional benchmark for technological progress in Middle East, is among the leading markets for smart homes in the Middle East and the market in the Emirates is expected to grow at a CAGR of 14.8% during the period 2016–2022. However, challenge with the awareness of SHT still remains [
41]. Like the case of other advanced countries, SHT is only effective if UAE elderly users accept it and integrate it into their daily lives. This suggests that it is very important not only to develop technology, but also to understand what technologies UAE elderly users prefer and whether they are ready to accept and use these technologies [
42] (
Figure 1).
The Hartford Center for Mature Market Excellence and the MIT AgeLab performed the focus group interview with leading experts on housing, aging, and technology from the fields of occupational therapy, interior design, computer science, gerontology, and engineering, and a survey of homeowners with 25 smart home technologies [
43]. The survey result identified the top ten smart home technologies that can make life easier, help with home maintenance, and enhance safety and security for homeowners over the age of 50. The top ten technologies included the following: (1) smart smoke and detector, (2) wireless doorbell cameras, (3) keyless entry, (4) smart lighting, (5) smart water valves, (6) smart home security systems, (7) smart outlets/plugs, (8) smart thermostats, (9) water and/or mold monitoring sensors, and (10) smart window blinds [
44]. They also identified a list of smart home technologies that benefit elderly with a health condition and help them to maintain their safety, independence, and well-being at home. The top five technologies on that list include: (1) telehealth systems, (2) medical management systems, (3) medication management systems, (4) smart fall detection systems, (5) smart beds/sleep sensors [
45].
The purpose of this study is to investigate the UAE user’s preference and perception of a wide range of technical solutions of SHT and identify the factors that influence the acceptance of SHT and the difference in technology acceptance behavior with TAM (Technology Acceptance Model) according to UAE elderly user characteristics. This study will serve as basic data to help design more efficient SHT hardware devices for the elderly.
2. Materials and Methods
A smart home is an Internet of Things (IoT) technology-based system that connects and remotely or automatically controls smart devices (home appliances, lighting, sensors, and security) indoors (
Figure 1). In order to implement a smart home, communication technology such as a device to realize apps and services acting as a control hub, a cloud server, and a gateway to connect them are required. To link and control devices, a cloud server that is located in the cloud and provides functions to manage and link users/devices is required. There must be a gateway that connects the smart home device with the cloud server over the internet. Home appliances with Internet of Things (IoT) functions, sensors, lighting, and other devices that realize a smart home and apps that control devices must also be equipped. To implement a smart home, the app control function normally found on a smartphone was utilized as a hub. However, there is a recent movement to use apps on TVs with large screens as hubs. To implement a smart home, it is necessary to apply segmented communication technology. It is characterized by low power consumption so that it can be used in small and simple devices. Communication technology used in a smart home can be divided into low-power long-distance communication, low-power internet IP communication, and low-power RF communication. Low-power long-distance communications are typically used primarily for outdoor devices. It features low-speed, low-power, long-range technology. Communication technologies such as LoRa, LTE-NB, and SigFox are representative examples. Low-power IP communication is a protocol for communicating smart home gateways and cloud servers. CoAP, XMPP, and MQTT are used. Low-power RF communication is the technology used between the smart home gateway and the device. Bluetooth and ZigBee are representative technologies.
Smart home technology is designed to support and enable a safe, convenient, healthy, and independent life at home [
46,
47]. The most basic technical feature of a smart home is the ability to control facilities and devices automatically at home or from the outside [
48,
49]. With the development of home networking with the spread of high-speed Internet, users can easily control or monitor devices in their homes from outside [
50]. In addition, it became possible to not only analyze the living patterns of residents, but also to communicate and collect information between smart devices and objects, and humans through new technologies such as Artificial Intelligence and Internet of Things, moving away from the concept of a home network that simply controls devices connected to the network [
51,
52]. Based on this, a technology that can provide customized services to residents by anticipating residents’ wants and needs has been developed [
53,
54,
55]. Many of the new technologies using various sensing systems, such as motion sensors and video cameras, are being developed to the point where they can support users without having to manually manipulate the device [
56,
57]. Examples of such new monitoring devices include a fall detection system, a lifestyle monitoring system, a physiological health monitoring system, and a lifestyle assistance system [
58].
The biggest beneficiaries of smart housing technology can be the elderly and the physically disabled [
59,
60]. In particular, the healthcare sector is in the spotlight at the present time when the elderly population increases with the retirement period of the baby boomer generation [
61,
62]. Smart home health provides the next generation of medical services for the elderly by allowing the family and caregivers to remotely monitor the elderly’s health via technologies such as sensors and related algorithms. Ubiquitous computing applications can be used in predicting a fall based on a change in gait rather than recognizing and notifying it after a sudden accident occurs [
63,
64]. From cell phones to furniture, picture frames, kitchen utensils, toilets, and other intelligent devices in a variety of homes, they are used to motivate residents to manage their diet, take medicine, or keep exercising [
65]. In addition, telemedicine technology that connects with clinicians to manage chronic diseases more comfortably at home than in expensive hospital environments or monitors physiological signals such as heart rate by wearing or attaching them to clothing or skin is becoming more and more common [
45,
66].
To convert a conventional home to smart home has become easier recently. Ready-made sensors, smart lighting bulbs, smart speaker, smart home security cameras, multi-room speaker systems, and smart smoke detectors can be integrated with a gateway (router) that helps them communicate with each other and with you via smartphone, smart tablet, or smart watch (
Figure 2).
This study aims to analyze the behavior of UAE residents to adopting smart home technology based on the previously developed theory of technology acceptance. TAM (Technology Acceptance Model) is an information technology theory that models how a user accepts and uses a technology [
67]. When a user encounters a new technology, it explains the acceptance intention and behavior of the technology, and the predictive factors that affect it [
68]. This model suggests that the acceptability of information technology is determined by two main factors: perceived usefulness and perceived ease of use [
69]. Holden and Karsh (2010) developed the TAM, which deals more specifically with predictions about the acceptability of information technology based on the theory of rational behavior [
70]. Since then, TAM has been continuously researched and expanded. Among them, Unified Theory of Acceptance and Use of Technology (UTAUT) is a model developed by Venkatesh et al. (2016) and is widely used in various fields such as services, e-commerce, and electronic finance [
71]. UTAUT aims to describe the user’s intention and behavior intention to use the information technology and refers to the degree to which an individual intends to use the technology [
72] and is influenced by four major constituents: performance expectancy, effort expectancy, social influence, and facilitating conditions [
73]. The expected performance and expected level of effort are factors derived from the perceived usefulness and perceived ease of use of the first TAM model [
74]. In addition to these influencing factors, a recent study on the acceptance of health technology introduced additional contextual predictors to the basic model of UTAUT to attempt a more accurate understanding of the user’s technology acceptance [
75]. Here, extended factors such as computer anxiety, security, and trust were used as important indicators for predicting user acceptance of technology [
76]. Computer anxiety is an anxiety or emotional response that users feel when performing actions using a computer. The higher the computer anxiety, the more hesitant to use ICT-related products, and computer anxiety is an important variable predicting the acceptance of technology, especially in the elderly [
77]. In addition, since smart home technology requires the transmission and management of personal health-related data, it is important to maintain security and build trust. Therefore, by introducing predictive factors for each context, the acceptance of user technology can be more accurately understood.
Based on the aforementioned predictive factors for UTAUT’s technology acceptance and the conditions used in the acceptance of health technology, this study analyzes smart home technology’s intention and expected performance, expected effort, social impact, facilitating conditions, anxiety about technology, the perceived security, and intention to use. Expected performance refers to the degree to which user believe that the use of technology will help user perform a specific activity, and expected effort refers to the degree of ease associated with using the system.
Social influence refers to the degree to which important people around me think they should use the system. An anxiety about technology is an emotional feeling such as anxiety that a user feels when using technology, and the perceived security refers to the degree to which personal information can be managed using information technology. To analyze each factor, measurements were developed (
Table 1).
This study aims to analyze the preferences and needs of new smart home technologies in order to understand the intentions and behaviors of UAE elderly users, and also the factors affecting the acceptance of technology according to user characteristics are examined via survey (
Appendix A). First, what types of smart home technologies do UAE elderly users prefer and where are their preferred locations in their homes? Second, what are the factors that hinder or promote the acceptance of smart home technology by UAE elderly users? Third, is there a difference in technology preference and acceptance according to UAE elderly users’ characteristics such as age?
According to the results of research related to elderly users’ characteristics, the younger the age, the higher the education level, the higher the income, the more use of internet and smart phone [
78]. In addition, the greater the desire to live in the same place, the greater the affinity with the technology, the greater the acceptance of smart home technology [
79]. Shin et al. (2018) compared the differences between the elderly and baby boomers, emphasizing that opinions of each generation should be considered in order to grasp the differences between users’ preference and acceptance of technology [
80]. Younger generations have more exposure and experience to technology than older generations [
81]. They are also more likely to live with their children in a home that uses computing technology even when they are older. Therefore, in this study, 40s and 60s were selected as survey targets in order to understand the differences and influencing factors on the adoption of technology by generation. The sampling process was conducted by a trained students to visit apartments located in JBL, JLT, and Business Bay in Dubai, and a random sampling was performed between 1 October 2020 and 2 December 2020. However, for the analysis of UAE user characteristics, a similar number of samples were needed in the case of gender and age, so the proportional allocation sampling method was applied to collect the samples. A questionnaire survey was planned by developing a questionnaire tool, but as a result of the preliminary survey, it was difficult to collect questionnaires in those aged in their 60s, so questionnaires for those in their 60s were separated from those in their 40s and completed. In this survey, people in their 60s conducted a questionnaire and interview at the same time. Over four weeks, a questionnaire survey was conducted for 55 people in their 40s, and a questionnaire and interview were conducted for 55 people in their 60s. In the survey, 5 of the subjects had some missing values and were treated as nonresponse. A total of 105 questionnaires were collected and used as data, and frequency, mean, cross-analysis, independent sample
t-test, one-way variance analysis, and multiple regression analysis were performed with IBM SPSS Statistics 27.
5. Conclusions
This study analyzed not only users’ SHT needs and preferences, but also users’ opinions and intentions. In addition, it was attempted to clarify whether there is a difference in preference and acceptance of smart home technologies based on different factors. The conclusions made on the basis of the analysis results on the needs and preferences of SHT and technology acceptance are as follows.
First, as a result of analyzing the characteristics of the subjects, 67.0% of the subjects have chronic diseases such as high blood pressure, heart disease, diabetes, or arthritis. Chronic diseases can be treated by improving overall lifestyles such as eating habits and exercise rather than short-term treatment at a hospital. The direction of smart home development should support daily life and health management so that users can lead a healthy life for a long time in their home.
Second, as a result of the analysis of preference for SHT, the technologies that users need most are environmental control technology and health and biometric monitoring technology. In addition, the technology need for those in their 60s, who are recognized as actually in need of SHT, is significantly lower than that for those in their 40s. The greater the technical familiarity, the higher the need for technology. Those in their 60s have greater fear of unfamiliar new technologies than those in their 40s due to lack of understanding. In addition, in terms of sensor preference, motion sensors and voice recognition sensors were found to be the most preferred. On the other hand, the preference for video cameras was very low. It is interpreted that this is because video cameras are thought to invade their privacy by exposing their private life.
Third, as a result of the analysis on the SHT acceptance, the survey subjects showed high expectation that the technology would improve the quality of their life and be useful. However, the belief that SHT would be safe was low. The help for the initial environment setup for SHT and system failure is very strong. In addition, anxiety about technology was the factor that most influenced the intention to accept SHT. It can be seen that the greater the anxiety about technology, the weaker the willingness to accept the technology.
Fourth, when applying SHT, a housing plan that considers the characteristics of various users is required. In this study, age and computer technology affinity were the most influential variables, and accordingly, there were differences in technology preference and acceptance. Since, currently, those in their 40s are the first digital generation with the internet, they grew up with mobile phones, social media, and digital environments. This generation will have a higher interest and willingness in smart health care. By 2030, when people in their 40s turn 65, the population over 65 in the United Arab Emirates is expected to increase to 24.3%. Therefore, a SHT plan customized to UAE users should take this into consideration.
This study would guide companies and researchers developing smart home and smart health products to develop systems that are better suited to users’ preferences.