Chroma Enhancement in CIELAB Color Space Using a Lookup Table
Abstract
:1. Introduction
2. Chroma Enhancement in RGB Color Space
2.1. Equal Hue and Equal Lightness in RGB Color Space
2.2. Chroma in RGB Color Space
2.3. Chroma Enhancement Method
3. Chroma Enhancement in CIELAB Color Space
4. Color Gamut Adjustment after Chroma Enhancement Using Lookup Table
4.1. Relationship among Hue, Chroma, and Lightness
4.2. Preparation of Lookup Table
4.3. Determination Method for Maximum Chroma Value Using Lookup Table
4.4. RGB Components after Color Gamut Adjustment
5. Experiments
5.1. Chroma Enhancement
5.2. Combination of Lightness and Chroma Enhancement
5.3. Computational Load
- Step 1.
- Input image is converted to the CIELAB color space.
- Step 2.
- Step 3.
- Enhanced image is converted to the RGB color space.
- Step 4.
- If the pixels in the enhanced image are outside the color gamut of the RGB color space, the color gamut adjustment is executed by the lookup table.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
ave | std | ave | std | ave | std | |
---|---|---|---|---|---|---|
(b1) | 3.836 | 2.142 | 0.000 | 0.000 | 33.040 | 14.823 |
(c1) | 12.645 | 9.664 | 7.953 | 8.203 | 46.223 | 13.035 |
(d1) | 0.224 | 0.699 | 0.029 | 0.171 | 23.940 | 16.369 |
(e1) | 0.016 | 0.150 | 0.031 | 0.227 | 22.802 | 16.691 |
(b2) | 1.349 | 1.210 | 0.000 | 0.000 | 32.049 | 17.907 |
(c2) | 6.763 | 7.433 | 0.950 | 3.491 | 35.602 | 15.934 |
(d2) | 0.017 | 0.129 | 0.003 | 0.026 | 28.585 | 14.542 |
(e2) | 0.009 | 0.100 | 0.003 | 0.021 | 27.829 | 14.601 |
(b3) | 2.350 | 2.724 | 0.000 | 0.000 | 36.777 | 10.661 |
(c3) | 5.869 | 6.632 | 6.946 | 8.626 | 43.621 | 14.031 |
(d3) | 0.163 | 0.502 | 0.002 | 0.003 | 29.880 | 12.455 |
(e3) | 0.036 | 0.212 | 0.003 | 0.010 | 28.774 | 13.066 |
(b4) | 0.421 | 0.836 | 0.000 | 0.000 | 24.535 | 10.445 |
(c4) | 0.913 | 2.524 | 0.845 | 4.031 | 24.933 | 24.783 |
(d4) | 0.003 | 0.020 | 0.004 | 0.009 | 21.153 | 19.274 |
(e4) | 0.003 | 0.002 | 0.004 | 0.003 | 20.450 | 18.558 |
(b5) | 0.856 | 0.951 | 0.000 | 0.000 | 33.384 | 14.116 |
(c5) | 2.559 | 6.620 | 0.514 | 1.378 | 40.062 | 18.335 |
(d5) | 0.003 | 0.016 | 0.002 | 0.003 | 36.953 | 17.623 |
(e5) | 0.002 | 0.008 | 0.002 | 0.003 | 36.611 | 17.439 |
(b6) | 1.058 | 0.681 | 0.000 | 0.000 | 34.598 | 14.955 |
(c6) | 1.907 | 1.264 | 8.704 | 14.991 | 72.097 | 14.419 |
(d6) | 0.003 | 0.001 | 0.003 | 0.002 | 49.015 | 25.670 |
(e6) | 0.004 | 0.001 | 0.003 | 0.002 | 46.926 | 25.850 |
(b7) | 0.513 | 0.347 | 0.000 | 0.000 | 19.756 | 13.775 |
(c7) | 10.679 | 6.936 | 4.055 | 14.988 | 54.951 | 9.873 |
(d7) | 0.005 | 0.003 | 0.000 | 0.002 | 26.863 | 13.405 |
(e7) | 0.003 | 0.001 | 0.000 | 0.001 | 25.313 | 13.703 |
ave | std | ave | std | ave | std | |
---|---|---|---|---|---|---|
(b1) | 0.991 | 1.140 | 1.990 | 6.494 | 24.768 | 17.487 |
(c1) | 0.024 | 0.070 | 2.720 | 6.483 | −1.247 | 2.203 |
(d1) | 0.169 | 0.626 | 4.842 | 5.171 | 3.603 | 5.657 |
(e1) | 0.841 | 2.081 | 11.429 | 2.931 | 24.765 | 16.642 |
(f1) | 0.007 | 0.064 | 11.296 | 2.309 | 22.811 | 14.573 |
(b2) | 1.967 | 1.231 | 2.273 | 8.386 | 33.528 | 17.005 |
(c2) | 0.131 | 0.174 | 3.970 | 8.482 | −5.353 | 4.661 |
(d2) | 0.154 | 0.458 | 3.755 | 3.947 | 3.650 | 3.324 |
(e2) | 4.241 | 5.695 | 12.212 | 4.610 | 46.189 | 20.786 |
(f2) | 0.005 | 0.038 | 11.609 | 3.903 | 38.464 | 19.173 |
(b3) | 0.717 | 0.693 | −14.627 | 19.233 | 14.353 | 13.810 |
(c3) | 0.003 | 0.006 | −14.054 | 18.193 | −4.951 | 5.504 |
(d3) | 0.065 | 0.135 | −3.700 | 3.629 | 1.301 | 1.067 |
(e3) | 13.015 | 5.495 | 7.550 | 2.904 | 31.514 | 5.773 |
(f3) | 0.002 | 0.004 | 8.653 | 1.536 | 20.922 | 11.502 |
(b4) | 0.114 | 0.258 | 44.572 | 29.079 | 5.865 | 10.769 |
(c4) | 0.095 | 0.257 | 44.666 | 29.078 | −4.196 | 6.154 |
(d4) | 0.043 | 0.531 | 2.923 | 4.038 | 0.680 | 2.680 |
(e4) | 2.505 | 5.296 | 5.317 | 6.734 | 21.035 | 25.491 |
(f4) | 0.007 | 0.094 | 5.429 | 5.989 | 14.285 | 18.111 |
References
- Hsu, E.; Mertens, T.; Paris, S.; Avidan, S.; Durand, F. Light mixture estimation for spatially varying white balance. ACM Trans. Graph. 2008, 27, 1–7. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Patt. Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Asmare, M.H.; Asirvadam, V.S.; Iznita, L. Color space selection for color image enhancement applications. In Proceedings of the International Conference on Signal Acquisition and Processing (ICSAP 2009), Kuala Lumpur, Malaysia, 3–5 April 2009; pp. 208–212. [Google Scholar]
- Hunt, R.W.G.; Pointer, M.R. Measuring Colour, 4th ed.; Wiley: Chichester, UK, 2013; p. 159. [Google Scholar]
- Naik, S.K.; Murthy, C.A. Hue-preserving color image enhancement without gamut problem. IEEE Trans. Image Process. 2003, 12, 1591–1598. [Google Scholar] [CrossRef]
- Yang, S.; Lee, B. Hue-preserving gamut mapping with high saturation. Electron. Lett. 2013, 49, 1221–1222. [Google Scholar] [CrossRef]
- Nikolova, M.; Steidl, G. Fast hue and range preserving histogram specification: Theory and new algorithms for color image enhancement. IEEE Trans. Image Process. 2014, 23, 4087–4100. [Google Scholar] [CrossRef] [Green Version]
- Pierre, F.; Aujol, J.-F.; Bugeau, A.; Ta, V.-T. Luminance-hue specification in the RGB Space. In Scale Space and Variational Methods in Computer Vision (SSVM); Springer: Berlin, Germany, 2015; pp. 413–424. [Google Scholar]
- Fitschen, J.H.; Nikolova, M.; Pierre, F.; Steidl, G. A variational model for color assignment. In Scale Space and Variational Methods in Computer Vision (SSVM); Springer: Berlin, Germany, 2015; pp. 437–448. [Google Scholar]
- Pierre, F.; Aujol, J.-F.; Bugeau, A.; Steidl, G.; Ta, V.-T. Hue-preserving perceptual contrast enhancement. In Proceedings of the International Conference on Image Processing (ICIP 2016), Phoenix, AZ, USA, 25–28 September 2016; pp. 4067–4071. [Google Scholar]
- Azetsu, T.; Ueda, C.; Suetake, N.; Uchino, E. Color image enhancement by saturation adjustment while preserving hue in RGB color space. J. Inst. Image Inf. Telev. Eng. 2014, 68, J482–J487. (In Japanese) [Google Scholar]
- Ueda, C.; Ibata, M.; Azetsu, T.; Suetake, N.; Uchino, E. Food image enhancement by adjusting intensity and saturation in RGB color space. IEICE Trans. Fundam. 2015, E98-A, 2220–2228. [Google Scholar] [CrossRef]
- Kamiyama, M.; Taguchi, A. Hue-preserving color image processing with a high arbitrariness in RGB color space. IEICE Trans. Fundam. 2017, E100-A, 2256–2265. [Google Scholar] [CrossRef]
- Pitas, I.; Kiniklis, P. Multichannel techniques in color image enhancement and modeling. IEEE Trans. Image Process. 1996, 5, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Bassiou, N.; Kotropoulos, C. Color image histogram equalization by absolute discounting back off. Comput. Vis. Image Underst. 2007, 107, 108–122. [Google Scholar] [CrossRef]
- Chien, C.L.; Tseng, D.C. Color image enhancement with exact HSI color model. Int. J. Innov. Comput. Inf. Control 2011, 7, 6691–6710. [Google Scholar]
- Yoshinari, K.; Murahira, K.; Hoshi, Y.; Taguchi, A. Color image enhancement in improved HSI color space. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2013), Naha-shi, Japan, 12–15 November 2013; pp. 429–434. [Google Scholar]
- Taguchi, A.; Hoshi, Y. Color image enhancement in HSI color space without gamut problem. IEICE Trans. Fundam. 2015, E98-A, 792–795. [Google Scholar] [CrossRef]
- Fairchild, M.D.; Pirrotta, E. Predicting the lightness of chromatic object colors using CIELAB. Color Res. Appl. 1991, 16, 385–393. [Google Scholar] [CrossRef]
- Tanaka, G. Chroma enhancement method considering effect of lightness and hue. IEICE Tech. Rep. 2012, 112, 19–22. (In Japanese) [Google Scholar]
- Ueda, C.; Azetsu, T.; Suetake, N.; Uchino, E. Color transfer method preserving perceived lightness. Opt. Rev. 2016, 23, 470–478. [Google Scholar] [CrossRef]
- Azetsu, T.; Suetake, N. Hue-preserving image enhancement in CIELAB color space considering color gamut. Opt. Rev. 2019, 26, 283–294. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Chauhan, S.S.; Joy, A.; Tongson, E.; Dunshea, F.R. Non-invasive sheep biometrics obtained by computer vision algorithms and machine learning modeling using integrated visible/infrared thermal cameras. Sensors 2020, 20, 6334. [Google Scholar] [CrossRef]
- Cugmas, B.; Sˇtruc, E. Accuracy of an affordable smartphone-based teledermoscopy system for color measurements in canine skin. Sensors 2020, 20, 6234. [Google Scholar] [CrossRef] [PubMed]
- Simko, I. Predictive modeling of a leaf conceptual midpoint quasi-color (CMQ) using an artificial neural network. Sensors 2020, 20, 3938. [Google Scholar] [CrossRef] [PubMed]
- Pitas, I. Digital Image Processing Algorithms and Applications; Wiley-Interscience: New York, NY, USA, 2000; pp. 31–34. [Google Scholar]
- IEC 61966-2-1. Multimedia Systems and Equipment—Colour Measurement and Management—Part2-1: Colour Management—Default RGB Colour Space—sRGB. 1999. Available online: https://webstore.iec.ch/publication/6169 (accessed on 15 March 2021).
- Fairchild, M.D. Color Appearance Models, 3rd ed.; Wiley: Chichester, UK, 2013; p. 201. [Google Scholar]
- The Standard Image Data-BAse (SIDBA). Available online: http://www.ess.ic.kanagawa-it.ac.jp/app_images_j.html (accessed on 15 March 2021).
- CIE Publication. “Colorimetry”, No.15; CIE Central Bureau: Vienna, Austria, 2004. [Google Scholar]
- Ha¨user, S.; Steidl, G.; Nikolova, M. Hue and Range Preserving RGB Image Enhancement (RGB-HP-ENHANCE), Preprint. 2015. Available online: http://www.mathematik.uni-kl.de/imagepro/forschung/software/rgb-hp-enhance/ (accessed on 15 March 2021).
- Cui, G.; Luo, M.R.; Rigg, B.; Roesler, G.; Witt, K. Uniform colour spaces based on the DIN99 colour-difference formula. Color Res. Appl. 2002, 27, 282–290. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Li, C. Uniform colour spaces based on CIECAMO2 colour appearance model. Color Res. Appl. 2006, 31, 320–330. [Google Scholar] [CrossRef]
- Villecco, F. On the evaluation of errors in the virtual design of mechanical systems. Machines 2018, 6, 36. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azetsu, T.; Suetake, N. Chroma Enhancement in CIELAB Color Space Using a Lookup Table. Designs 2021, 5, 32. https://doi.org/10.3390/designs5020032
Azetsu T, Suetake N. Chroma Enhancement in CIELAB Color Space Using a Lookup Table. Designs. 2021; 5(2):32. https://doi.org/10.3390/designs5020032
Chicago/Turabian StyleAzetsu, Tadahiro, and Noriaki Suetake. 2021. "Chroma Enhancement in CIELAB Color Space Using a Lookup Table" Designs 5, no. 2: 32. https://doi.org/10.3390/designs5020032
APA StyleAzetsu, T., & Suetake, N. (2021). Chroma Enhancement in CIELAB Color Space Using a Lookup Table. Designs, 5(2), 32. https://doi.org/10.3390/designs5020032