Interocular Differences in Spatial Frequency Influence the Pulfrich Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Stimuli and Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pulfrich, C. Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. Naturwissenschaften 1922, 10, 751–761. [Google Scholar] [CrossRef]
- Diamond, A.L. Simultaneous brightness contrast and the Pulfrich phenomenon. JOSA 1958, 48, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, A.; HAshida, A. variant of the anomalous motion illusion based upon contrast and visual latency. Perception 2007, 36, 1019–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lit, A. The magnitude of the Pulfrich stereophenomenon as a function of binocular differences of intensity at various levels of illumination. Am. J. Psychol. 1949, 62, 159–181. [Google Scholar] [PubMed]
- Reynaud, A.; Hess, R.F. Interocular contrast difference drives illusory 3D percept. Sci. Rep. 2017, 7, 5587. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.A.; Anstis, S.M. Visual delay as a function of luminance. Am. J. Psychol. 1969, 82, 350–358. [Google Scholar] [CrossRef]
- Westheimer, G. The Fourier Theory of Vision. Perception 2001, 30, 531–541. [Google Scholar] [CrossRef]
- Campbell, F.W.; Green, D.G. Optical and retinal factors affecting visual resolution. J. Physiol. 1965, 181, 576–593. [Google Scholar] [CrossRef]
- Breitmeyer, B.G. Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vis. Res. 1975, 15, 1411–1412. [Google Scholar] [CrossRef]
- Harwerth, R.S.; Levi, D.M. Reaction time as a measure of suprathreshold grating detection. Vis. Res. 1978, 18, 1579–1586. [Google Scholar] [CrossRef]
- Nachmias, J. Effect of Exposure Duration on Visual Contrast Sensitivity with Square-Wave Gratings*†. J. Opt. Soc. Am. 1967, 57, 421–427. [Google Scholar]
- Watt, R.J. Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. J. Opt. Soc. Am. A 1987, 4, 2006–2021. [Google Scholar] [PubMed]
- Musselwhite, M.J.; Jeffreys, D.A. The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vis. Res. 1985, 25, 1545–1555. [Google Scholar] [PubMed]
- Vassilev, A.; Mihaylova, M.; Bonnet, C. On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation. Vis. Res. 2002, 42, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, A.; Mitov, D. Perception time and spatial frequency. Vis. Res. 1976, 16, 89–92. [Google Scholar] [CrossRef]
- Kitterle, F.L.; Selig, L.M. Visual field effects in the discrimination of sine-wave gratings. Percept. Psychophys. 1991, 50, 15–18. [Google Scholar]
- Jones, R.; Keck, M.J. Visual evoked response as a function of grating spatial frequency. Investig. Ophthalmol. Vis. Sci. 1978, 17, 652–659. [Google Scholar]
- Parker, D.M.; Salzen, E.A. Latency changes in the human visual evoked response to sinusoidal gratings. Vis. Res. 1977, 17, 1201–1204. [Google Scholar] [CrossRef]
- Parker, D.M.; Salzen, E.A.; Lishman, J.R. Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: Latency, waveform, and topographic characteristics. Investig. Ophthalmol. Vis. Sci. 1982, 22, 675–680. [Google Scholar]
- Vassilev, A.; Manahilov, V.; Mitov, D. Spatial frequency and the pattern onset-offset response. Vis. Res. 1983, 23, 1417–1422. [Google Scholar]
- Vassilev, A.; Strashimirov, D. On the latency of human visually evoked response to sinusoidal gratings. Vis. Res. 1979, 19, 843–845. [Google Scholar] [CrossRef]
- Bonnet, C.; Gurlekian, J.; Harris, P. Reaction time and visual area: Searching for the determinants. Bull. Psychon. Soc. 1992, 30, 396–398. [Google Scholar] [CrossRef] [Green Version]
- Marzi, C.A.; Mancini, F.; Metitieri, T.; Savazzi, S. Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 2006, 44, 1489–1495. [Google Scholar] [CrossRef]
- Kleiner, M.; Brainard, D.; Pelli, D. What’s new in Psychtoolbox-3? Perception 2007, 36, 1–16. [Google Scholar]
- Prins, N.; Kingdom, F.A.A. Applying the Model-Comparison Approach to Test Specific Research Hypotheses in Psychophysical Research Using the Palamedes Toolbox. Front. Psychol. 2018, 9, 1250. [Google Scholar] [CrossRef] [Green Version]
- Carkeet, A.; Wildsoet, C.F.; Wood, J.M. Inter-ocular temporal asynchrony (IOTA): Psychophysical measurement of inter-ocular asymmetry of visual latency. Ophthalmic Physiol. Opt. 1997, 17, 255–262. [Google Scholar] [CrossRef]
- RStudio. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Kurylo, D.D.; Chung, C.; Yeturo, S.; Lanza, J.; Gorskaya, A.; Bukhari, F. Effects of contrast, spatial frequency, and stimulus duration on reaction time in rats. Vis. Res. 2015, 106, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, D.G. Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions. Vis. Neurosci. 1995, 12, 1191–1210. [Google Scholar] [CrossRef] [Green Version]
- Bair, W.; Movshon, J.A. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J. Neurosci. 2004, 24, 7305–7323. [Google Scholar] [CrossRef]
- Fawcett, I.P.; Barnes, G.R.; Hillebrand, A.; Singh, K.D. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Neuroimage 2004, 21, 1542–1553. [Google Scholar] [CrossRef]
- Frazor, R.A.; Albrecht, D.G.; Geisler, W.S.; Crane, A.M. Visual Cortex Neurons of Monkeys and Cats: Temporal Dynamics of the Spatial Frequency Response Function. J. Neurophysiol. 2004, 91, 2607–2627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.T.; Jeffreys, D.A. Size and orientation specificity of transient visual evoked potentials in man. Vis. Res. 1978, 18, 651–655. [Google Scholar] [CrossRef]
- Dima, D.C.; Perry, G.; Singh, K.D. Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. NeuroImage 2018, 179, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Blake, R. A neural theory of binocular rivalry. Psychol. Rev. 1989, 96, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Andrews, T.J.; Lotto, R.B. Fusion and Rivalry Are Dependent on the Perceptual Meaning of Visual Stimuli. Curr. Biol. 2004, 14, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, T.G.R.; Haley, L.J. Temporal effects in binocular vision. Psychon. Sci. 1964, 1, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.G. Binocular fusion and contour suppression. Percept. Psychophys. 1970, 7, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L. On the spread of suppression and binocular rivalry. Vis. Res. 1963, 3, 401–415. [Google Scholar] [CrossRef]
- Wolfe, J.M. Influence of Spatial Frequency, Luminance, and Duration on Binocular Rivalry and Abnormal Fusion of Briefly Presented Dichoptic Stimuli. Perception 1983, 12, 447–456. [Google Scholar] [CrossRef]
- Blakemore, C. A new kind of stereoscopic vision. Vis. Res. 1970, 10, 1181–1199. [Google Scholar] [CrossRef]
- Tyler, C.W.; Sutter, E.E. Depth from spatial frequency difference: An old kind of stereopsis? Vis. Res. 1979, 19, 859–865. [Google Scholar] [CrossRef]
- Halpern, D.L.; Wilson, H.R.; Blake, R. Stereopsis from interocular spatial frequency differences is not robust. Vis. Res. 1996, 36, 2263–2270. [Google Scholar] [CrossRef] [Green Version]
- Mihaylova, M.; Stomonyakov, V.; Vassilev, A. Peripheral and central delay in processing high spatial frequencies: Reaction time and VEP latency studies. Vis. Res. 1999, 39, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Plainis, S.; Murray, I.J. Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance. Neuropsychologia 2000, 38, 1555–1564. [Google Scholar] [CrossRef]
- Burge, J.; Rodriguez-Lopez, V.; Dorronsoro, C. Monovision and the Misperception of Motion. Curr. Biol. 2019, 29, 2586–2592. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, K.J.; Kenyon, R.V.; Stark, L. Increased saccadic latencies in amblyopic eyes. Investig. Ophthalmol. Vis. Sci. 1978, 17, 697–702. [Google Scholar]
- Nuzzi, G.; Riggio, L.; Rossi, S. Visual reaction times in strabismic amblyopia: A case-control study. Acta Biomed. 2007, 78, 182–189. [Google Scholar]
- Perdziak, M.; Witkowska, D.; Gryncewicz, W.; Przekoracka-Krawczyk, A.; Ober, J. The amblyopic eye in subjects with anisometropia show increased saccadic latency in the delayed saccade task. Front. Integr. Neurosci. 2014, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Tredici, T.D.; von Noorden, G.K. The Pulfrich effect in anisometropic amblyopia and strabismus. Am. J. Ophthalmol. 1984, 98, 499–503. [Google Scholar] [CrossRef]
- von Noorden, G.K. Reaction Time in Normal and Amblyopic Eyes. JAMA Ophthalmol. 1961, 66, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Reynaud, A.; Tao, C.; He, Z.; Zhou, J.; Hess, R. Two patterns of interocular delay revealed by spontaneous motion-in-depth Pulfrich phenomenon in amblyopes with stereopsis. Investig. Ophthalmol. Vis. Sci. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, S.H.; Reynaud, A.; Hess, R.F. Interocular Differences in Spatial Frequency Influence the Pulfrich Effect. Vision 2020, 4, 20. https://doi.org/10.3390/vision4010020
Min SH, Reynaud A, Hess RF. Interocular Differences in Spatial Frequency Influence the Pulfrich Effect. Vision. 2020; 4(1):20. https://doi.org/10.3390/vision4010020
Chicago/Turabian StyleMin, Seung Hyun, Alexandre Reynaud, and Robert F. Hess. 2020. "Interocular Differences in Spatial Frequency Influence the Pulfrich Effect" Vision 4, no. 1: 20. https://doi.org/10.3390/vision4010020
APA StyleMin, S. H., Reynaud, A., & Hess, R. F. (2020). Interocular Differences in Spatial Frequency Influence the Pulfrich Effect. Vision, 4(1), 20. https://doi.org/10.3390/vision4010020