The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment
2.3.1. Sociodemographic and Pharmacological Characteristics of the Sample
2.3.2. Functional Capacity
- Handgrip strength was measured with an analogue hand dynamometer (Jamar® Smart Hand Dynamometer, Patterson Medical Ltd., Nottinghamshire, UK). The participants performed this test in a standing position, holding the dynamometer in their dominant hand, and their elbows bent at 90 degrees [37].
- Functional lower-limb strength was evaluated using the five times sit-to-stand test (FTSST), which measures the time taken for an individual to stand up and sit down five times from a seated position [40].
2.3.3. Aerobic Capacity
2.3.4. Quality of Life
2.3.5. Progression of PD
2.4. Training Protocol
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 1967, 17, 427. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Lauzé, M.; Daneault, J.F.; Duval, C. The effects of physical activity in Parkinson’s disease: A review. J. Parkinsons. Dis. 2016, 6, 685–698. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.A.; van Wegen, E.E.H.; Newman, M.A.; Heyn, P.C. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2018, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- LaHue, S.C.; Comella, C.L.; Tanner, C.M. The best medicine? The influence of physical activity and inactivity on Parkinson’s disease. Mov. Disord. 2016, 31, 1444–1454. [Google Scholar] [CrossRef]
- Bhalsing, K.S.; Abbas, M.M.; Tan, L.C. Role of physical activity in Parkinson’s disease. Ann. Indian Acad. Neurol. 2018, 21, 242–249. [Google Scholar] [CrossRef]
- Schenkman, M.; Moore, C.G.; Kohrt, W.M.; Hall, D.A.; Delitto, A.; Comella, C.L.; Corcos, D.M. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: A phase 2 randomized clinical trial. JAMA Neurol. 2018, 75, 219–226. [Google Scholar] [CrossRef]
- Fiorelli, C.M.; Ciolac, E.G.; Simieli, L.; Silva, F.A.; Fernandes, B.; Christofoletti, G.; Barbieri, F.A. Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with Parkinson’s disease. J. Phys. Act. Health 2019, 16, 157–164. [Google Scholar] [CrossRef]
- Gamborg, M.; Hvid, L.G.; Dalgas, U.; Langeskov-Christensen, M. Parkinson’s disease and intensive exercise therapy-An updated systematic review and meta-analysis. Acta Neurol. Scand. 2022, 145, 504–528. [Google Scholar] [CrossRef]
- Müller, B. Early Parkinson’s Disease. Incidence, Clinical Features and Quality of Life in a Population-Based Cohort Study. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2014. [Google Scholar]
- Zhen, K.; Zhang, S.; Tao, X.; Li, G.; Lv, Y.; Yu, L. A systematic review and meta-analysis on effects of aerobic exercise in people with Parkinson’s disease. NPJ Parkinsons Dis. 2022, 8, 146. [Google Scholar] [CrossRef]
- Harvey, M.; Weston, K.L.; Gray, W.K.; O’Callaghan, A.; Oates, L.L.; Davidson, R.; Walker, R.W. High-intensity interval training in people with Parkinson’s disease: A randomized, controlled feasibility trial. Clin. Rehabil. 2019, 33, 428–438. [Google Scholar] [CrossRef]
- Fernandes, B.; Barbieri, F.A.; Arthuso, F.Z.; Silva, F.A.; Moretto, G.F.; Imaizumi, L.F.I.; Ngomane, A.Y.; Guimarães, G.V.; Ciolac, E.G. High-Intensity Interval Versus Moderate-Intensity Continuous Training in Individuals with Parkinson’s Disease: Hemodynamic and Functional Adaptation. J. Phys. Act. Health 2020, 17, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.; Cinnamond, S.; Hunter, H.; Mardsen, J. Factors associated with limited exercise capacity and feasibility of high intensity interval training in people with mild-to-moderate Parkinson’s disease. Int. J. Ther. Rehabil. 2016, 23, 414–422. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Can Immersive Virtual Reality Videogames Help Parkinson’s Disease Patients? A Case Study. Sensors 2021, 21, 4825. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Immersive virtual reality reaction time test and relationship with the risk of falling in Parkinson’s disease. Sensors 2023, 23, 4529. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.; Kammler-Sücker, K.; Leménager, T.; Kiefer, F.; Lenz, B. Virtual reality: A powerful technology to provide novel insight into treatment mechanisms of addiction. Transl. Psychiatry 2021, 11, 617. [Google Scholar] [CrossRef]
- Optale, G.; Urgesi, C.; Busato, V.; Marin, S.; Piron, L.; Priftis, K.; Gamberini, L.; Capodieci, S.; Bordin, A. Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabil. Neural Repair. 2010, 24, 348–357. [Google Scholar] [CrossRef]
- Mehrabi, S.; Muñoz, J.E.; Basharat, A.; Boger, J.; Cao, S.; Barnett-Cowan, M.; Middleton, L.E. Immersive virtual reality exergames to promote the well-being of community-dwelling older adults: Protocol for a mixed methods pilot study. JMIR Res. Protoc. 2022, 11, e32955. [Google Scholar] [CrossRef]
- Yun, S.J.; Hyun, S.E.; Oh, B.-M.; Seo, H.G. Fully immersive virtual reality exergames with dual-task components for patients with Parkinson’s disease: A feasibility study. J. Neuroeng. Rehabil. 2023, 20, 92. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Feasibility and effects of an immersive virtual reality exergame program on physical functions in institutionalized older adults: A randomized clinical trial. Sensors 2022, 22, 6742. [Google Scholar] [CrossRef] [PubMed]
- Martinho, D.; Carneiro, J.; Corchado, J.M.; Marreiros, G. A systematic review of gamification techniques applied to elderly care. Artif. Intell. Rev. 2020, 53, 4863–4901. [Google Scholar] [CrossRef]
- Donath, L.; Rössler, R.; Faude, O. Effects of Virtual Reality Training (Exergaming) Compared to Alternative Exercise Training and Passive Control on Standing Balance and Functional Mobility in Healthy Community-Dwelling Seniors: A Meta-Analytical Review. Sports Med. 2016, 46, 1293–1309. [Google Scholar] [CrossRef]
- Ridgel, A.L.; Peacock, C.A.; Fickes, E.J.; Kim, C.-H. Active-assisted cycling improves tremor and bradykinesia in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2012, 93, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Shujaat, F.; Soomro, N.; Khan, M. The effectiveness of Kayaking exercises as compared to general mobility exercises in reducing axial rigidity and improve bed mobility in early to mid-stage of Parkinson’s disease. Pak. J. Med. Sci. 2014, 30, 1094–1098. [Google Scholar] [CrossRef]
- Prakash, P.; Scott, T.F.; Baser, S.M.; Leichliter, T.; Schramke, C.J. Self-Reported Barriers to Exercise and Factors Impacting Participation in Exercise in Patients with Parkinson’s Disease. Mov. Disord. Clin. Pract. 2021, 8, 631–633. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Campo-Prieto, P.; Cancela-Carral, J.M. Immersive Virtual Reality High-Intensity Aerobic Training to Slow Parkinson’s Disease: The ReViPark Program. Appl. Sci. 2024, 14, 4708. [Google Scholar] [CrossRef]
- de Laat, B.; Hoye, J.; Stanley, G.; Hespeler, M.; Ligi, J.; Mohan, V.; Wooten, D.W.; Zhang, X.; Nguyen, T.D.; Key, J.; et al. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson’s disease. NPJ Parkinsons Dis. 2024, 10, 34. [Google Scholar] [CrossRef]
- Ellis, T.; Boudreau, J.K.; DeAngelis, T.R.; Brown, L.E.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Barriers to exercise in people with Parkinson disease. Phys. Ther. 2013, 93, 628–636. [Google Scholar] [CrossRef]
- World Health Organization Collaborating Centre for Digital Health. Working Together to Promote Digital Inclusion for Older People. Decade of Healthy Ageing: The Platform, 27 October 2022. [Google Scholar]
- Bonnechère, B. Serious Games in Physical Rehabilitation; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef]
- Chang, H.C.; Chen, C.C.; Weng, Y.H.; Chiou, W.-D.; Chang, Y.J.; Lu, C.-S. The efficacy of cognitive-cycling dual-task training in patients with early-stage Parkinson’s disease: A pilot study. NeuroRehabilitation 2020, 47, 415–426. [Google Scholar] [CrossRef]
- Shrestha, B.; Dunn, L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal. Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Ottendahl, C.B.; Jørgensen, M.E. Hand grip strength and chair stand test amongst Greenlandic Inuit: Reference values and international comparisons. Int. J. Circumpolar. Health 2021, 80, 1966186. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Nocera, J.R.; Stegemöller, E.L.; Malaty, I.A.; Okun, M.S.; Marsiske, M.; Hass, C.J. Using the Timed Up & Go test in a clinical setting to predict falling in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2013, 94, 1300–1305. [Google Scholar] [CrossRef]
- Duncan, R.P.; Leddy, A.L.; Earhart, G.M. Five times sit-to-stand test performance in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2011, 92, 1431–1436. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age Ageing 1997, 26, 353–357. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Payo, B.F.; The Grupo Centro for Study of Movement Disorders. Quality of life in Parkinson’s disease: Validation study of the PDQ-39 Spanish version. J. Neurol. 1998, 245, S34–S38. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Borg, G.A. Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int. J. Sports Med. 1982, 3, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kathia, M.M.; Duplea, S.G.; Bommarito, J.C.; Hinks, A.; Leake, E.; Shannon, J.; Pitman, J.; Khangura, P.K.; Coates, A.M.; Millar, P.J.; et al. High-Intensity Interval vs. Moderate-Intensity Continuous Training in Parkinson’s Disease: A Randomized Trial. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef]
- Gomes, E.S.A.; Van den Heuvel, O.A.; Rietberg, M.B.; De Groot, V.; Hirsch, M.A.; Van de Berg, W.D.J.; Jaspers, R.T.; Vriend, C.; Vanbellingen, T.; Van Wegen, E.E.H. (HIIT-The Track) High-Intensity Interval Training for People with Parkinson’s Disease: Individual Response Patterns of (Non-)Motor Symptoms and Blood-Based Biomarkers—A Crossover Single-Case Experimental Design. Brain Sci. 2023, 13, 849. [Google Scholar] [CrossRef]
- Demonceau, M.; Maquet, D.; Jidovtseff, B.; Donneau, A.F.; Bury, T.; Croisier, J.L.; Crielaard, J.M.; Rodriguez de la Cruz, C.; Delvaux, V.; Garraux, G. Effects of 12 weeks of aerobic or strength training in addition to standard care in Parkinson’s disease: A controlled study. Eur. J. Phys. Rehabil. Med. 2017, 53, 184–200. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Choi, S.; Kang, N.; Park, K.; Shin, H.; Lee, H.; Lee, H.; Jun, J.-S.; Jeon, B.; Byun, K. Effects of high-intensity interval training and moderate-intensity continuous training on sarcopenia-related parameters in participants with Parkinson’s disease: A 24-week randomized pilot trial substudy. Parkinsonism Relat. Disord. 2023, 117, 105901. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Chen, L.Y. Grip strength in older adults: Test-retest reliability and cutoff for subjective weakness of using the hands in heavy tasks. Arch. Phys. Med. Rehabil. 2010, 91, 1747–1751. [Google Scholar] [CrossRef]
- Skinner, J.W.; Christou, E.A.; Hass, C.J. Lower Extremity Muscle Strength and Force Variability in Persons with Parkinson Disease. J. Neurol. Phys. Ther. 2019, 43, 56–62. [Google Scholar] [CrossRef]
- Uygur, M.; Bellumori, M.; Knight, C.A. Effects of a low-resistance, interval bicycling intervention in Parkinson’s disease. Physiother. Theory Pract. 2017, 33, 897–904. [Google Scholar] [CrossRef]
- Duplea, S.G. Physiological Benefits of High Intensity Interval Training for Individuals with Parkinson’s Disease. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2020. [Google Scholar]
- Marusiak, J.; Fisher, B.E.; Jaskólska, A.; Slotwinski, K.; Budrewicz, S.; Koszewicz, M.; Kisiel-Sajewicz, K.; Kaminski, B.; Jaskólski, A. Eight weeks of aerobic interval training improves psychomotor function in patients with Parkinson’s disease—Randomized controlled trial. Int. J. Environ. Res. Public Health 2019, 16, 880. [Google Scholar] [CrossRef]
- Pimenta Silva, D.; Pona-Ferreira, F.; Santos, B.; Correia Rodrigues, C.; Xavier, A.; Santos Silva, C.; Cacho, R.; Bouça-Machado, R.; Campo-Prieto, P.; Ferreira, J.J. Immersive virtual reality as a complement to physical therapy for Parkinson’s disease—A randomized controlled trial. Parkinsonism Relat. Disord. 2024, 122, 106112. [Google Scholar] [CrossRef]
- Ridgel, A.L.; Phillips, R.S.; Walter, B.L.; Discenzo, F.M.; Loparo, K.A. Dynamic High-Cadence Cycling Improves Motor Symptoms in Parkinson’s Disease. Front. Neurol. 2015, 6, 162442. [Google Scholar] [CrossRef]
- Corbett, D.B.; Peer, K.S.; Ridgel, A.L. Biomechanical muscle stimulation and active-assisted cycling improves active range of motion in individuals with Parkinson’s disease. NeuroRehabilitation 2013, 33, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.L.; Phillips, M.; Lowe, M.J.; Frankemolle, A.; Thota, A.; Beall, E.B.; Feldman, M.; Ahmed, A.; Ridgel, A.L. Cortical and motor responses to acute forced exercise in Parkinson’s disease. Parkinsonism Relat. Disord. 2016, 24, 56–62. [Google Scholar] [CrossRef]
- Tiihonen, M.; Westner, B.U.; Butz, M.; Dalal, S.S. Parkinson’s disease patients benefit from bicycling—A systematic review and meta-analysis. npj Parkinson’s Dis. 2021, 7, 86. [Google Scholar] [CrossRef]
- Palmieri, J.L.; Jones, L.; Schenkman, M.; Deutsch, J.E. Bicycling for Rehabilitation of Persons with Parkinson Disease: A Scoping Review. J. Neurol. Phys. Ther. 2024, 48, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients. Sensors 2022, 22, 3302. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD/% | ||
---|---|---|
Age (years) | 61.50 ± 10.49 | |
Sex | Male | 58.3% |
Female | 41.7% | |
BMI (kg/m2) | 27.86 ± 4.09 | |
Academic Level | Higher education | 41.7% |
Vocational training | 16.6% | |
University | 41.7% | |
Personal History of Parkinson’s | None | 25.0% |
Direct family member | 33.3% | |
Other family | 25.0% | |
I do not know | 16.7% | |
Years diagnosed with Parkinson’s | ≤5.00 | 66.6% |
>6.00 | 33.3% | |
H&Y stage | Stage I | 25.0% |
Stage II | 16.7% | |
Stage III | 58.3% | |
First symptom | Tremors (%) | 41.6% |
Rigidity (%) | 25.0% | |
Bradykinesia (%) | 16.6% | |
Other (%) | 16.6% | |
Pharmacology | LEDD (mg) | 634.21 ± 301.65 |
Pre-Intervention | Post-Intervention | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
% | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. | ||
Functional capacity | ||||||||||
Dominant hand | Right | 83.3% | ||||||||
Left | 16.7% | |||||||||
Handgrip [dominant hand] (kg) | 36.17 | 11.82 | 20.00 | 48.00 | 39.22 | 10.15 | 20.00 | 49.22 | ||
Handgrip [non-dominant hand] (kg) | 36.08 | 11.27 | 14.00 | 47.00 | 38.80 | 9.61 | 22.08 | 48.00 | ||
Five times sit-to-stand (s) | 7.65 | 2.53 | 3.92 | 12.00 | 5.77 | 1.36 | 3.94 | 7.73 | ||
Timed up-and-go (s) | 6.32 | 0.67 | 5.28 | 7.22 | 6.18 | 0.56 | 5.28 | 7.17 | ||
Aerobic capacity | ||||||||||
2-min step test (n) | 93.44 | 11.07 | 81.00 | 110.00 | 102.56 | 12.30 | 84.00 | 126.00 | ||
Quality of Life (PDQ-39) | ||||||||||
Mobility (10, #1–10) | 4.58 | 6.97 | 0.00 | 17.50 | 2.75 | 4.26 | 0.00 | 10.50 | ||
Activities of daily living (6, #11–16) | 6.94 | 11.08 | 0.00 | 29.17 | 4.22 | 7.38 | 0.00 | 19.13 | ||
Emotional well-being (6, #17–22) | 2.78 | 4.30 | 0.00 | 8.33 | 1.56 | 2.45 | 0.00 | 5.33 | ||
Stigma (4, #23–26) | 2.08 | 5.10 | 0.00 | 12.50 | 1.68 | 4.12 | 0.00 | 10.10 | ||
Social support (3, #27–29) | 1.39 | 3.40 | 0.00 | 8.33 | 1.22 | 2.99 | 0.00 | 7.33 | ||
Cognition (4, #30–33) | 1.04 | 2.55 | 0.00 | 6.25 | 0.54 | 1.33 | 0.00 | 3.25 | ||
Communication (3, #34–36) | 5.28 | 12.93 | 0.00 | 31.67 | 4.61 | 11.28 | 0.00 | 27.64 | ||
Bodily discomfort (3, #37–39) | 12.50 | 13.69 | 0.00 | 33.33 | 8.27 | 9.17 | 0.00 | 23.15 | ||
Total | 4.57 | 6.55 | 0.31 | 17.60 | 3.10 | 4.88 | 0.12 | 12.89 | ||
Disease progression (MDS-UPDRS) | ||||||||||
Part IA: non-motor aspects of experiences of daily living | 2.17 | 2.40 | 1.00 | 7.00 | 1.50 | 2.26 | 0.00 | 6.00 | ||
Part IB: non-motor aspects of experiences of daily living | 3.67 | 3.44 | 1.00 | 8.00 | 2.83 | 3.37 | 0.00 | 8.00 | ||
Part II: motor aspects of experiences of daily living | 3.33 | 3.88 | 1.00 | 11.00 | 2.50 | 3.27 | 0.00 | 9.00 | ||
Part III: motor examination | 6.67 | 4.76 | 1.00 | 13.00 | 5.00 | 3.69 | 1.00 | 10.00 | ||
Part IV: motor complications | 2.67 | 1.75 | 1.00 | 6.00 | 2.00 | 1.67 | 0.00 | 5.00 |
Paired Differences | Cohen’s d | |||||
---|---|---|---|---|---|---|
95% CI | ||||||
Mean | SD | Lower | Upper | Sig. | ||
Functional capacity | ||||||
Handgrip [dominant hand] [(kg)] | 2.86667 | 3.50784 | 5.09544 | 0.63789 | 0.008 | 0.28 |
Handgrip [non-dominant hand] [(kg)] | 1.21167 | 1.82738 | 2.37273 | 0.05061 | 0.021 | 0.26 |
Five times sit-to-stand [(s)] | −1.32333 | 1.79348 | 0.05526 | −2.70193 | 0.029 | 0.96 |
Timed up-and-go [(s)] | −0.13778 | 0.37586 | 0.15113 | −0.42669 | 0.152 | 0.22 |
Aerobic capacity | ||||||
2-min step test [(n)] | 9.11111 | 12.66338 | 18.84504 | 0.62282 | 0.031 | 0.78 |
Quality of Life (PDQ-39) | ||||||
Mobility (10, #1–10) | 1.83333 | 2.73252 | −1.03427 | 4.70094 | 0.081 | 0.33 |
Activities of daily living (6, #11–16) | 2.72778 | 3.72735 | −1.18383 | 6.63939 | 0.047 | 0.29 |
Emotional well-being (6, #17–22) | 1.22278 | 1.94045 | −0.81360 | 3.25915 | 0.092 | 0.36 |
Stigma (4, #23–26) | 0.40000 | 0.97980 | −0.62823 | 1.42823 | 0.182 | 0.08 |
Social support (3, #27–29) | 0.16722 | 0.40961 | −0.26264 | 0.59708 | 0.182 | 0.05 |
Cognition (4, #30–33) | 0.50000 | 1.22474 | −0.78529 | 1.78529 | 0.182 | 0.25 |
Communication (3, #34–36) | 0.67167 | 1.64524 | −1.05491 | 2.39824 | 0.182 | 0.05 |
Bodily discomfort (3, #37–39) | 4.22833 | 4.77188 | −0.77945 | 9.23612 | 0.041 | 0.37 |
Total | 4.57 | 6.55 | −1.03427 | 4.70094 | 0.081 | 0.25 |
Disease progression (MDS-UPDRS) | ||||||
Part IA: non-motor aspects of experiences of daily living | 0.66667 | 0.51640 | 0.12474 | 1.20859 | 0.013 | 0.29 |
Part IB: non-motor aspects of experiences of daily living | 0.83333 | 0.75277 | 0.04335 | 1.62332 | 0.021 | 0.25 |
Part II: motor aspects of experiences of daily living | 0.83333 | 0.75277 | 0.04335 | 1.62332 | 0.021 | 0.23 |
Part III: motor examination | 1.66667 | 1.86190 | −0.28728 | 3.62061 | 0.040 | 0.39 |
Part IV: motor complications | 0.66667 | 0.51640 | 0.12474 | 1.20859 | 0.013 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cancela-Carral, J.M.; Campo-Prieto, P.; Rodríguez-Fuentes, G. The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients. J. Funct. Morphol. Kinesiol. 2024, 9, 156. https://doi.org/10.3390/jfmk9030156
Cancela-Carral JM, Campo-Prieto P, Rodríguez-Fuentes G. The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients. Journal of Functional Morphology and Kinesiology. 2024; 9(3):156. https://doi.org/10.3390/jfmk9030156
Chicago/Turabian StyleCancela-Carral, José M., Pablo Campo-Prieto, and Gustavo Rodríguez-Fuentes. 2024. "The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients" Journal of Functional Morphology and Kinesiology 9, no. 3: 156. https://doi.org/10.3390/jfmk9030156
APA StyleCancela-Carral, J. M., Campo-Prieto, P., & Rodríguez-Fuentes, G. (2024). The IntegraPark Study: An Opportunity to Facilitate High-Intensity Exercise with Immersive Virtual Reality in Parkinson’s Disease Patients. Journal of Functional Morphology and Kinesiology, 9(3), 156. https://doi.org/10.3390/jfmk9030156