Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations
Abstract
:1. Introduction
2. Measurement of IOL Tilt and Decentration
2.1. Purkinje Imaging
2.2. Scheimpflug Imaging
2.3. Ultrasound Biomicroscopy
2.4. Anterior Segment Ocular Coherence Tomography
2.4.1. Influence of IOL Tilt and Decentration on Visual Acuity
2.4.2. Influence of Tilt and Decentration on Dysphotopsia
2.4.3. Influence of IOL Tilt and Decentration on Wavefront Aberrations
Monofocal IOLs
Multifocal IOLs
Toric IOLs
In Eyes with Previous Corneal Laser Refractive Surgery
3. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F. Correlation between pupillary size and intraocular lens decentration and visual acuity of a zonal-progressive multifocal lens and a monofocal lens. Ophthalmology 2001, 108, 2011–2017. [Google Scholar] [CrossRef]
- de Castro, A.; Rosales, P.; Marcos, S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J. Cataract Refract. Surg. 2007, 33, 418–429. [Google Scholar] [CrossRef]
- Nishi, Y.; Hirnschall, N.; Crnej, A.; Gangwani, V.; Tabernero, J.; Artal, P.; Findl, O. Reproducibility of intraocular lens decentration and tilt measurement using a clinical Purkinje meter. J. Cataract Refract. Surg. 2010, 36, 1529–1535. [Google Scholar] [CrossRef]
- Kimura, S.; Morizane, Y.; Shiode, Y.; Hirano, M.; Doi, S.; Toshima, S.; Fujiwara, A.; Shiraga, F. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography. PLoS ONE 2017, 12, e0184066. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Shibata, S.; Yoshida, M.; Hayashi, K. Short-term dynamics after single- and three-piece acrylic intraocular lens implantation: A swept-source anterior segment optical coherence tomography study. Sci. Rep. 2018, 8, 10230. [Google Scholar] [CrossRef] [PubMed]
- Hirnschall, N.; Buehren, T.; Bajramovic, F.; Trost, M.; Teuber, T.; Findl, O. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J. Cataract Refract. Surg. 2017, 43, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guimaraes de Souza, R.; Weikert, M.P.; Koch, D.D. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J. Cataract Refract. Surg. 2019, 45, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ale, J.B. Intraocular lens tilt and decentration: A concern for contemporary IOL designs. Nepal. J. Ophthalmol. 2011, 3, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Findl, O.; Hirnschall, N.; Draschl, P.; Wiesinger, J. Effect of manual capsulorhexis size and position on intraocular lens tilt, centration, and axial position. J. Cataract Refract. Surg. 2017, 43, 902–908. [Google Scholar] [CrossRef]
- Zhu, X.; He, W.; Zhang, Y.; Chen, M.; Du, Y.; Lu, Y. Inferior decentration of multifocal intraocular lenses in myopic eyes. Am. J. Ophthalmol. 2018, 188, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Gu, X.; Wang, W.; Xiao, W.; Jin, G.; Wang, L.; Dai, Y.; Zhang, E.; Ruan, X.; Liu, Z.; et al. The characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery. J. Cataract Refract. Surg. 2020, 46, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Uzel, M.M.; Ozates, S.; Koc, M.; Taslipinar Uzel, A.G.; Yılmazbaş, P. Decentration and tilt of intraocular lens after posterior capsulotomy. Semin. Ophthalmol. 2018, 33, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, Q.; Xiang, L.; Chang, P.; Huang, S.; Zhao, Y.E. Three-dimensional assessments of intraocular lens stability with high-speed swept-source optical coherence tomography. J. Refract. Surg. 2020, 36, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Marianelli, B.F.; Mendes, T.S.; de Almeida Manzano, R.P.; Garcia, P.N.; Teixeira, I.C. Observational study of intraocular lens tilt in sutureless intrascleral fixation versus standard transscleral suture fixation determined by ultrasound biomicroscopy. Int. J. Retina Vitreous 2019, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Taketani, F.; Matuura, T.; Yukawa, E.; Hara, Y. Influence of intraocular lens tilt and decentration on wavefront aberrations. J. Cataract Refract. Surg. 2004, 30, 2158–2162. [Google Scholar] [CrossRef]
- Weikert, M.P.; Golla, A.; Wang, L. Astigmatism induced by intraocular lens tilt evaluated via ray tracing. J. Cataract Refract. Surg. 2018, 44, 745–749. [Google Scholar] [CrossRef]
- Lawu, T.; Mukai, K.; Matsushima, H.; Senoo, T. Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye. J. Cataract Refract. Surg. 2019, 45, 662–668. [Google Scholar] [CrossRef]
- Soda, M.; Yaguchi, S. Effect of decentration on the optical performance in multifocal intraocular lenses. Ophthalmologica 2012, 227, 197–204. [Google Scholar] [CrossRef]
- Zhong, X.; Long, E.; Chen, W.; Xiang, W.; Liu, Z.; Chen, H.; Chen, J.; Lin, Z.; Lin, H.; Chen, W. Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients: A randomized controlled trial. BMC Ophthalmol. 2016, 16, 100. [Google Scholar] [CrossRef] [Green Version]
- Phillips, P.; Pérez-Emmanuelli, J.; Rosskothen, H.D.; Koester, C.J. Measurement of intraocular lens decentration and tilt in vivo. J. Cataract Refract. Surg. 1988, 14, 129–135. [Google Scholar] [CrossRef]
- Wang, X.; Dong, J.; Wu, Q. IOL tilt and decentration estimation from 3 dimensional reconstruction of OCT image. PLoS ONE 2013, 8, e59109. [Google Scholar] [CrossRef] [PubMed]
- Rosales, P.; De Castro, A.; Jiménez-Alfaro, I.; Marcos, S. Intraocular lens alignment from purkinje and Scheimpflug imaging. Clin. Exp. Optom. 2010, 93, 400–408. [Google Scholar] [CrossRef]
- Korynta, J.; Bok, J.; Cendelin, J.; Michalova, K. Computer modeling of visual impairment caused by intraocular lens misalignment. J. Cataract Refract. Surg. 1999, 25, 100–105. [Google Scholar] [CrossRef]
- Janunts, E.; Chashchina, E.; Seitz, B.; Schaeffel, F.; Langenbucher, A. Reliability of a single light source purkinjemeter in pseudophakic eyes. Optom. Vis. Sci. 2015, 92, 884–891. [Google Scholar] [CrossRef]
- Turuwhenua, J. Reconstructing ocular surfaces by Purkinje images: An exact ray approach. Ophthalmic Physiol. Opt. 2009, 29, 80–91. [Google Scholar] [CrossRef]
- Turuwhenua, J. Reconstructing ocular surfaces by Purkinje images using an exact ray approach: Estimating IOL decenter and tilt. Ophthalmic Physiol. Opt. 2010, 30, 43–54. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Yan, Y.; Song, X.; Liu, Z. Research on calculation of the IOL tilt and decentration based on surface fitting. Comput. Math. Methods Med. 2013, 2013, 572530. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Sakamoto, Y.; Shibata, T.; Nakaizumi, H.; Emori, Y. Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images. J. Cataract Refract. Surg. 1989, 15, 454–457. [Google Scholar] [CrossRef]
- Baumeister, M.; Kohnen, T. Scheimpflug measurement of intraocular lens position after piggyback implantation of foldable intraocular lenses in eyes with high hyperopia. J. Cataract Refract. Surg. 2006, 32, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Piers, P.; Benito, A.; Redondo, M.; Artal, P. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4651–4658. [Google Scholar] [CrossRef]
- Ang, G.S.; Duncan, L.; Atta, H.R. Ultrasound biomicroscopic study of the stability of intraocular lens implants after phacoemulsification cataract surgery. Acta Ophthalmol. 2012, 90, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.X.; Lin, H.; Ye, L.; Lin, Z.; Chen, T.; Lin, K.; Wu, R.H. Sutureless intrascleral haptic-hook lens implantation using 25-gauge trocars. J. Ophthalmol. 2018, 2018, 9250425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, A.; Kumar, P.; Dhiman, S.; Mishra, M.; Anand, K.; Bhardwaj, A. Evaluation of functional outcome and stability of sutureless scleral tunnel fixated IOLs in children with ectopia lentis. Int. J. Ophthalmol. 2020, 13, 66–70. [Google Scholar] [CrossRef]
- Bedda, A.M.; ElGoweini, H.F.; Abdelhadi, A.M.; Elhady, A.M. Evaluation of suturless scleral fixation with posterior chamber foldable intraocular lens implantation. Int. J. Ophthalmol. 2019, 12, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Mura, J.J.; Pavlin, C.J.; Condon, G.P.; Belovay, G.W.; Kranemann, C.F.; Ishikawa, H.; Ahmed, I.I.K. Ultrasound biomicroscopic analysis of iris-sutured foldable posterior chamber intraocular lenses. Am. J. Ophthalmol. 2010, 149, 245–252.e2. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Raj, S.M.; Karve, S.; Vasavada, V.; Theoulakis, P. Retrospective ultrasound biomicroscopic analysis of single-piece sulcus-fixated acrylic intraocular lenses. J. Cataract Refract. Surg. 2010, 36, 771–777. [Google Scholar] [CrossRef]
- Zhao, Y.E.; Gong, X.H.; Zhu, X.N.; Li, H.M.; Tu, M.J.; Coursey, T.G.; Pflugfelder, S.C.; Gu, F.; Chen, D. Long-term outcomes of ciliary sulcus versus capsular bag fixation of intraocular lenses in children: An ultrasound biomicroscopy study. PLoS ONE 2017, 12, e0172979. [Google Scholar] [CrossRef] [Green Version]
- Kemer Atik, B.; Altan, C.; Agca, A.; Kirmaci, A.; Yildirim, Y.; Genc, S.; Taskapili, M. The effect of intraocular lens tilt on visual outcomes in scleral-fixated intraocular lens implantation. Int. Ophthalmol. 2020, 40, 717–724. [Google Scholar] [CrossRef]
- Barca, F.; Caporossi, T.; de Angelis, L.; Giansanti, F.; Savastano, A.; Di Leo, L.; Rizzo, S. Trans-scleral plugs fixated IOL: A new paradigm for sutureless scleral fixation. J. Cataract Refract. Surg. 2020, 46, 716–720. [Google Scholar] [CrossRef]
- Ibrahim, H.A.; Sabry, H.N. The balanced two-string technique for sulcus intraocular lens implantation in the absence of capsular support. J. Ophthalmol. 2015, 2015, 153963. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Q.; Chang, P.; Li, J.; Savini, G.; Huang, J.; Huang, S.; Zhao, Y.; Liao, N.; Lin, L.; et al. The repeatability assessment of three-dimensional capsule-intraocular lens complex measurements by means of high-speed swept-source optical coherence tomography. PLoS ONE 2015, 10, e0142556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid-Costa, D.; Pérez-Vives, C.; Ruiz-Alcocer, J.; Albarrán-Diego, C.; Montés-Micó, R. Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: Effect of tilt and decentration. J. Cataract Refract. Surg. 2012, 38, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Altmann, G.E.; Nichamin, L.D.; Lane, S.S.; Pepose, J.S. Optical performance of 3 intraocular lens designs in the presence of decentration. J. Cataract Refract. Surg. 2005, 31, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, J.; Takahashi, F. Theoretical analysis of image defocus with intraocular lens decentration. J. Cataract Refract. Surg. 1995, 21, 552–555. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, M.; Hayashi, H. All-distance visual acuity and contrast visual acuity in eyes with a refractive multifocal intraocular lens with minimal added power. Ophthalmology 2009, 116, 401–408. [Google Scholar] [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Tauste, A.; Piñero, D.P. Patient selection to optimize near vision performance with a low-addition trifocal lens. J. Optom. 2020, 13, 50–58. [Google Scholar] [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Tauste, A.; Piñero, D.P. Biometricfactors associated with the visual performance of a high addition multifocal intraocular lens. Curr. Eye Res. 2018, 43, 998–1005. [Google Scholar]
- Zhang, F.; Zhang, J.; Li, W.; Zhou, L.; Feng, D.; Zhang, H.; Fang, W.; Sun, R.; Liu, Z. Correlative comparison of three ocular axes to tilt and decentration of intraocular lens and their effects on visual acuity. Ophthalmic Res. 2020, 63, 165–173. [Google Scholar] [CrossRef]
- Tester, R.; Pace, N.L.; Samore, M.; Olson, R.J. Dysphotopsia in phakic and pseudophakic patients: Incidence and relation to intraocular lens type(2). J. Cataract Refract. Surg. 2000, 26, 810–816. [Google Scholar] [CrossRef]
- Aslam, T.M.; Gupta, M.; Gilmour, D.; Patton, N.; Dhillon, B. Long-term prevalence of pseudophakic photic phenomena. Am. J. Ophthalmol. 2007, 143, 522–524. [Google Scholar] [CrossRef]
- Shambhu, S.; Shanmuganathan, V.A.; Charles, S.J. The effect of lens design on dysphotopsia in different acrylic IOLs. Eye 2005, 19, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Bournas, P.; Drazinos, S.; Kanellas, D.; Arvanitis, M.; Vaikoussis, E. Dysphotopsia after cataract surgery: Comparison of four different intraocular lenses. Ophthalmologica 2007, 221, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.F. Sharp-edged intraocular lens design as a cause of permanent glare. J. Cataract Refract. Surg. 2001, 27, 1061–1064. [Google Scholar] [CrossRef]
- Farbowitz, M.A.; Zabriskie, N.A.; Crandall, A.S.; Olson, R.J.; Miller, K.M. Visual complaints associated with the AcrySof acrylic intraocular lens(1). J. Cataract Refract. Surg. 2000, 26, 1339–1345. [Google Scholar] [CrossRef]
- Masket, S. Truncated edge design, dysphotopsia, and inhibition of posterior capsule opacification. J. Cataract Refract. Surg. 2000, 26, 145–147. [Google Scholar] [CrossRef]
- Erie, J.C.; Bandhauer, M.H.; McLaren, J.W. Analysis of postoperative glare and intraocular lens design. J. Cataract Refract. Surg. 2001, 27, 614–621. [Google Scholar] [CrossRef]
- Coroneo, M.T.; Pham, T.; Kwok, L.S. Off-axis edge glare in pseudophakic dysphotopsia. J Cataract Refract. Surg. 2003, 29, 1969–1973. [Google Scholar] [CrossRef]
- Holladay, J.T.; Simpson, M.J. Negative dysphotopsia: Causes and rationale for prevention and treatment. J. Cataract Refract. Surg. 2017, 43, 263–275. [Google Scholar] [CrossRef]
- Henderson, B.A.; Geneva, I.I. Negative dysphotopsia: A perfect storm. J. Cataract Refract. Surg. 2015, 41, 2291–2312. [Google Scholar] [CrossRef]
- Pérez-Gracia, J.; Varea, A.; Ares, J.; Vallés, J.A.; Remón, L. Evaluation of the optical performance for aspheric intraocular lenses in relation with tilt and decenter errors. PLoS ONE 2020, 15, e0232546. [Google Scholar] [CrossRef]
- Eppig, T.; Scholz, K.; Löffler, A.; Messner, A.; Langenbucher, A. Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye. J. Cataract Refract. Surg. 2009, 35, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.K.; Kim, J.H.; Lee, D.; Park, S.H.; Maeda, N.; Ma, K.J. IOL tilt and decentration. Ophthalmology 2010, 117, 1862. [Google Scholar] [CrossRef]
- Nanavaty, M.A.; Spalton, D.J.; Marshall, J. Effect of intraocular lens asphericity on vertical coma aberration. J. Cataract Refract. Surg. 2010, 36, 215–221. [Google Scholar] [CrossRef]
- Altmann, G.E. Wavefront-customized intraocular lenses. Curr. Opin. Ophthalmol. 2004, 15, 358–364. [Google Scholar] [CrossRef]
- Pieh, S.; Fiala, W.; Malz, A.; Stork, W. In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Tabernero, J.; Piers, P.; Artal, P. Intraocular lens to correct corneal coma. Opt. Lett. 2007, 32, 406–408. [Google Scholar] [CrossRef]
- Holladay, J.T.; Piers, P.A.; Koranyi, G.; van der Mooren, M.; Norrby, N.E. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J. Refract. Surg. 2002, 18, 683–691. [Google Scholar]
- Wang, L.; Koch, D.D. Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye. Arch. Ophthalmol. 2005, 123, 1226–1230. [Google Scholar] [CrossRef] [Green Version]
- Dietze, H.H.; Cox, M.J. Limitations of correcting spherical aberration with aspheric intraocular lenses. J. Refract. Surg. 2005, 21, S541–S546. [Google Scholar] [CrossRef]
- Mester, U.; Sauer, T.; Kaymak, H. Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes. J. Cataract Refract. Surg. 2009, 35, 485–490. [Google Scholar] [CrossRef]
- McKelvie, J.; McArdle, B.; McGhee, C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology 2011, 118, 1724–1731. [Google Scholar] [CrossRef]
- Fujikado, T.; Saika, M. Evaluation of actual retinal images produced by misaligned aspheric intraocular lenses in a model eye. Clin. Ophthalmol. 2014, 8, 2415–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Merino, P.; Marcos, S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J. Cataract Refract. Surg. 2018, 44, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, M.; Bühren, J.; Kohnen, T. Tilt and decentration of spherical and aspheric intraocular lenses: Effect on higher-order aberrations. J. Cataract Refract. Surg. 2009, 35, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Weeber, H.A.; Piers, P.A. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. J. Refract. Surg. 2012, 28, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.O.; Tetz, M.R.; Solomon, K.D.; Borup, M.D.; Brems, R.N.; O’Morchoe, D.J.; Bouhaddou, O.; Apple, D.J. Decentration of flexible loop posterior chamber intraocular lenses in a series of 222 postmortem eyes. Ophthalmology 1988, 95, 344–349. [Google Scholar] [CrossRef]
- Guyton, D.L.; Uozato, H.; Wisnicki, H.J. Rapid determination of intraocular lens tilt and decentration through the undilated pupil. Ophthalmology 1990, 97, 1259–1264. [Google Scholar] [CrossRef]
- Montés-Micó, R.; López-Gil, N.; Pérez-Vives, C.; Bonaque, S.; Ferrer-Blasco, T. In vitro optical performance of nonrotational symmetric and refractive-diffractive aspheric multifocal intraocular lenses: Impact of tilt and decentration. J. Cataract Refract. Surg. 2012, 38, 1657–1663. [Google Scholar] [CrossRef]
- Liu, X.; Xie, L.; Huang, Y. Effects of decentration and tilt at different orientations on the optical performance of a rotationally asymmetric multifocal intraocular lens. J. Cataract Refract. Surg. 2019, 45, 507–514. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, T.; Lu, Y. Effect of decentration on the optical quality of monofocal, extended depth of focus, and bifocal intraocular lenses. J. Refract. Surg. 2019, 35, 484–492. [Google Scholar] [CrossRef]
- Felipe, A.; Artigas, J.M.; Díez-Ajenjo, A.; García-Domene, C.; Peris, C. Modulation transfer function of a toric intraocular lens: Evaluation of the changes produced by rotation and tilt. J. Refract. Surg. 2012, 28, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vives, C.; Ferrer-Blasco, T.; Madrid-Costa, D.; García-Lázaro, S.; Montés-Micó, R. Optical quality of aspheric toric intraocular lenses at different degrees of decentering. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alcocer, J.; Pérez-Vives, C.; Madrid-Costa, D.; López-Gil, N.; Montés-Micó, R. Effect of simulated IOL tilt and decentration on spherical aberration after hyperopic LASIK for different intraocular lenses. J. Refract. Surg. 2012, 28, 327–334. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashena, Z.; Maqsood, S.; Ahmed, S.N.; Nanavaty, M.A. Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations. Vision 2020, 4, 41. https://doi.org/10.3390/vision4030041
Ashena Z, Maqsood S, Ahmed SN, Nanavaty MA. Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations. Vision. 2020; 4(3):41. https://doi.org/10.3390/vision4030041
Chicago/Turabian StyleAshena, Zahra, Sundas Maqsood, Syed Naqib Ahmed, and Mayank A. Nanavaty. 2020. "Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations" Vision 4, no. 3: 41. https://doi.org/10.3390/vision4030041
APA StyleAshena, Z., Maqsood, S., Ahmed, S. N., & Nanavaty, M. A. (2020). Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations. Vision, 4(3), 41. https://doi.org/10.3390/vision4030041