Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque
Abstract
:1. Introduction
2. PC Axons are Spatially Divergent
2.1. Area V1
2.2. Areas V2 and V4
2.3. A Smaller Scale in Area MT
3. PC Axons Terminate in Multiple Layers
3.1. Areas V2, V4, and MT
3.2. Area V1
3.3. Collateral Branching to Areas V1 and V2
4. Quantitative Parameters: Bouton Size, Density, Number
5. Open Questions
- What is the synaptic convergence of PC and CC axons (in terms of synaptic size, synaptic numbers and cell-type and dendritic targets), especially in relation to the multi-laminar arbors reviewed here for PL axons?
- How do PC axons interact with other systems: the numerically dense intrinsic collaterals of pyramidal cells, feedback projections in layer 1, and the various inhibitory populations?
- What is the composition of neuron ensembles postsynaptic to the different arbors of a given axon? Is this related to finer modularity within the target area, at least for V2 and V4?
- How do PL and other visual PC axons compare, structurally and functionally, with homologous thalamic terminations in other less visual species, such as rodents?
Funding
Conflicts of Interest
References
- Gattass, R.; Soares, J.G.M.; Lima, B. The Pulvinar Thalamic Nucleus of Non-Human Primates: Architectonic and Functional Subdivisions; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Jones, E.G. The Thalamus; Cambridge University Press: Cambridge, NY, USA, 2007. [Google Scholar]
- Ungerleider, L.G.; Galkin, T.W.; Desimone, R.; Gattass, R. Subcortical projections of area V2 in the macaque. J. Cogn. Neurosci. 2014, 26, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
- Gattass, R.; Galkin, T.W.; Desimone, R.; Ungerleider, L.G. Subcortical connections of area V4 in the macaque. J. Comp. Neurol. 2014, 522, 1941–1965. [Google Scholar] [CrossRef]
- Purushothaman, G.; Marion, R.; Li, K.; Casagrande, V.A. Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 2012, 15, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.G.; Diogo, A.C.; Fiorani, M.; Souza, A.P.; Gattass, R. Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin. Exp. Pharmacol. Physiol. 2004, 31, 580–590. [Google Scholar] [CrossRef]
- Zhou, H.; Schafer, R.J.; Desimone, R. Pulvinar-cortex interactions in vision and attention. Neuron 2016, 89, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marion, R.; Li, K.; Purushothaman, G.; Jiang, Y.; Casagrande, V.A. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J. Comp. Neurol. 2013, 521, 813–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridge, H.; Leopold, D.A.; Bourne, J.A. Adaptive pulvinar circuitry supports visual cognition. Trends Cogn. Sci. 2016, 20, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Halassa, M.M.; Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 2017, 20, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Halassa, M.M.; Sherman, S.M. Thalamocortical circuit motifs: A general framework. Neuron 2019, 103, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 2016, 19, 533–541. [Google Scholar] [CrossRef]
- Shipp, S. The functional logic of cortico-pulvinar connections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1605–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, M.; Vann, S.D. The Cognitive thalamus as a gateway to mental representations. J. Neurosci. 2019, 39, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Rockland, K.S.; Andresen, J.; Cowie, R.J.; Robinson, D.L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J. Comp. Neurol. 1999, 406, 221–250. [Google Scholar] [CrossRef]
- Rockland, K.S.; Virga, A. Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey. Vis. Neurosci. 1990, 4, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Rockland, K.S. Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey. Vis. Neurosci. 1989, 3, 155–170. [Google Scholar] [CrossRef]
- Rockland, K.S. Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb. Cortex 1992, 2, 353–374. [Google Scholar] [CrossRef]
- Rockland, K.S. Feedback connections: Splitting the arrow (chapter 6). In The Primate Visual System; Kaas, J.A., Collins, C.E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 387–405. [Google Scholar]
- Blasdel, G.G.; Lund, J.S. Termination of afferent axons in macaque striate cortex. J. Neurosci. 1983, 3, 1389–1413. [Google Scholar] [CrossRef]
- Roth, M.M.; Dahmen, J.C.; Muir, D.R.; Imhof, F.; Martini, F.J.; Hofer, S.B. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 2016, 19, 299–307. [Google Scholar] [CrossRef]
- Rockland, K.S.; Saleem, K.S.; Tanaka, K. Divergent feedback connections from areas V4 and TEO in the macaque. Vis. Neurosci. 1994, 11, 579–600. [Google Scholar] [CrossRef]
- Koestinger, G.; Martin, K.A.C.; Roth, S.; Rusch, E.S. Synaptic connections formed by patchy projections of pyramidal cells in the superficial layers of cat visual cortex. Brain Struct. Funct. 2017, 222, 3025–3042. [Google Scholar] [CrossRef] [Green Version]
- Freund, T.F.; Martin, K.A.; Soltesz, I.; Somogyi, P.; Whitteridge, D. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. J. Comp. Neurol. 1989, 289, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J.B.; Yoshioka, T.; Lund, J.S. Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp. Brain Res. 1995, 104, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Yarch, J.; Larsen, H.; Chen, M.; Angelucci, A. Morphological cell types projecting from V1 layer 4B to V2 thick and thin stripes. J. Neurosci. 2019, 39, 7501–7512. [Google Scholar] [CrossRef] [PubMed]
- Rockland, K.S. What do we know about laminar connectivity? Neuroimage 2019, 197, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Imura, K.; Rockland, K.S. Giant neurons in the macaque pulvinar: A distinct relay subpopulation. Front. Neuroanat. 2009, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockland, K.S. Corticothalamic axon morphologies and network architecture. Eur. J. Neurosci. 2019, 49, 969–977. [Google Scholar] [CrossRef]
- Rockland, K.S. Non-uniformity of extrinsic connections and columnar organization. J. Neurocytol. 2002, 31, 247–253. [Google Scholar] [CrossRef]
- Audette, N.J.; Urban-Ciecko, J.; Matsushita, M.; Barth, A.L. POm thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cereb. Cortex 2018, 28, 1312–1328. [Google Scholar] [CrossRef]
- Hashikawa, T.; Molinari, M.; Rausell, E.; Jones, E.G. Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J. Comp. Neurol. 1995, 362, 195–208. [Google Scholar] [CrossRef]
- Freese, J.L.; Amaral, D.G. The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J. Comp. Neurol. 2005, 486, 295–317. [Google Scholar] [CrossRef]
- Chen, J.; Kriegstein, A.R. A GABAergic projection from the zona incerta to cortex promotes cortical neuron development. Science 2015, 350, 554–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, H.; Bullier, J. A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. J. Neurosci. 1985, 5, 2815–2830. [Google Scholar] [CrossRef] [PubMed]
- Clasca, F.; Rubio-Garrido, P.; Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 2012, 35, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Clasca, F.; Porrero, C.; Galazo, M.; Rubio-Garrido, P.; Evangelio, M. Anatomy and development of multi-specific thalamocortical axons: Implications for cortical dynamics and evolution. In Axons and Brain Architecture; Rockland, K.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–92. [Google Scholar] [CrossRef]
- Bickford, M.E. Thalamic circuit diversity: Modulation of the driver/modulator framework. Front. Neural Circuits 2016, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas-Torremocha, D.; Porrero, C.; Rodriguez-Moreno, J.; García-Amado, M.; Lübke, J.H.R.; Núñez, Á.; Clascá, F. Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices. Brain Struct. Funct. 2019, 224, 1627–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Bruno, R.M. High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. eLife 2019, 8, e44158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Masterson, S.P.; Damron, J.K.; Guido, W.; Bickford, M.E. The Mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci. 2018, 38, 347–362. [Google Scholar] [CrossRef] [Green Version]
Range per Arbor | Average per Arbor | Range per Axon | Average per Axon | |
---|---|---|---|---|
V1 to V2 [16] | 37–308 | 123 (n = 32) | n.a. | n.a. |
V2 to V4 [18] | n.a. | n.a. | 107–858 | 438 (n = 14) |
V1 to MT [19] | n.a. | n.a. | 220–624 | 394 (n = 9) |
PL to V2 [15] | 130–410 | 253 (n = 8) | 181–1394 | 578 (n = 12) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rockland, K.S. Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque. Vision 2020, 4, 1. https://doi.org/10.3390/vision4010001
Rockland KS. Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque. Vision. 2020; 4(1):1. https://doi.org/10.3390/vision4010001
Chicago/Turabian StyleRockland, Kathleen S. 2020. "Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque" Vision 4, no. 1: 1. https://doi.org/10.3390/vision4010001
APA StyleRockland, K. S. (2020). Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque. Vision, 4(1), 1. https://doi.org/10.3390/vision4010001