Reliability and Convergent Validity of Endurance Indices Derived from Near-Infrared Spectroscopy and Electromyography during a Bilateral Hanging Task in Amateur Rock Climbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Inclusion and Exclusion Criteria for Amateur Rock Climbers
2.1.2. Inclusion and Exclusion Criteria for Non-Climbers
2.1.3. Sample Size Estimation
2.2. Assessment Procedure
Bilateral Hanging Task
2.3. Outcome Measures
2.3.1. Demographics
2.3.2. EMG
2.3.3. Muscle Oxygenation
Study | Metric | Parameter Measured | Indication |
---|---|---|---|
Taelman et al. [7] | Change in tissue oxygenation index (ΔTOI) during muscle contraction | ΔTOI TOI slope | ΔTOI negatively correlates with the total exertion time, suggesting higher deoxygenation results in early exhaustion (Figure 2A). |
Muramatsu et al. [8] | Difference in oxyhemoglobin and deoxyhemoglobin (ΔHbt) after the exertion | ΔHbt | ΔHbt increases according to the elapsed time in case of exhaustion (Figure 2B). |
Ferguson et al. [24] | % change in oxyhemoglobin | Oxyhemoglobin | The large % change in oxygenated hemoglobin resulted in only a small % change in muscle saturation, revealing how the energy metabolism of the system attempts to resist fatigue (Figure 2B). |
2.4. Data Processing
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giles, L.V.; Rhodes, E.C.; Taunton, J.E. The physiology of rock climbing. Sports Med. 2006, 36, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Seo, Y.; Son, J.; Yun, S.; Lee, D.T. Comparison of finger flexion strength and muscular recovery of male lead sport climbers across climbing classes. Phys. Ther. Sport 2024, 65, 122–129. [Google Scholar] [CrossRef]
- Sheel, A.W. Physiology of sport rock climbing. Br. J. Sports Med. 2004, 38, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Vigouroux, L.; Quaine, F. Fingertip force and electromyography of finger flexor muscles during a prolonged intermittent exercise in elite climbers and sedentary individuals. J. Sports Sci. 2006, 24, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B.; Jensen, R.L.; Gannon, E.; Kobeinia, R.; Maynard, J.; Sansom, J. Forearm emg during rock climbing differs from emg during handgrip dynamometry. Int. J. Exerc. Sci. 2008, 1, 2. [Google Scholar] [CrossRef]
- Watts, P.B.; Jensen, R.L.; Agena, S.M.; Majchrzak, J.A.; Schellinger, R.A.; Wubbels, C.S. Changes in emg and finger force with repeated hangs from the hands in rock climbers. Int. J. Exerc. Sci. 2008, 1, 62–70. [Google Scholar] [CrossRef]
- Taelman, J.; Vanderhaegen, J.; Robijns, M.; Naulaers, G.; Spaepen, A.; Van Huffel, S. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. In Oxygen Transport to Tissue XXXII; Springer: Berlin/Heidelberg, Germany, 2011; pp. 353–359. [Google Scholar]
- Muramatsu, Y.; Kobayashi, H. Assessment of local muscle fatigue by nirs-development and evaluation of muscle suit. Robomech. J. 2014, 1, 19. [Google Scholar] [CrossRef]
- Guo, W.; Sheng, X.; Zhu, X. Assessment of muscle fatigue by simultaneous semg and nirs: From the perspective of electrophysiology and hemodynamics. In Proceedings of the 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 33–36. [Google Scholar]
- Desanlis, J.; Gordon, D.; Calveyrac, C.; Cottin, F.; Gernigon, M. Intra- and Inter-Day Reliability of the nirs portamon device after three induced muscle ischemias. Sensors 2022, 22, 5165. [Google Scholar] [CrossRef]
- Perrey, S.; Quaresima, V.; Ferrari, M. Muscle oximetry in sports science: An updated systematic review. Sports Med. 2024, 54, 975–996. [Google Scholar] [CrossRef]
- Fryer, S.; Stone, K.J.; Sveen, J.; Dickson, T.; Espana-Romero, V.; Giles, D.; Balas, J.; Stoner, L.; Draper, N. Differences in forearm strength, endurance, and hemodynamic kinetics between male boulderers and lead rock climbers. Eur. J. Sport Sci. 2017, 17, 1177–1183. [Google Scholar] [CrossRef]
- McCully, K.K.; Iotti, S.; Kendrick, K.; Wang, Z.; Posner, J.D.; Leigh, J., Jr.; Chance, B. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J. Appl. Physiol. 1994, 77, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.; Stoner, L.; Stone, K.; Giles, D.; Sveen, J.; Garrido, I.; Espana-Romero, V. Forearm muscle oxidative capacity index predicts sport rock-climbing performance. Eur. J. Appl. Physiol. 2016, 116, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- De Blasi, R.A.; Almenrader, N.; Aurisicchio, P.; Ferrari, M. Comparison of two methods of measuring forearm oxygen consumption (vo 2) by near infrared spectroscopy. J. Biomed. Opt. 1997, 2, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.M.; Erlacher, D.; Pfister, S.; Lehmann, R. Muscle oxygen dynamics in elite climbers during finger-hang tests at varying intensities. Sci. Rep. 2020, 10, 3040. [Google Scholar] [CrossRef] [PubMed]
- Baláš, J.; Gajdošík, J.; Giles, D.; Fryer, S.; Krupková, D.; Brtník, T.; Feldmann, A.J.E.J.o.A.P. Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur. J. Appl. Physiol. 2021, 121, 1337–1348. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.J.S.T. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sports Technol. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Mesin, L.; Merletti, R.; Rainoldi, A. Surface emg: The issue of electrode location. J. Electromyogr. Kinesiol. 2009, 19, 719–726. [Google Scholar] [CrossRef]
- Kim, Y.; Stapornchaisit, S.; Kambara, H.; Yoshimura, N.; Koike, Y. Muscle synergy and musculoskeletal model-based continuous multi-dimensional estimation of wrist and hand motions. J. Healthc. Eng. 2020, 2020, 5451219. [Google Scholar] [CrossRef]
- Guo, F.; Wang, Q.; Liu, Y.; Hanson, N.J. Changes in blood lactate and muscle activation in elite rock climbers during a 15-m speed climb. Eur. J. Appl. Physiol. 2019, 119, 791–800. [Google Scholar] [CrossRef]
- Boas, D.A.; Gaudette, T.; Strangman, G.; Cheng, X.; Marota, J.J.; Mandeville, J.B. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 2001, 13, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.A.; Allread, W.G.; Le, P.; Rose, J.; Marras, W.S. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy. Hum. Factors 2013, 55, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Di Torino, P. Standards for reporting emg data. J. Electromyogr. Kinesiol. 1999, 9, 3–4. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice; FA Davis: Philadelphia, PA, USA, 2020. [Google Scholar]
- Lucero, A.A.; Addae, G.; Lawrence, W.; Neway, B.; Credeur, D.P.; Faulkner, J.; Rowlands, D.; Stoner, L. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy. Exp. Physiol. 2018, 103, 90–100. [Google Scholar] [CrossRef]
- Miranda-Fuentes, C.; Guisado-Requena, I.M.; Delgado-Floody, P.; Arias-Poblete, L.; Perez-Castilla, A.; Jerez-Mayorga, D.; Chirosa-Rios, L.J. Reliability of low-cost near-infrared spectroscopy in the determination of muscular oxygen saturation and hemoglobin concentration during rest, isometric and dynamic strength activity. Int. J. Environ. Res. Public. Health 2020, 17, 8824. [Google Scholar] [CrossRef]
- van Hooff, M.; Meijer, E.J.; Scheltinga, M.R.M.; Savelberg, H.; Schep, G. Test-retest reliability of skeletal muscle oxygenation measurement using near-infrared spectroscopy during exercise in patients with sport-related iliac artery flow limitation. Clin. Physiol. Funct. Imaging 2022, 42, 114–126. [Google Scholar] [CrossRef]
- Liu, S.H.; Lin, C.B.; Chen, Y.; Chen, W.; Huang, T.S.; Hsu, C.Y. An emg Patch for the real-time monitoring of muscle-fatigue conditions during exercise. Sensors 2019, 19, 3108. [Google Scholar] [CrossRef]
- Molinari, F.; Knaflitz, M.; Bonato, P.; Actis, M.V. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements. IEEE Trans. Biomed. Eng. 2006, 53, 1309–1316. [Google Scholar] [CrossRef]
- Beretta-Piccoli, M.; Cescon, C.; Barbero, M.; D’Antona, G. Reliability of surface electromyography in estimating muscle fiber conduction velocity: A systematic review. J. Electromyogr. Kinesiol. 2019, 48, 53–68. [Google Scholar] [CrossRef]
- Ma’as, M.D.F.; Azmi, A.Z.U. Real-time muscle fatigue monitoring based on median frequency of electromyography signal. In Proceedings of the 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017; pp. 135–139. [Google Scholar]
- Masuda, K.; Masuda, T.; Sadoyama, T.; Inaki, M.; Katsuta, S. Changes in surface emg parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 1999, 9, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.A.; Brown, M.D. Arterial blood pressure and forearm vascular conductance responses to sustained and rhythmic isometric exercise and arterial occlusion in trained rock climbers and untrained sedentary subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Boushel, R.; Langberg, H.; Olesen, J.; Gonzales-Alonzo, J.; Bulow, J.; Kjaer, M. Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease. Scand. J. Med. Sci. Sports 2001, 11, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Scheeren, T.W.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (nirs): Background and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef]
- Boushel, R.; Piantadosi, C.A. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol. Scand. 2000, 168, 615–622. [Google Scholar] [CrossRef]
- Fryer, S.M.; Giles, D.; Palomino, I.G.; de la O Puerta, A.; España-Romero, V. Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J. Strength Cond. Res. 2018, 32, 3534–3541. [Google Scholar] [CrossRef]
- Gáspari, A.; Berton, R.; Lixandrão, M.; Piunti, R.P.; Chacon-Mikahil, M.; Bertuzzi, R.J.S. The blood lactate concentration responses in a real indoor sport climbing competition. Sci. Sports 2015, 30, 228–231. [Google Scholar] [CrossRef]
- Feldmann, A.; Lehmann, R.; Wittmann, F.; Wolf, P.; Baláš, J.; Erlacher, D. Acute effect of high-intensity climbing on performance and muscle oxygenation in elite climbers. J. Sci. Sport Exerc. 2022, 4, 145–155. [Google Scholar] [CrossRef]
- Watts, P.; Newbury, V.; Sulentic, J. Acute changes in handgrip strength, endurance, and blood lactate with sustained sport rock climbing. J. Sports Med. Phys. Fit. 1996, 36, 255–260. [Google Scholar]
- Watts, P.B.; Daggett, M.; Gallagher, P.; Wilkins, B. Metabolic response during sport rock climbing and the effects of active versus passive recovery. Int. J. Sports Med. 2000, 21, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Gilic, B.; Feldmann, A.; Vrdoljak, D.; Sekulic, D. Forearm muscle oxygenation and blood volume parameters during sustained contraction performance in youth sport climbers. J. Sports Med. Phys. Fit. 2023, 63, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Mermier, C.M.; Janot, J.M.; Parker, D.L.; Swan, J.G. Physiological and anthropometric determinants of sport climbing performance. Br. J. Sports Med. 2000, 34, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Sheel, A.W.; Seddon, N.; Knight, A.; McKenzie, D.C.; DE, R.W. Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry. Med. Sci. Sports Exerc. 2003, 35, 1225–1231. [Google Scholar] [CrossRef]
- Watts, P.B.; Drobish, K.M. Physiological responses to simulated rock climbing at different angles. Med. Sci. Sports Exerc. 1998, 30, 1118–1122. [Google Scholar] [CrossRef]
- O’Leary, D.S. Autonomic mechanisms of muscle metaboreflex control of heart rate. J. Appl. Physiol. 1993, 74, 1748–1754. [Google Scholar] [CrossRef]
- O’Leary, D.S.; Augustyniak, R.A.; Ansorge, E.J.; Collins, H.L.J.A.J.o.P.-H.; Physiology, C. Muscle metaboreflex improves o2delivery to ischemic active skeletal muscle. J. Physiol. Heart Circ. Physiol. 1999, 276, H1399–H1403. [Google Scholar] [CrossRef]
- MacLeod, D.; Sutherland, D.L.; Buntin, L.; Whitaker, A.; Aitchison, T.; Watt, I.; Bradley, J.; Grant, S. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J. Sports Sci. 2007, 25, 1433–1443. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L.J.N.M. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Mairbaurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef]
- Fryer, S.; Stoner, L.; Lucero, A.; Witter, T.; Scarrott, C.; Dickson, T.; Cole, M.; Draper, N. Haemodynamic kinetics and intermittent finger flexor performance in rock climbers. Int. J. Sports Med. 2015, 36, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.; Stoner, L.; Scarrott, C.; Lucero, A.; Witter, T.; Love, R.; Dickson, T.; Draper, N. Forearm oxygenation and blood flow kinetics during a sustained contraction in multiple ability groups of rock climbers. J. Sports Sci. 2015, 33, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.I.; Gomes, P.S.; Bhambhani, Y.N. A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sports Med. 2007, 37, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, J.A. Neuromuscular Function and Fatigue and Metabolic Responses While Cycling in the Heat; Kent State University: Kent, OH, USA, 2018. [Google Scholar]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Deuchrass, R.W.; Olsen, P.D.; Choukri, M.A.; Marshall, H.C.; Lizamore, C.A.; Leong, C.; Elliot, C.A. The effect of sleep quality and quantity on athlete’s health and perceived training quality. Front. Sports Act. Living 2021, 3, 705650. [Google Scholar] [CrossRef]
- Costill, D.L.; Hargreaves, M. Carbohydrate nutrition and fatigue. Sports Med. 1992, 13, 86–92. [Google Scholar] [CrossRef]
Characteristics | Total (n = 34) | Climbers (n = 17) | Non-Climbers (n = 17) | Comparison t-Test/Chi-Square |
---|---|---|---|---|
Mean ± SD (Range) | p-Value | |||
Age (year) | 27.4 ± 3.8 (21–36) | 26.4 ± 4.3 (21–35) | 28.8 ± 2.8 (24–36) | t = 2.0, p = 0.061 |
BMI (kg/m2) | 19.6 ± 1.8 (15.6–23.8) | 19.2 ± 1.3 (17.2–22.0) | 20.0 ± 2.0 (15.6–23.8) | t = 1.4, p = 0.17 |
V-Scale | N/A | 3.8 ± 1.3 (2–6) | N/A | |
Climbing experience (year) | N/A | 2.4 ± 1.9 (1–8) | N/A | |
Frequency of climbing (times/week) | N/A | 2.3 ± 0.6 (2–4) | N/A | |
Number (%) | ||||
Sex (male/female) | 20 (58.8)/14 (41.1) | 12 (70.6)/5 (29.4) | 8 (47.1)/9 (52.9) | χ2 = 1.1, p = 0.29 |
Variables | ICC(3,1) | 95% CI | |
---|---|---|---|
Upper | Lower | ||
MDF slope | 0.850 | 0.922 | 0.722 |
TOI slope | 0.726 | 0.853 | 0.521 |
ΔTOI | 0.653 | 0.810 | 0.408 |
Oxygen change (%) | 0.749 | 0.866 | 0.556 |
ΔHbt | 0.647 | 0.806 | 0.402 |
Variables | Mean ± SD | t-Test p-Value | Cohen’s d | ||
---|---|---|---|---|---|
Total (n = 34) | Climber (n = 17) | Non-Climbers (n = 17) | |||
MDF Slope | 0.01 * | 0.93 | |||
Pre | −1.12 ± 0.48 | −0.93 ± 0.46 | −1.32 ± 0.43 | ||
Post | −1.10 ± 0.43 | −0.93 ± 0.39 | −1.27 ± 0.42 | ||
TOI Slope | 0.02 * | 0.91 | |||
Pre | −0.06 ± 0.03 | −0.05 ± 0.01 | −0.08 ± 0.04 | ||
Post | −0.07 ± 0.03 | −0.06 ± 0.02 | −0.08 ± 0.03 | ||
ΔTOI | 0.07 | 0.16 | |||
Pre | 0.41 ± 0.10 | 0.42 ± 0.08 | 0.40 ± 0.11 | ||
Post | 0.42 ± 0.12 | 0.42 ± 0.05 | 0.41 ± 0.16 | ||
O2 Change (%) | 0.07 | 0.68 | |||
Pre | −0.90 ± 0.08 | −0.87 ± 0.10 | −0.93 ± 0.05 | ||
Post | −0.91 ± 0.07 | −0.89 ± 0.07 | −0.92 ± 0.05 | ||
ΔHbt | 0.01 * | 0.93 | |||
Pre | 5.89 ± 3.81 | 7.03 ± 3.59 | 4.76 ± 3.78 | ||
Post | 5.42 ± 2.65 | 6.76 ± 2.03 | 4.08 ± 2.55 |
Variables | Spearman’s Rank Correlation Rho | p-Value |
---|---|---|
MDF Slope | 0.632 | 0.007 * |
TOI Slope | 0.533 | 0.028 * |
ΔTOI | 0.092 | 0.724 |
O2 Change (%) | 0.195 | 0.454 |
ΔHbt | 0.527 | 0.030 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwong, W.-H.; Li, J.-Q.; Lui, C.-H.; Luk, H.-T.; Lau, K.-F.; Seaby, R.; Sidarta, A. Reliability and Convergent Validity of Endurance Indices Derived from Near-Infrared Spectroscopy and Electromyography during a Bilateral Hanging Task in Amateur Rock Climbers. J. Funct. Morphol. Kinesiol. 2024, 9, 161. https://doi.org/10.3390/jfmk9030161
Kwong W-H, Li J-Q, Lui C-H, Luk H-T, Lau K-F, Seaby R, Sidarta A. Reliability and Convergent Validity of Endurance Indices Derived from Near-Infrared Spectroscopy and Electromyography during a Bilateral Hanging Task in Amateur Rock Climbers. Journal of Functional Morphology and Kinesiology. 2024; 9(3):161. https://doi.org/10.3390/jfmk9030161
Chicago/Turabian StyleKwong, Wai-Hang, Jia-Qi Li, Chun-Hung Lui, Hiu-Tung Luk, King-Fung Lau, Ray Seaby, and Ananda Sidarta. 2024. "Reliability and Convergent Validity of Endurance Indices Derived from Near-Infrared Spectroscopy and Electromyography during a Bilateral Hanging Task in Amateur Rock Climbers" Journal of Functional Morphology and Kinesiology 9, no. 3: 161. https://doi.org/10.3390/jfmk9030161
APA StyleKwong, W. -H., Li, J. -Q., Lui, C. -H., Luk, H. -T., Lau, K. -F., Seaby, R., & Sidarta, A. (2024). Reliability and Convergent Validity of Endurance Indices Derived from Near-Infrared Spectroscopy and Electromyography during a Bilateral Hanging Task in Amateur Rock Climbers. Journal of Functional Morphology and Kinesiology, 9(3), 161. https://doi.org/10.3390/jfmk9030161