Design of a Wireless and Energy Autonomous Sensor Network for Condition Monitoring of Tram Drive Components
Abstract
:1. Introduction
2. Analysis of the Tram Drive Components
2.1. Installation Space and Component Analysis
2.2. Metrological Analysis
3. Structure and Development of the Sensor Network
3.1. Requirements and Structure
3.2. Design
3.2.1. Energy Supply
3.2.2. Energy Consumption and Overall Design
4. Application on Tram Drive Components
- the functionality of the mechanical design and the adaptability and coupling capability of the housing to the gearbox measuring points;
- the interaction of the software parts on the sensor node, the base station (Raspberry Pi) and on the control station (laptop);
- the transmission of measurement data from the area of the motor bogie to the passenger cabin via WLAN; and
- the reception of GPS data on the data server in the passenger cabin of the tram.
- set up a data server (Raspberry PI) for each motor bogie;
- use ESP8266s as repeaters to amplify the signal; or
- establish a meshed radio network (instead of a star network) between the nodes so they can transmit the data of the other nodes.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolf, M.; Hofbauer, J.; Rudolph, M. Drahtlose und energieautarke Sensorik zur Zustandsüberwachung von Straßenbahnen mit automatisierter Entscheidungsfindung. In VDE-Kongress 2016 “Internet der Dinge—Technologien/Anwendungen/Perspektiven”, November 2016, Mannheim, Tagungsband; VDE VERLAG GMBH, Berlin-Offenbach: Berlin, Germany, 2016; ISBN 978-3-8007-4308-7. [Google Scholar]
- Bundesministerium der Justiz und für Verbraucherschutz. Verordnung über den Bau und Betrieb der Straßenbahnen (Straßenbahn-Bau-und Betriebsordnung—BOStrab); Antiphon Verlag: Berlin, Germany, 1987; p. 57. [Google Scholar]
- Firlik, B.; Czechyra, B.; Chudzikiewicz, A. Condition Monitoring System for Light Rail Vehicle and Track. Key Eng. Mater. 2012, 518, 66–75. [Google Scholar] [CrossRef]
- Firlik, B.; Chudzikiewicz, A. Condition monitoring of a light rail vehicle—From concept to implementation. In Proceedings of the 6th European Workshop—Structural Health Monitoring 2012 (EWSHM 2012), Dresden, Germany, 3–6 July 2012; Volume 2, pp. 1401–1408. [Google Scholar]
- Hanusch, G.; Henkel, D. Sensor Nodes for Assessing Constructional Elements in Vehicles by Using Acoustical Monitoring Technologies. Available online: http://edok01.tib.uni-hannover.de/edoks/e01fb14/ 78111229X.pdf (accessed on 29 October 2018).
- Wolf, M.; Rudolph, M.; Köllner, J. Schwingungsdiagnostische Untersuchung von Straßenbahn-Antriebskomponenten mithilfe von Sensornetzwerken. ZWF Z. Wirtsch. Fabr. 2017, 112, 62–67. [Google Scholar] [CrossRef]
- Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement 2017, 106, 261–263. [Google Scholar] [CrossRef]
- General Principils and Basic Considerations. In Thermoelectric Handbook: Macro to Nano; Rowe, D.M. (Ed.) CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Hazelden, R. APSCAM—A Novel Sensor to Monitor Railway Earthworks: Energy Harvesting Case Study. Available online: http://eh-network.org/events/eh2016/speakers/Hazelden.pdf (accessed on 13 November 2018).
- LUST Hybrid Technik GmbH. MoSe—Mobile Sensorsysteme für die Instandhaltung im Transportwesen. Available online: https://www.tib.eu/suchen/id/TIBKAT:880572426/ (accessed on 29 October 2018).
- Perpetuum Ltd. Condition Monitored Maintenance Using Self-Powered Sensors & Vibration Based Analytics. Available online: http://www.passenger-rolling-stock-maintenance.com/media/downloads/ inline/perpetuum-case-study.1449847586.pdf (accessed on 29 October 2018).
- Sturm, A.; Foerster, R.; Hippmann, N.; Kinsky, D. Wälzlagerdiagnostik für Maschinen und Anlagen; Verlag Technik: Berlin, Germany, 1985; pp. 134–153. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Mechanical Vibration and Shock—Mechanical Mounting of Accelerometers (ISO 5348: 1998); Beuth Verlag GmbH: Berlin, Germany, 1999; pp. 6–7. [Google Scholar]
- Bradai, S.; Naifar, S.; Viehweger, C.; Kanoun, O. Electromagnetic Vibration Energy Harvesting for Railway Applications. MATEC Web Conf. 2018, 148, 12004. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.C. Intelligent Sensing, Instrumentation and Measurements; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-37026-7. [Google Scholar]
- Hofbauer, J.; Wolf, M.; Rudolph, M. Drahtlose, energieautarke Sensorik zur Zustandsüberwachung von Maschinen und Anlagen—Simulationsuntersuchung zur Abschätzung der energetischen Lebensdauer für den praktischen Einsatz. Wissenschaftliche Schriftenreihe des Institutes für Betriebswissenschaften und Fabriksysteme, Sonderheft 23, Tagungsband “Arbeitswelten 4.0—Chancen, Herausforderungen, Lösungen”, TBI 2017-16; des Betriebs, T., Systemingenieurs, S., Eds.; Institut für Print und Medientechnik der TU Chemnitz: Chemnitz, Germany, 2017; pp. 73–82. ISSN 0947-2495. [Google Scholar]
- Hofbauer, J.; Wolf, M.; Rudolph, M. Self-sufficient Sensors Based on Energy Harvesting—Validation and Evaluation Study of Tram Bearing Diagnostics Using Simulation Techniques. In Proceedings of the 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 613–618, ISBN 978-1-5090-1291-9. [Google Scholar]
- PI Ceramics GmbH. E-821.EHD Evaluation Kit. Datasheet. Available online: https://www.piceramic.de/fileadmin/user_upload/physik_instrumente/files/datasheets/PI_Datenblatt_E-821_20150121.pdf (accessed on 29 October 2018).
- Analog Devices. Digital Tri-Axial Vibration Sensor ADIS16223. Datasheet. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16223.pdf (accessed on 11 June 2018).
- Espressif. ESP8266EX Datasheet. Available online: https://www.espressif.com/sites/default/files/ documentation/0a-esp8266ex_datasheet_en.pdf (accessed on 29 October 2018).
- Rudolph, M.; Hempel, A.-J. Unscharfe Klassifikation von Messdaten zur Maschinenüberwachung. In Wt Werkstattstechnik Online; Springer-VDI-Verlag: Düsseldorf, Germany, 2013; Volume 103, pp. 915–920. [Google Scholar]
- Voß, G.; Lehmann, J. Vibration analysis as a method to increase the reliability and availability of a low-floor tram car—Einsatz der Schwingungsanalyse zur Erhoehung der Zuverlaessigkeit am Beispiel eines Niederflurfahrzeugs. ZEV-Z. Eisenb. Verk. J. Railw. Trans. 2000, 124, 151–158. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, M.; Hund, S.; Rudolph, M.; Kanoun, O. Design of a Wireless and Energy Autonomous Sensor Network for Condition Monitoring of Tram Drive Components. Designs 2018, 2, 50. https://doi.org/10.3390/designs2040050
Wolf M, Hund S, Rudolph M, Kanoun O. Design of a Wireless and Energy Autonomous Sensor Network for Condition Monitoring of Tram Drive Components. Designs. 2018; 2(4):50. https://doi.org/10.3390/designs2040050
Chicago/Turabian StyleWolf, Maik, Silvio Hund, Mathias Rudolph, and Olfa Kanoun. 2018. "Design of a Wireless and Energy Autonomous Sensor Network for Condition Monitoring of Tram Drive Components" Designs 2, no. 4: 50. https://doi.org/10.3390/designs2040050
APA StyleWolf, M., Hund, S., Rudolph, M., & Kanoun, O. (2018). Design of a Wireless and Energy Autonomous Sensor Network for Condition Monitoring of Tram Drive Components. Designs, 2(4), 50. https://doi.org/10.3390/designs2040050