Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training
Abstract
:1. Introduction
2. Introduction to Neuro-Ophthalmic and Football Officiating Terminology
3. 3D Environment Virtual Reality Research for Football Officiating
- NFL Play Data: NFL Big Data Bowl 2022 [33];
- NBA Play Data: NBA Player Movements [34];
- Soccer Data: SoccerTrack [35].
- Player location information primarily in the form of x and y coordinates with respect to the field of play. As such, this must be scaled for representation inside our 3D environment;
- Player jersey number;
- Player team;
- Only in the NFL data set additional information such as player speed, acceleration and distance covered was included;
- None of these datasets contained any explicit pose data;
- The soccer dataset had accompanying 2D videos and the NBA and NFL video data can be accessed through official channels if required.
4. Physiology of Neuro-Ophthalmic Principles for 3D Virtual On-Field Training
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mather, G. A Step to VAR: The Vision Science of Offside Calls by Video Assistant Referees. Perception 2020, 49, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Momeni, M.; Jafarzadehpur, E.; Rezaee, M.; Taheri, H. Visual skills involved in decision making by expert referees. Percept. Mot. Ski. 2011, 112, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Aginsky, K.D.; Noakes, T.D. Why it is difficult to detect an illegally bowled cricket delivery with either the naked eye or usual two-dimensional video analysis. Br. J. Sports Med. 2008, 44, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Lidor, R.; Zach, S.; Brams, S.; Helsen, W.F. Gaze Behavior of Referees in Sport—A Review. Front. Sports Act. Living 2020, 2, 572891. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.Z.; Woodland, M.B.; Carter, M.J.; Lee, A.G. Curriculum in Neuro-Ophthalmic Principles for National Football League Game Officials: Comparison of Pretraining and Posttraining Ratings of Knowledge. J. Neuro-Ophthalmol. 2023. [Google Scholar] [CrossRef] [PubMed]
- 2023 NFL Game Officials’ Meeting, Irving, TX, USA, 8–9 September 2023. Available online: https://operations.nfl.com/officiating/nfl-officials-preparing-for-success/ (accessed on 15 May 2024).
- Burg, A. Visual acuity as measured by dynamic and static tests: A comparative evaluation. J. Appl. Psychol. 1966, 50, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Tavakkoli, A.; Strangman, G.; Zaman, N.; Kamran, S.A.; Zhang, Q.; Ivkovic, V.; Lee, A.G. Neuro-ophthalmic imaging and visual assessment technology for spaceflight associated neuro-ocular syndrome (SANS). Surv. Ophthalmol. 2022, 67, 1443–1466. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.; Fernandes, P. Static and dynamic visual acuity and refractive errors in elite football players. Clin. Exp. Optom. 2019, 102, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, E.; Ong, J.; Paladugu, P.; Kamran, S.A.; Zaman, N.; Lee, A.G.; Tavakkoli, A. Dynamic visual acuity as a biometric for astronaut performance and safety. Life Sci. Space Res. 2023, 37, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Zaman, N.; Waisberg, E.; Ong, J.; Paladugu, P.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Poster Session: Comparison of Dynamic Visual Acuity Assessments in Head-Mounted Technology and Traditional Laptop-based Method. J. Vis. 2023, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Riska, K.M.; Hall, C.D. Reliability and Normative Data for the Dynamic Visual Acuity Test for Vestibular Screening. Otol. Neurotol. 2016, 37, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Toole, A.J.; Fogt, N. Review: Head and Eye Movements and Gaze Tracking in Baseball Batting. Optom. Vision Sci. 2021, 98, 750–758. [Google Scholar] [CrossRef]
- Murray, N.; Hunfalvay, M.; Roberts, C.-M.; Lange, B. Reliability and normative data of computerized dynamic visual acuity tests. Vision Dev. Rehabil. 2017, 3, 23–32. [Google Scholar]
- Palidis, D.J.; Wyder-Hodge, P.A.; Fooken, J.; Spering, M. Distinct eye movement patterns enhance dynamic visual acuity. PLoS ONE 2017, 12, e0172061. [Google Scholar] [CrossRef] [PubMed]
- Leigh, R.J.; Kennard, C. Using saccades as a research tool in the clinical neurosciences. Brain 2004, 127, 460–477. [Google Scholar] [CrossRef]
- Orban de Xivry, J.J.; Lefevre, P. Saccades and pursuit: Two outcomes of a single sensorimotor process. J. Physiol. 2007, 584, 11–23. [Google Scholar] [CrossRef]
- Crevecoeur, F.; Kording, K.P. Saccadic suppression as a perceptual consequence of efficient sensorimotor estimation. eLife 2017, 6, e25073. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Patel, M.; Arshad, Q. A brief review of the clinical anatomy of the vestibular-ocular connections—How much do we know? Eye 2014, 29, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Zaman, N.; Ong, J.; Waisberg, E.; Masalkhi, M.; Lee, A.G.; Tavakkoli, A.; Zuckerbrod, S. Advanced Visualization Engineering for Vision Disorders: A Clinically Focused Guide to Current Technology and Future Applications. Ann. Biomed. Eng. 2023, 52, 178–207. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Tavakkoli, A.; Zaman, N.; Kamran, S.A.; Waisberg, E.; Gautam, N.; Lee, A.G. Terrestrial health applications of visual assessment technology and machine learning in spaceflight associated neuro-ocular syndrome. NPJ Microgravity 2022, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Sarker, P.; Zaman, N.; Ong, J.; Paladugu, P.; Aldred, M.; Waisberg, E.; Lee, A.G.; Tavakkoli, A. Test-Retest Reliability of Virtual Reality Devices in Quantifying for Relative Afferent Pupillary Defect. Transl. Vis. Sci. Technol. 2023, 12, 2. [Google Scholar] [CrossRef]
- Nolin, P.; Stipanicic, A.; Henry, M.; Joyal, C.C.; Allain, P. Virtual reality as a screening tool for sports concussion in adolescents. Brain Inj. 2012, 26, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Faure, C.; Limballe, A.; Bideau, B.; Kulpa, R. Virtual reality to assess and train team ball sports performance: A scoping review. J. Sports Sci. 2020, 38, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Hariprasad, S.M.; Chhablani, J. Into the RetinaVerse: A New Frontier of Retina in the Metaverse. Ophthalmic Surg. Lasers Imaging Retin. 2022, 53, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Brent Woodland, M.; Ong, J.; Zaman, N.; Hirzallah, M.; Waisberg, E.; Masalkhi, M.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Applications of extended reality in spaceflight for human health and performance. Acta Astronaut. 2024, 214, 748–756. [Google Scholar] [CrossRef]
- Ong, J.; Zaman, N.; Waisberg, E.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wearable Technol. 2022, 3, e26. [Google Scholar] [CrossRef]
- van Biemen, T.; Müller, D.; Mann, D.L. Virtual reality as a representative training environment for football referees. Hum. Mov. Sci. 2023, 89, 103091. [Google Scholar] [CrossRef] [PubMed]
- Gulec, U.; Yilmaz, M.; Isler, V.; O’Connor, R.V.; Clarke, P.M. A 3D virtual environment for training soccer referees. Comput. Stand. Interfaces 2019, 64, 1–10. [Google Scholar] [CrossRef]
- Kittel, A.; Lindsay, R.; Larkin, P.; Spittle, M. The application of 360°VR for training sports officials: A constraints-led approach. Manag. Sport Leis. 2022, 1–9. [Google Scholar] [CrossRef]
- Kittel, A.; Larkin, P.; Elsworthy, N.; Spittle, M. Using 360° virtual reality as a decision-making assessment tool in sport. J. Sci. Med. Sport 2019, 22, 1049–1053. [Google Scholar] [CrossRef]
- Gray, R. Transfer of Training from Virtual to Real Baseball Batting. Front. Psychol. 2017, 8, 2183. [Google Scholar] [CrossRef] [PubMed]
- NFL. NFL Big Data Bowl 2022. Kaggle. 2022. Available online: https://www.kaggle.com/competitions/nfl-big-data-bowl-2022/data (accessed on 11 October 2023).
- Linou, K.; Linou, D.; de Boer, M. NBA Play Data. Github. 2016. Available online: https://github.com/linouk23/NBA-Player-Movements/tree/master (accessed on 11 October 2023).
- Scott, A.; Uchida, I.; Onishi, M.; Kameda, Y.; Fukui, K.; Fujii, K. SoccerTrack: A Dataset and Tracking Algorithm for Soccer with Fish-eye and Drone Videos. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 3568–3578. [Google Scholar]
- Wu, T.Y.; Wang, Y.X.; Li, X.M. Applications of dynamic visual acuity test in clinical ophthalmology. Int. J. Ophthalmol. 2021, 14, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, J.; Qiao, Q.; Zhou, L.; Li, Y.; Yang, J.; Wu, J.; Huangfu, H. Advances in dynamic visual acuity test research. Front. Neurol. 2022, 13, 1047876. [Google Scholar] [CrossRef] [PubMed]
- Erdinest, N.; London, N. Dynamic visual acuity and methods of measurement. J. Optom. 2022, 15, 247–248. [Google Scholar] [CrossRef]
- Holford, K.C.; Jagodinsky, A.E.; Saripalle, R.; McAllister, P. Leveraging virtual reality for vestibular testing: Clinical outcomes from tests of dynamic visual acuity. J. Vestib. Res. 2022, 32, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, E.; Ong, J.; Zaman, N.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Head-Mounted Dynamic Visual Acuity for G-Transition Effects During Interplanetary Spaceflight: Technology Development and Results from an Early Validation Study. Aerosp. Med. Hum. Perform. 2022, 93, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.B.; Lust, K.L.; Bullimore, M.A. Visual acuity and contrast sensitivity testing for sports vision. Eye Contact Lens 2011, 37, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A. Basic framework of the vestibulo-ocular reflex. Prog. Brain Res. 2022, 267, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Kizilay, F.; Cengiz, D.U. A comparison of functional vestibulo-ocular reflex and proprioception in athletes of combat sports and ball sports. Heliyon 2023, 9, e17540. [Google Scholar] [CrossRef] [PubMed]
- Figtree, W.V.C.; Schubert, M.C.; Rinaudo, C.N.; Migliaccio, A.A. The instantaneous training demand drives vestibulo-ocular reflex adaptation. Exp. Brain Res. 2020, 238, 2965–2972. [Google Scholar] [CrossRef] [PubMed]
- Simakurthy, S.; Tripathy, K. Oculovestibular Reflex. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Muntaseer Mahfuz, M.; Schubert, M.C.; Figtree, W.V.C.; Todd, C.J.; Migliaccio, A.A. Human Vestibulo-Ocular Reflex Adaptation Training: Time Beats Quantity. J. Assoc. Res. Otolaryngol. 2018, 19, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Todd, C.J.; Schubert, M.C.; Figtree, W.V.C.; Migliaccio, A.A. Incremental Vestibulo-ocular Reflex Adaptation Training Dynamically Tailored for Each Individual. J. Neurol. Phys. Ther. 2019, 43 (Suppl. 2), S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, H.; Asai, Y.; Johnson, E.G.; Lohman, E.B.; Khoo, K.; Mizutani, Y.; Mizutani, T. Effect of oculo-motor and gaze stability exercises on postural stability and dynamic visual acuity in healthy young adults. Gait Posture 2011, 33, 600–603. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Hillier, S.L. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst. Rev. 2015, 1, CD005397. [Google Scholar] [CrossRef] [PubMed]
- Van Biemen, T.; van Zanten, T.F.; Savelsbergh, G.J.P.; Mann, D.L. “What needs to be seen”: An exploration into the visual anticipation behaviour of different skill-level football referees while observing long passes on-field. Hum. Mov. Sci. 2022, 85, 102980. [Google Scholar] [CrossRef] [PubMed]
- Hodges, N.J.; Wyder-Hodge, P.A.; Hetherington, S.M.; Baker, J.; Besler, Z.B.; Spering, M. Topical Review: Perceptual-cognitive Skills, Methods, and Skill-based Comparisons in Interceptive Sports. Optom. Vis. Sci. 2021, 98, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Noël, B.; Nicklas, A.; Schul, K.; Seifriz, F.; Schwarting, A.; Fasold, F. Gaze Behavior and Positioning of Referee Teams during Three-Point Shots in Basketball. Appl. Sci. 2021, 11, 6648. [Google Scholar] [CrossRef]
- Schrödter, R.; Schwarting, A.; Fasold, F.; Schul, K.; Klatt, S. The Relevance of General Spatial Anticipation Skills for Basketball Referees. Appl. Sci. 2023, 13, 2991. [Google Scholar] [CrossRef]
- Slack, L.A.; Maynard, I.W.; Butt, J.; Olusoga, P. Factors Underpinning Football Officiating Excellence: Perceptions of English Premier League Referees. J. Appl. Sport Psychol. 2013, 25, 298–315. [Google Scholar] [CrossRef]
- Baptista, A.M.G.; Serra, P.M.; Faisal, M.; Barrett, B.T. Association between Clinical Vision Measures and Visual Perception and Soccer Referees’ On-field Performance. Optom. Vis. Sci. 2021, 98, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.M.G.; Serra, P.M.; McAlinden, C.; Barrett, B.T. Vision in high-level football officials. PLoS ONE 2017, 12, e0188463. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, I.; Roche, L.; Mascarenhas, D. Using Mobile 360° Video as a Tool for Enhancing Sport Referee Performance: A Case Study. Case Stud. Sport Exerc. Psychol. 2023, 7, 43–54. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Zaman, N.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Stroboscopic Augmented Reality as an Approach to Mitigate Gravitational Transition Effects during Interplanetary Spaceflight. Int. J. Aviat. Aeronaut. Aerosp. 2022, 9, 6. [Google Scholar] [CrossRef]
- Schuetz, I.; Fiehler, K. Eye Tracking in Virtual Reality: Vive Pro Eye Spatial Accuracy, Precision, and Calibration Reliability. J. Eye Mov. Res. 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Kudoh, D.; Higuchi, T.; Honda, M.; Kanosue, K. Dynamic Visual Acuity in Baseball Players Is Due to Superior Tracking Abilities. Med. Sci. Sports Exerc. 2013, 45, 319–325. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, J.; Carrabba, N.V.; Waisberg, E.; Zaman, N.; Memon, H.; Panzo, N.; Lee, V.A.; Sarker, P.; Vogt, A.Z.; Laylani, N.; et al. Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training. Vision 2024, 8, 35. https://doi.org/10.3390/vision8020035
Ong J, Carrabba NV, Waisberg E, Zaman N, Memon H, Panzo N, Lee VA, Sarker P, Vogt AZ, Laylani N, et al. Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training. Vision. 2024; 8(2):35. https://doi.org/10.3390/vision8020035
Chicago/Turabian StyleOng, Joshua, Nicole V. Carrabba, Ethan Waisberg, Nasif Zaman, Hamza Memon, Nicholas Panzo, Virginia A. Lee, Prithul Sarker, Ashtyn Z. Vogt, Noor Laylani, and et al. 2024. "Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training" Vision 8, no. 2: 35. https://doi.org/10.3390/vision8020035
APA StyleOng, J., Carrabba, N. V., Waisberg, E., Zaman, N., Memon, H., Panzo, N., Lee, V. A., Sarker, P., Vogt, A. Z., Laylani, N., Tavakkoli, A., & Lee, A. G. (2024). Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training. Vision, 8(2), 35. https://doi.org/10.3390/vision8020035