Impact of Visual Input and Kinesiophobia on Postural Control and Quality of Life in Older Adults During One-Leg Standing Tasks
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOM | fear of movement |
QOL | quality of life |
TSK | Tampa Scale of Kinesiophobia |
SF36 | short-form 36-item questionnaire |
PF | physical functioning |
RP | role limitations due to physical health |
RE | role limitation due to emotional problems |
EF | energy/fatigue |
EM | emotional well-being |
SF | social functioning |
BP | bodily pain |
GH | general health |
EO | eyes-open condition |
EC | eyes-closed condition |
T | one-leg standing trial |
X | mediolateral direction |
Y | anteroposterior direction |
ML | mediolateral |
References
- Berencsi, A.; Ishihara, M.; Imanaka, K. The functional role of central and peripheral vision in the control of posture. Hum. Mov. Sci. 2005, 24, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Zarei, H.; Norasteh, A.A.; Lieberman, L.J.; Ertel, M.W.; Brian, A. Balance Control in Individuals With Visual Impairment: A Systematic Review and Meta-Analysis. Mot. Control 2023, 27, 677–704. [Google Scholar] [CrossRef]
- Psenicnik Sluga, S.; Kozinc, Z. Sensorimotor and proprioceptive exercise programs to improve balance in older adults: A systematic review with meta-analysis. Eur. J. Transl. Myol. 2024, 34, 12010. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.; Rowland, P. Impact of sensory reweighting strategies on postural control using the sensory organization test in older adults with and without fall risks. Physiother. Res. Int. 2024, 29, e2075. [Google Scholar] [CrossRef]
- Salazar-Mendez, J.; Nunez-Cortes, R.; Suso-Marti, L.; Ribeiro, I.L.; Garrido-Castillo, M.; Gacitua, J.; Mendez-Rebolledo, G.; Cruz-Montecinos, C.; Lopez-Bueno, R.; Calatayud, J. Dosage matters: Uncovering the optimal duration of pain neuroscience education to improve psychosocial variables in chronic musculoskeletal pain. A systematic review and meta-analysis with moderator analysis. Neurosci. Biobehav. Rev. 2023, 153, 105328. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.; Park, M.S. Compensatory latency time delays during consecutive perturbations in older adults with and without kinesiophobia. Gait Posture 2024, 109, 95–100. [Google Scholar] [CrossRef]
- Percy, D.; Phillips, T.; Torres, F.; Chaleunphonh, M.; Sung, P. Effectiveness of virtual reality-based balance and gait in older adults with fear of movement: A systematic review and meta-analysis. Physiother. Res. Int. 2023, 28, e2037. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.; Linton, S.J. Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art. Pain 2000, 85, 317–332. [Google Scholar] [CrossRef]
- Delbaere, K.; Crombez, G.; Vanderstraeten, G.; Willems, T.; Cambier, D. Fear-related avoidance of activities, falls and physical frailty. A prospective community-based cohort study. Age Ageing 2004, 33, 368–373. [Google Scholar] [CrossRef]
- Otani, Y.; Aoki, O. Fear-related visual stimuli do not promote internal focus of attention in older adults. Gait Posture 2024, 108, 70–76. [Google Scholar] [CrossRef]
- Bednarczuk, G.; Wiszomirska, I.; Rutkowska, I.; Skowronski, W. Role of vision in static balance in persons with and without visual impairments. Eur. J. Phys. Rehabil. Med. 2021, 57, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Lee, D. A study on the effects of visual condition on postural stability in adults with and without chronic low back pain. J. Biomech. 2024, 171, 112193. [Google Scholar] [CrossRef]
- Meinke, A.; Maschio, C.; Meier, M.L.; Karlen, W.; Swanenburg, J. The association of fear of movement and postural sway in people with low back pain. Front. Psychol. 2022, 13, 1006034. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Vernon, M.; Boulton, H. The role of spatial alignment in posture-cognition dual task interaction. Gait Posture 2022, 93, 54–58. [Google Scholar] [CrossRef]
- Lord, S.R.; Menz, H.B. Visual contributions to postural stability in older adults. Gerontology 2000, 46, 306–310. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobagyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Gerber, E.D.; Huang, C.K.; Moon, S.; Devos, H.; Luchies, C.W. Sensory reweighting of postural control requires distinct rambling and trembling sway adaptations. Gait Posture 2024, 112, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Aghapour, M.; Affenzeller, N.; Peham, C.; Lutonsky, C.; Tichy, A.; Bockstahler, B. Effect of Vision and Surface Slope on Postural Sway in Healthy Adults: A Prospective Cohort Study. Life 2024, 14, 227. [Google Scholar] [CrossRef]
- Nishi, Y.; Osumi, M.; Nobusako, S.; Takeda, K.; Morioka, S. Avoidance Behavioral Difference in Acquisition and Extinction of Pain-Related Fear. Front. Behav. Neurosci. 2019, 13, 236. [Google Scholar] [CrossRef]
- Eikema, D.J.; Hatzitaki, V.; Tzovaras, D.; Papaxanthis, C. Age-dependent modulation of sensory reweighting for controlling posture in a dynamic virtual environment. Age 2012, 34, 1381–1392. [Google Scholar] [CrossRef]
- Sung, W.; Abraham, M.; Plastaras, C.; Silfies, S.P. Trunk motor control deficits in acute and subacute low back pain are not associated with pain or fear of movement. Spine J. 2015, 15, 1772–1782. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Fritz, J.M.; Childs, J.D. Psychometric properties of the Fear-Avoidance Beliefs Questionnaire and Tampa Scale of Kinesiophobia in patients with neck pain. Am. J. Phys. Med. Rehabil. 2008, 87, 109–117. [Google Scholar] [CrossRef]
- Rethman, K.K.; Mansfield, C.J.; Moeller, J.; De Oliveira Silva, D.; Stephens, J.A.; Di Stasi, S.; Briggs, M.S. Kinesiophobia Is Associated With Poor Function and Modifiable Through Interventions in People With Patellofemoral Pain: A Systematic Review With Individual Participant Data Correlation Meta-Analysis. Phys. Ther. 2023, 103, pzad074. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.A.; Allum, J.H.J.; Sleptsova, M.; Welge-Lussen, A.; Schaefert, R.; Meinlschmidt, G.; Langewitz, W. Relation of anxiety and other psychometric measures, balance deficits, impaired quality of life, and perceived state of health to dizziness handicap inventory scores for patients with dizziness. Health Qual. Life Outcomes 2020, 18, 204. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Heller, C.; Aung, Y.N.; Sieber, C.C.; Kemmler, W.; Freiberger, E. A systematic review on the influence of fear of falling on quality of life in older people: Is there a role for falls? Clin. Interv. Aging 2019, 14, 701–719. [Google Scholar] [CrossRef]
- Hays, R.D.; Morales, L.S. The RAND-36 measure of health-related quality of life. Ann. Med. 2001, 33, 350–357. [Google Scholar] [CrossRef]
- Hays, R.D.; Sherbourne, C.D.; Mazel, R.M. The RAND 36-Item Health Survey 1.0. Health Econ. 1993, 2, 217–227. [Google Scholar] [CrossRef]
- Abit Kocaman, A.; Aydogan Arslan, S. Comparison of gait speed, dynamic balance, and dual-task balance performance according to kinesiophobia level in older adults. Somat. Mot. Res. 2023, 40, 83–89. [Google Scholar] [CrossRef]
- Trombini-Souza, F.; de Maio Nascimento, M.; da Silva, T.F.A.; de Araujo, R.C.; Perracini, M.R.; Sacco, I.C.N. Dual-task training with progression from variable- to fixed-priority instructions versus dual-task training with variable-priority on gait speed in community-dwelling older adults: A protocol for a randomized controlled trial: Variable- and fixed-priority dual-task for older adults. BMC Geriatr. 2020, 20, 76. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Woollacott, M. Attentional demands and postural control: The effect of sensory context. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M10–M16. [Google Scholar] [CrossRef]
- Masani, K.; Vette, A.H.; Kouzaki, M.; Kanehisa, H.; Fukunaga, T.; Popovic, M.R. Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing. Neurosci. Lett. 2007, 422, 202–206. [Google Scholar] [CrossRef]
- Smith, A.C.; Roberts, J.R.; Kong, P.W.; Forrester, S.E. Comparison of centre of gravity and centre of pressure patterns in the golf swing. Eur. J. Sport Sci. 2017, 17, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.; Aqui, A.; Fraser, J.E.; Rajachandrakumar, R.; Lakhani, B.; Patterson, K.K. Can augmented feedback facilitate learning a reactive balance task among older adults? Exp. Brain Res. 2017, 235, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, E.; Seiger, A.; Hirschfeld, H. One-leg stance in healthy young and elderly adults: A measure of postural steadiness? Clin. Biomech. 2004, 19, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Mani, H.; Hsiao, S.F.; Takeda, K.; Hasegawa, N.; Tozuka, M.; Tsuda, A.; Ohashi, T.; Suwahara, T.; Ito, K.; Asaka, T. Age-related changes in distance from center of mass to center of pressure during one-leg standing. J. Mot. Behav. 2015, 47, 282–290. [Google Scholar] [CrossRef]
- Blodgett, J.M.; Ventre, J.P.; Mills, R.; Hardy, R.; Cooper, R. A systematic review of one-legged balance performance and falls risk in community-dwelling adults. Ageing Res. Rev. 2022, 73, 101501. [Google Scholar] [CrossRef]
- Sung, P.S.; Danial, P. Analysis of relative kinematic index with normalized standing time between subjects with and without recurrent low back pain. Eur. Spine J. 2017, 26, 518–527. [Google Scholar] [CrossRef]
- Inukai, Y.; Miyaguchi, S.; Kobayashi, N.; Otsuru, N.; Onishi, H. Noisy galvanic vestibular stimulation effect on center of pressure sway during one-legged standing. J. Clin. Neurosci. 2020, 82 Pt A, 173–178. [Google Scholar] [CrossRef]
- Sung, P.S.; Spratt, K.F.; Wilder, D.G. A possible methodological flaw in comparing dominant and nondominant sided lumbar spine muscle responses without simultaneously considering hand dominance. Spine 2004, 29, 1914–1922. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. How does lower limb dominance influence postural control movements during single leg stance? Hum. Mov. Sci. 2018, 58, 165–174. [Google Scholar] [CrossRef]
- Brophy, R.; Silvers, H.J.; Gonzales, T.; Mandelbaum, B.R. Gender influences: The role of leg dominance in ACL injury among soccer players. Br. J. Sports Med. 2010, 44, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.E.; Floerenes, T.W.; Arnason, A.; Bahr, R. Video analysis of the mechanisms for ankle injuries in football. Am. J. Sports Med. 2004, 32 (Suppl. S1), 69S–79S. [Google Scholar] [CrossRef]
- Anarte-Lazo, E.; Liew, B.X.W.; Devecchi, V.; Bernal-Utrera, C.; Rodriguez-Blanco, C.; Falla, D. Network analyses reveal the interaction between physical features, fear of movement and neck pain and disability in people with acute and chronic whiplash-associated disorders. Eur. J. Pain 2024, 28, 322–334. [Google Scholar] [CrossRef]
- Monticone, M.; Ambrosini, E.; Rocca, B.; Magni, S.; Brivio, F.; Ferrante, S. A multidisciplinary rehabilitation programme improves disability, kinesiophobia and walking ability in subjects with chronic low back pain: Results of a randomised controlled pilot study. Eur. Spine J. 2014, 23, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- French, D.J.; France, C.R.; Vigneau, F.; French, J.A.; Evans, R.T. Fear of movement/(re)injury in chronic pain: A psychometric assessment of the original English version of the Tampa scale for kinesiophobia (TSK). Pain 2007, 127, 42–51. [Google Scholar] [CrossRef]
- Kamonseki, D.H.; Haik, M.N.; Ribeiro, L.P.; Almeida, R.F.; Almeida, L.A.; Fonseca, C.L.; Camargo, P.R. Measurement properties of the Brazilian versions of Fear-Avoidance Beliefs Questionnaire and Tampa Scale of Kinesiophobia in individuals with shoulder pain. PLoS ONE 2021, 16, e0260452. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.; Kole-Snijders, A.M.; Rotteveel, A.M.; Ruesink, R.; Heuts, P.H. The role of fear of movement/(re)injury in pain disability. J. Occup. Rehabil. 1995, 5, 235–252. [Google Scholar] [CrossRef]
- Larsson, C.; Ekvall Hansson, E.; Sundquist, K.; Jakobsson, U. Kinesiophobia and its relation to pain characteristics and cognitive affective variables in older adults with chronic pain. BMC Geriatr. 2016, 16, 128. [Google Scholar] [CrossRef]
- Lee, D.; Sung, P.S. Postural adaptations within normalized stability between older adults with and without chronic low back pain. Eur. Spine J. 2023, 32, 4420–4427. [Google Scholar] [CrossRef]
- Lee, D.; Sung, P.S. Normalized stability time analysis within the boundaries between adults with and without fear of falling. Aging Clin. Exp. Res. 2024, 36, 13. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Moghadam, M.; Ashayeri, H.; Salavati, M.; Sarafzadeh, J.; Taghipoor, K.D.; Saeedi, A.; Salehi, R. Reliability of center of pressure measures of postural stability in healthy older adults: Effects of postural task difficulty and cognitive load. Gait Posture 2011, 33, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.; Barton, C. Approximate power for repeated-Measures ANOVA lacking Sphericity. J. Am. Stat. Assoc. 1986, 84, 549–555. [Google Scholar] [CrossRef]
- Ulug, N.; Yakut, Y.; Alemdaroglu, I.; Yilmaz, O. Comparison of pain, kinesiophobia and quality of life in patients with low back and neck pain. J. Phys. Ther. Sci. 2016, 28, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.S.; Kole-Snijders, A.M.J.; Boeren, R.G.B.; van Eek, H. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain 1995, 62, 363–372. [Google Scholar] [CrossRef]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Multi-System Physical Exercise Intervention for Fall Prevention and Quality of Life in Pre-Frail Older Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 3102. [Google Scholar] [CrossRef]
- Lord, S.R.; Clark, R.D.; Webster, I.W. Postural stability and associated physiological factors in a population of aged persons. J. Gerontol. 1991, 46, M69–M76. [Google Scholar] [CrossRef]
- Alhelal, F.; Alissa, S.; Abaalkhail, M.; Alshehri, A.; Alsaeed, A.; Bindekhayel, J. The Effect of Visual Impairment on Postural Stability After Lumbar Spine Fracture: A Case Report and Review of the Literature. Cureus 2023, 15, e49995. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef]
- Zarei, H.; Norasteh, A.A.; Lieberman, L.J.; Ertel, M.W.; Brian, A. Balance Control in Individuals with Hearing Impairment: A Systematic Review and Meta-Analysis. Audiol. Neurootol. 2024, 29, 30–48. [Google Scholar] [CrossRef]
- Piirtola, M.; Era, P. Force platform measurements as predictors of falls among older people—A review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef]
- Sarvari, M.; Shanbehzadeh, S.; Shavehei, Y.; ShahAli, S. Postural control among older adults with fear of falling and chronic low back pain. BMC Geriatr. 2024, 24, 862. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Rowland, P.; Lee, D. Implications for fall efficacy strategies on center of pressure and center of gravity sway distances in adults with chronic low back pain. Eur. Spine J. 2024, 33, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Loram, I.D.; Maganaris, C.N.; Lakie, M. The passive, human calf muscles in relation to standing: The short range stiffness lies in the contractile component. J. Physiol. 2007, 584 Pt 2, 677–692. [Google Scholar] [CrossRef]
- Mok, N.W.; Brauer, S.G.; Hodges, P.W. Postural recovery following voluntary arm movement is impaired in people with chronic low back pain. Gait Posture 2011, 34, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. Centre of pressure versus centre of mass stabilization strategies: The tightrope balancing case. R. Soc. Open Sci. 2020, 7, 200111. [Google Scholar] [CrossRef]
- Radebold, A.; Cholewicki, J.; Polzhofer, G.K.; Greene, H.S. Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine 2001, 26, 724–730. [Google Scholar] [CrossRef]
- Mazaheri, M.; Coenen, P.; Parnianpour, M.; Kiers, H.; van Dieen, J.H. Low back pain and postural sway during quiet standing with and without sensory manipulation: A systematic review. Gait Posture 2013, 37, 12–22. [Google Scholar] [CrossRef]
- Ruhe, A.; Fejer, R.; Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur. Spine J. 2011, 20, 358–368. [Google Scholar] [CrossRef]
- Stubbs, B.; Binnekade, T.; Eggermont, L.; Sepehry, A.A.; Patchay, S.; Schofield, P. Pain and the risk for falls in community-dwelling older adults: Systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2014, 95, 175–187.e179. [Google Scholar] [CrossRef]
- Zak, M.; Sikorski, T.; Wasik, M.; Krupnik, S.; Andrychowski, J.; Brola, W. Pisa syndrome: Pathophysiology, physical rehabilitation and falls risk. NeuroRehabilitation 2021, 49, 363–373. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, Y.; Yamazaki, K.; Ito, Y.; Kawai, K.; Kato, Y.; Sugiura, H.; Morita, Y. Postural Sway in Older Patients with Sagittal Imbalance and Young Adults during Local Vibratory Proprioceptive Stimulation. Healthcare 2021, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Chou, L.S. Sagittal plane momentum control during walking in elderly fallers. Gait Posture 2016, 45, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Artico, R.; Teyssedre, C.A.; Labaune, O.; Fourcade, P. Anticipatory Postural Control of Stability during Gait Initiation Over Obstacles of Different Height and Distance Made Under Reaction-Time and Self-Initiated Instructions. Front. Hum. Neurosci. 2016, 10, 449. [Google Scholar] [CrossRef]
Variables | Control Group (n = 37) | Fear Group (n = 36) | Statistics | p | 95% CI (Upper/Lower) |
---|---|---|---|---|---|
Age (years) | 73.27 ± 8.19 | 72.86 ± 6.92 | t = 0.23 | 0.41 | −3.13/3.95 |
BMI (kg/m2) | 27.21 ± 0.04 | 27.90 ± 0.05 | t = −0.59 | 0.27 | −0.03/0.16 |
TSK | 33.65 ± 0.07 | 58.02 ± 10.36 | t = −11.78 | 0.001 ** | −0.28/−0.20 |
SF36-PF | 73.59 ± 27.51 | 59.25 ± 26.22 | t = 2.27 | 0.01 * | 1.78/26.88 |
SF36-RP | 80.01 ± 35.89 | 51.88 ± 41.36 | t = 3.24 | 0.001 ** | 10.89/45.36 |
SF36-RE | 89.74 ± 30.75 | 70.01 ± 39.79 | t = 2.46 | 0.01 * | 3.77/35.69 |
SF36-EF | 65.40 ± 14.73 | 51.74 ± 20.44 | t = 3.28 | 0.001 ** | 5.37/21.96 |
SF36-EM | 79.05 ± 16.06 | 72.92 ± 16.79 | t = 1.59 | 0.06 | −1.53/13.81 |
SF36-SF | 93.91 ± 14.31 | 78.12 ± 24.16 | t = 3.41 | 0.001 ** | 6.55/25.03 |
SF36-BP | 79.53 ± 20.94 | 60.97 ± 21.69 | t = 3.72 | 0.001 ** | 8.60/28.51 |
SF36-GH | 75.74 ± 12.51 | 59.79 ± 19.005 | t = 4.24 | 0.001 ** | 8.44/23.45 |
Variables | Control Group (n = 37) | Fear Group (n = 36) | Statistics | p | 95% CI (Upper/Lower) |
---|---|---|---|---|---|
EO T1 X | 131.69 ± 47.04 | 145.01 ± 50.82 | t = −1.14 | 0.12 | −36.49/9.84 |
EO T1 Y | 99.16 ± 23.21 | 105.59 ± 24.62 | t = −1.13 | 0.13 | −17.57/4.99 |
EO T2 X | 112.12 ± 33.19 | 156.36 ± 57.14 | t = −3.95 | 0.001 ** | −66.56/−21.91 |
EO T2 Y | 94.24 ± 21.74 | 105.60 ± 25.95 | t = −1.96 | 0.03 * | −22.90/0.20 |
EO T3 X | 117.69 ± 44.32 | 144.64 ± 59.37 | t = −2.09 | 0.02 * | −52.66/−1.24 |
EO T3 Y | 97.31 ± 32.44 | 98.70 ± 24.63 | t = −0.19 | 0.42 | −15.97/13.17 |
EC T1 X | 153.46 ± 53.66 | 185.63 ± 63.70 | t = −2.31 | 0.01 ** | −59.97/−4.35 |
EC T1 Y | 113.94 ± 28.71 | 125.81 ± 37.26 | t = −1.51 | 0.07 | −27.55/3.79 |
EC T2 X | 138.26 ± 44.49 | 178.42 ± 62.15 | t = −3.09 | 0.001 ** | −66.12/−14.20 |
EC T2 Y | 107.97 ± 25.17 | 114.44 ± 25.06 | t = −1.04 | 0.15 | −18.88/5.96 |
EC T3 X | 143.04 ± 48.47 | 166.65 ± 50.62 | t = −2.04 | 0.02 * | −50.69/−0.56 |
EC T3 Y | 111.13 ± 25.51 | 116.17 ± 25.93 | t = −0.77 | 0.22 | −18.07/7.98 |
Control Group | TSK | Age | BMI | PF | RP | RE | EF | EM | SF | BP | GH |
---|---|---|---|---|---|---|---|---|---|---|---|
TSK | |||||||||||
Age | −0.31 | ||||||||||
BMI | 0.24 | −0.32 | |||||||||
PF | −0.19 | −0.36 * | 0.03 | ||||||||
RP | −0.35 * | −0.32 * | −0.10 | 0.33 * | |||||||
RE | −0.27 | −0.29 | −0.16 | 0.38 ** | 0.65 ** | ||||||
EF | −0.21 | −0.07 | −0.23 | 0.33 * | 0.69 ** | 0.46 * | |||||
EM | 0.12 | 0.11 | 0.28 | 0.29 | 0.13 | 0.26 | 0.23 | ||||
SF | −0.31 | −0.45 * | 0.11 | 0.31 | 0.67 ** | 0.69 ** | 0.47 * | 0.22 | |||
BP | −0.14 | −0.05 | 0.07 | 0.13 | 0.48 ** | 0.45 * | 0.39 * | 0.17 | 0.47 * | ||
GH | −0.41 * | −0.09 * | −0.36 ** | 0.07 | 0.55 ** | 0.39 * | 0.46 * | 0.04 | 0.36 * | 0.15 | |
Fear Group | TSK | Age | BMI | PF | RP | RE | EF | EM | SF | BP | GH |
TSK | |||||||||||
Age | 0.13 | ||||||||||
BMI | −0.07 | −0.28 | |||||||||
PF | −0.28 | 0.01 | −0.18 | ||||||||
RP | −0.55 ** | −0.03 | −0.15 | 0.53 ** | |||||||
RE | −0.58 ** | −0.08 | −0.19 | 0.48 ** | 0.51 ** | ||||||
EF | −0.19 | −0.09 | −0.01 | 0.49 ** | 0.49 * | 0.27 | |||||
EM | −0.34 * | 0.22 | 0.14 | 0.41 ** | 0.39 * | 0.25 | 0.64 ** | ||||
SF | −0.69 ** | 0.14 | −0.04 | 0.36 * | 0.41 * | 0.76 ** | 0.41 * | 0.51 * | |||
BP | −0.39 * | 0.12 | 0.26 | 0.42 * | 0.46 * | 0.54 ** | 0.38 * | 0.27 | 0.43 * | ||
GH | −0.32 * | 0.03 | −0.03 | 0.54 ** | 0.58 ** | 0.36 * | 0.66 ** | 0.47 * | 0.41 * | 0.48 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, P.S.; Lee, D. Impact of Visual Input and Kinesiophobia on Postural Control and Quality of Life in Older Adults During One-Leg Standing Tasks. Vision 2025, 9, 24. https://doi.org/10.3390/vision9010024
Sung PS, Lee D. Impact of Visual Input and Kinesiophobia on Postural Control and Quality of Life in Older Adults During One-Leg Standing Tasks. Vision. 2025; 9(1):24. https://doi.org/10.3390/vision9010024
Chicago/Turabian StyleSung, Paul S., and Dongchul Lee. 2025. "Impact of Visual Input and Kinesiophobia on Postural Control and Quality of Life in Older Adults During One-Leg Standing Tasks" Vision 9, no. 1: 24. https://doi.org/10.3390/vision9010024
APA StyleSung, P. S., & Lee, D. (2025). Impact of Visual Input and Kinesiophobia on Postural Control and Quality of Life in Older Adults During One-Leg Standing Tasks. Vision, 9(1), 24. https://doi.org/10.3390/vision9010024