Screen Time at 6 Years Old and Visual Function in Early Adolescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measure of Screen Time
2.3. Measure of Visual Functions at 12 Years of Age
2.3.1. Visual Acuity and Contrast Sensitivity Threshold
2.3.2. Color Discrimination Threshold
2.4. Potential Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kardefelt-Winther, D. How Does the Time Children Spend Using Digital Technology Impact Their Mental Well-Being, Social Relationships and Physical Activity? An Evidence-Focused Literature Review; Innocenti Discussion Paper; UNICEF Office of Research: Florence, Italy, 2017. [Google Scholar]
- Guo, Y.F.; Liao, M.Q.; Cai, W.L.; Yu, X.X.; Li, S.N.; Ke, X.Y.; Tan, S.X.; Luo, Z.Y.; Cui, Y.F.; Wang, Q.; et al. Physical activity, screen exposure and sleep among students during the pandemic of COVID-19. Sci. Rep. 2021, 11, 8529. [Google Scholar] [CrossRef] [PubMed]
- Madigan, S.; Browne, D.; Racine, N.; Mori, C.; Tough, S. Association between screen time and children’s performance on a developmental screening test. JAMA Pediatr. 2019, 173, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Strasburger, V.C.; Hogan, M.J.; Mulligan, D.A.; Ameenuddin, N.; Christakis, D.A.; Cross, C.; Fagbuyi, D.B.; Hill, D.L.; Levine, A.E.; McCarthy, C.; et al. Children, Adolescents, and the Media. Pediatrics 2013, 132, 958–961. [Google Scholar] [CrossRef]
- Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef]
- Saunders, T.J.; Vallance, J.K. Screen time and health indicators among children and youth: Current evidence, limitations and future directions. Appl. Health Econ. Health Policy 2017, 15, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Charles, M.A.; Thierry, X.; Lanoe, J.-L.; Bois, C.; Dufourg, M.-N.; Popa, R.; Cheminat, M.; Zaros, C.; Geay, B. Cohort Profile: The French national cohort of children (ELFE): Birth to 5 years. Int. J. Epidemiol. 2020, 49, 368–369j. [Google Scholar] [CrossRef] [PubMed]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef]
- Duch, H.; Fisher, E.M.; Ensari, I.; Font, M.; Harrington, A.; Taromino, C.; Yip, J.; Rodriguez, C. Association of screen time use and language development in Hispanic toddlers: A cross-sectional and longitudinal study. Clin. Pediatr. 2013, 52, 857–865. [Google Scholar] [CrossRef]
- Karani, N.F.; Sher, J.; Mophosho, M. The influence of screen time on children’s language development: A scoping review. S. Afr. J. Commun. Disord. 2022, 69, 825. [Google Scholar] [CrossRef]
- Mylona, I.; Deres, E.S.; Dere, G.S.; Tsinopoulos, I.; Glynatsis, M. The Impact of Internet and Videogaming Addiction on Adolescent Vision: A Review of the Literature. Front. Public Health 2020, 8, 63. [Google Scholar] [CrossRef]
- Rechichi, C.; De Moja, G.; Aragona, P. Video Game Vision Syndrome: A New Clinical Picture in Children? J. Pediatr. Ophthalmol. Strabismus. 2017, 54, 346–355. [Google Scholar] [CrossRef] [PubMed]
- French, A.N.; Ashby, R.S.; Morgan, I.G.; Rose, K.A. Time outdoors and the prevention of myopia. Exp. Eye Res. 2013, 114, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, B.; Sun, Y.; Chen, Q.; Dang, J. Adolescent Vision Health During the Outbreak of COVID-19: Association Between Digital Screen Use and Myopia Progression. Front. Pediatr. 2021, 9, 662984. [Google Scholar] [CrossRef]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef]
- Alvarez-Peregrina, C.; Sanchez-Tena, M.A.; Martinez-Perez, C.; Villa-Collar, C. The Relationship Between Screen and Outdoor Time With Rates of Myopia in Spanish Children. Front. Public Health 2020, 8, 596. [Google Scholar] [CrossRef]
- Karthikeyan, S.K.; Ashwini, D.L.; Priyanka, M.; Nayak, A.; Biswas, S. Physical activity, time spent outdoors, and near work in relation to myopia prevalence, incidence, and progression: An overview of systematic reviews and meta-analyses. Indian J. Ophthalmol. 2022, 70, 728–739. [Google Scholar] [CrossRef]
- Yang, G.Y.; Huang, L.H.; Schmid, K.L.; Li, C.G.; Chen, J.Y.; He, G.H.; Liu, L.; Ruan, Z.L.; Chen, W.Q. Associations Between Screen Exposure in Early Life and Myopia amongst Chinese Preschoolers. Int. J. Environ. Res. Public Health 2020, 17, 1056. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Schmid, K.L.; Yin, X.N.; Zhang, J.; Wu, J.; Yang, G.; Ruan, Z.L.; Jiang, X.Q.; Wu, C.A.; Chen, W.Q. Combination Effect of Outdoor Activity and Screen Exposure on Risk of Preschool Myopia: Findings From Longhua Child Cohort Study. Front. Public Health 2021, 9, 607911. [Google Scholar] [CrossRef]
- Marie, M.; Bigot, K.; Angebault, C.; Barrau, C.; Gondouin, P.; Pagan, D.; Fouquet, S.; Villette, T.; Sahel, J.-A.; Lenaers, G. Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis. 2018, 9, 287. [Google Scholar] [CrossRef]
- Ozkaya, E.K.; Anderson, G.; Dhillon, B.; Bagnaninchi, P.-O. Blue-light induced breakdown of barrier function on human retinal epithelial cells is mediated by PKC-ζ over-activation and oxidative stress. Exp. Eye Res. 2019, 189, 107817. [Google Scholar] [CrossRef]
- Zhao, Z.-C.; Zhou, Y.; Tan, G.; Li, J. Research progress about the effect and prevention of blue light on eyes. Int. J. Ophthalmol. 2018, 11, 1999. [Google Scholar] [PubMed]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Sheedy, J.E. Computer vision syndrome: A review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef]
- Maya-Vetencourt, J.F.; Origlia, N. Visual cortex plasticity: A complex interplay of genetic and environmental influences. Neural Plast. 2012, 2012, 631965. [Google Scholar] [CrossRef]
- McKnight, C.M.; Sherwin, J.C.; Yazar, S.; Forward, H.; Tan, A.X.; Hewitt, A.W.; Pennell, C.E.; McAllister, I.L.; Young, T.L.; Coroneo, M.T. Myopia in young adults is inversely related to an objective marker of ocular sun exposure: The Western Australian Raine cohort study. Am. J. Ophthalmol. 2014, 158, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, J.C.; Hewitt, A.W.; Coroneo, M.T.; Kearns, L.S.; Griffiths, L.R.; Mackey, D.A. The association between time spent outdoors and myopia using a novel biomarker of outdoor light exposure. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4363–4370. [Google Scholar] [CrossRef]
- Lingham, G.; Milne, E.; Cross, D.; English, D.R.; Johnston, R.S.; Lucas, R.M.; Yazar, S.; Mackey, D.A. Investigating the long-term impact of a childhood sun-exposure intervention, with a focus on eye health: Protocol for the Kidskin-Young Adult Myopia Study. BMJ Open 2018, 8, e020868. [Google Scholar] [CrossRef]
- Braddick, O.; Atkinson, J. Development of human visual function. Vis. Res. 2011, 51, 1588–1609. [Google Scholar] [CrossRef]
- Paramei, G.V.; Oakley, B. Variation of color discrimination across the life span. JOSA A 2014, 31, A375–A384. [Google Scholar] [CrossRef]
- Ratnayake, K.; Payton, J.L.; Lakmal, O.H.; Karunarathne, A. Blue light excited retinal intercepts cellular signaling. Sci. Rep. 2018, 8, 10207. [Google Scholar] [CrossRef]
- Chen, H.-W.; Yeh, S.-L. Effects of blue light on dynamic vision. Front. Psychol. 2019, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Alzahran, H.S.; Roy, M.; Honson, V.; Khuu, S.K. Effect of blue-blocking lenses on colour contrast sensitivity. Clin. Exp. Optom. 2021, 104, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Augustin, A.J. The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity: Can these parameters be influenced by blue-light-filter lenses? Retina 2008, 28, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Pickford, R.W. Sex Differences in Colour Vision. Nature 1947, 159, 606–607. [Google Scholar] [CrossRef]
- Vanston, J.E.; Strother, L. Sex differences in the human visual system. J. Neurosci. Res. 2017, 95, 617–625. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action-video-game experience alters the spatial resolution of vision. Psychol. Sci. 2007, 18, 88–94. [Google Scholar] [CrossRef]
- Bejjanki, V.R.; Zhang, R.; Li, R.; Pouget, A.; Green, C.S.; Lu, Z.-L.; Bavelier, D. Action video game play facilitates the development of better perceptual templates. Proc. Natl. Acad. Sci. USA 2014, 111, 16961–16966. [Google Scholar] [CrossRef]
- Foerster, F.R.; Chidharom, M.; Gierscha, A. Enhanced temporal resolution of vision in action video game players. Neuroimage 2023, 269, 119906. [Google Scholar] [CrossRef]
- Boot, W.R.; Blakely, D.P.; Simons, D.J. Do action video games improve perception and cognition? Front. Psychol. 2011, 2, 226. [Google Scholar] [CrossRef]
- Shaqiri, A.; Roinishvili, M.; Grzeczkowski, L.; Chkonia, E.; Pilz, K.; Mohr, C.; Brand, A.; Kunchulia, M.; Herzog, M.H. Sex-related differences in vision are heterogeneous. Sci. Rep. 2018, 8, 7521. [Google Scholar] [CrossRef]
- Abramov, I.; Gordon, J.; Feldman, O.; Chavarga, A. Sex & vision I: Spatio-temporal resolution. Biol. Sex Differ. 2012, 3, 20. [Google Scholar]
- Brabyn, L.B.; McGuinness, D. Gender differences in response to spatial frequency and stimulus orientation. Percept. Psychophys. 1979, 26, 319–324. [Google Scholar] [CrossRef]
n | % | Mean (SD) | |
---|---|---|---|
Characteristics of the mothers | |||
Mothers’ age at inclusion | 302 | 30.7 (3.8) | |
Mothers’ educational level | |||
≤High school | 74 | 24.3 | |
>High school | 231 | 75.7 | |
Characteristics of the children | |||
Sex | |||
Male | 176 | 57.7 | |
Female | 129 | 42.3 | |
Gestational age | 303 | 39.6 (1.2) | |
Head circumference | 304 | 34.7 (1.2) | |
Breastfeeding | |||
Yes | 218 | 71.5 | |
No | 86 | 28.2 | |
BMI at 12 years old | 305 | 18.1 (2.6) | |
Physical activity (hours/week) | 261 | 3.5 (2.0) |
All Children (n = 305) | Girls (n = 129) | Boys (n = 176) | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Total screen time | ||||||
6 years | 8.3 | 4.9 | 7.9 | 4.8 | 8.6 | 4.9 |
12 years | 15.9 | 8.2 | 14.9 | 8.1 | 16.7 | 8.2 |
Television/movie viewing | ||||||
6 years | 6.9 | 4.0 | 6.7 | 4.1 | 7.1 | 4.0 |
12 years | 10.6 | 5.8 | 11.3 | 6.2 | 10.0 | 5.4 |
Video/computer gaming | ||||||
6 years | 1.4 | 1.9 | 1.2 | 1.7 | 1.5 | 2.0 |
12 years | 5.4 | 5.1 | 3.6 | 4.4 | 6.7 | 5.2 |
All Children | Girls | Boys | |||||||
---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | n | Mean | SD | |
FrACT | 303 | 128 | 175 | ||||||
Visual Acuity (LogMAR) | −0.211 | 0.092 | −0.203 | 0.102 | −0.217 | 0.084 | |||
Contrast threshold (Log) | 1.941 | 0.208 | 1.924 | 0.219 | 1.954 | 0.199 | |||
Color discrimination (u’v’) | 273 | 121 | 152 | ||||||
Protan axis | 0.499 | 0.196 | 0.515 | 0.199 | 0.487 | 0.194 | |||
Deutan axis | 0.184 | 0.333 | 0.216 | 0.341 | 0.159 | 0.326 | |||
Tritan axis | 0.958 | 0.196 | 0.996 | 0.179 | 0.927 | 0.205 |
Unadjusted Model | Adjusted Model | |
---|---|---|
β (95% CI) | β (95% CI) | |
FrACT | ||
Visual acuity | 0.045 (−0.001, 0.003) | 0.036 (−0.001, 0.002) |
Contrast threshold | −0.126 (−0.010, −0.001) * | −0.110 (−0.009, 0.0002) † |
Color discrimination | ||
Protan axis | 0.051 (−0.003, 0.007) | 0.028 (−0.004, 0.006) |
Deutan axis | −0.002 (−0.008, 0.008) | −0.026 (−0.010, 0.006) |
Tritan axis | −0.079 (−0.008, 0.002) | −0.080 (−0.008, 0.002) |
Unadjusted Model | Adjusted Model | |
---|---|---|
β (95% CI) | β (95% CI) | |
FrACT | ||
Visual acuity | −0.0004 (−0.002, 0.002) | −0.021 (−0.003, 0.002) |
Contrast threshold | −0.010 (−0.006, 0.005) | 0.003 (−0.006, 0.006) |
Color discrimination | ||
Protan axis | 0.007 (−0.006, 0.006) | −0.028 (−0.007, 0.005) |
Deutan axis | −0.029 (−0.012, 0.009) | −0.050 (−0.014, 0.008) |
Tritan axis | −0.155 (−0.013, 0.0002) † | −0.171 (−0.014, −0.0003) * |
Unadjusted Model | Adjusted Model | |
---|---|---|
β (95% CI) | β (95% CI) | |
FrACT | ||
Visual acuity | 0.115 (−0.001, 0.005) | 0.096 (−0.001, 0.005) |
Contrast threshold | −0.282 (−0.020, −0.005) ** | −0.254 (−0.019, −0.004) ** |
Color discrimination | ||
Protan axis | 0.130 (−0.002, 0.013) | 0.093 (−0.004, 0.011) |
Deutan axis | 0.057 (−0.009, 0.017) | 0.014 (−0.012, 0.014) |
Tritan axis | 0.106 (−0.003, 0.010) | 0.080 (−0.004, 0.009) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champagne-Hamel, M.; Monfort, C.; Chevrier, C.; Saint-Amour, D. Screen Time at 6 Years Old and Visual Function in Early Adolescence. Vision 2023, 7, 63. https://doi.org/10.3390/vision7040063
Champagne-Hamel M, Monfort C, Chevrier C, Saint-Amour D. Screen Time at 6 Years Old and Visual Function in Early Adolescence. Vision. 2023; 7(4):63. https://doi.org/10.3390/vision7040063
Chicago/Turabian StyleChampagne-Hamel, Mathilde, Christine Monfort, Cécile Chevrier, and Dave Saint-Amour. 2023. "Screen Time at 6 Years Old and Visual Function in Early Adolescence" Vision 7, no. 4: 63. https://doi.org/10.3390/vision7040063
APA StyleChampagne-Hamel, M., Monfort, C., Chevrier, C., & Saint-Amour, D. (2023). Screen Time at 6 Years Old and Visual Function in Early Adolescence. Vision, 7(4), 63. https://doi.org/10.3390/vision7040063