Next Article in Journal
Generative Design by Using Exploration Approaches of Reinforcement Learning in Density-Based Structural Topology Optimization
Previous Article in Journal
Erratum: Kumar, P.M., Jagadeesh Babu, V., Subramanian, A., Bandla, A., Thakor, N., Ramakrishna, S. and Wei, H. The Design of a Thermoelectric Generator and Its Medical Applications. Designs 2019, 3, 22
Open AccessArticle

Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

1
Siemens Mechatronic Training Center, Dedan Kimathi University of Technology, 10100 Nyeri, Kenya
2
Faculty of Vehicle Systems and Production, Institute of Production (IFP), Technology Arts Science TH Koln, 50678 Köln, Germany
*
Author to whom correspondence should be addressed.
Received: 18 February 2020 / Revised: 14 April 2020 / Accepted: 15 April 2020 / Published: 21 April 2020
As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083 s to an overall signal travel time of 1.338 s. View Full-Text
Keywords: Digital Triplet; Digital Twin; OPC-UA; object recognition; cyber-physical system; elevator systems; PLC Digital Triplet; Digital Twin; OPC-UA; object recognition; cyber-physical system; elevator systems; PLC
Show Figures

Figure 1

MDPI and ACS Style

Gichane, M.M.; Byiringiro, J.B.; Chesang, A.K.; Nyaga, P.M.; Langat, R.K.; Smajic, H.; Kiiru, C.W. Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System. Designs 2020, 4, 9.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop