Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Ethics
2.2. Intervention
2.3. Biological Samples Collection
2.4. Anthropometric Measurements
2.5. Fundamental Motor Skills Assessment
2.6. Protein Concentration Quantification
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations and Future Research
4.2. Practical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brigadski, T.; Leßmann, V. BDNF: A regulator of learning and memory processes with clinical potential. e-Neuroforum 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Brigadski, T.; Leßmann, V. The physiology of regulated BDNF release. Cell Tissue Res. 2020, 382, 15. [Google Scholar] [CrossRef]
- Mandel, A.L.; Ozdener, H.; Utermohlen, V. Brain-derived Neurotrophic Factor in Human Saliva: ELISA Optimization and Biological Correlates. J. Immunoass. Immunochem. 2011, 32, 18. [Google Scholar] [CrossRef]
- Mandel, A.L.; Ozdener, H.; Utermohlen, V. Identification of Pro- and Mature Brain-derived Neurotrophic Factor in Human Saliva. Arch. Oral Biol. 2009, 54, 689. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Martínez-Ortega, I.A.; Martínez-Vizcaíno, V.; Mesas, A.E.; Notario-Pacheco, B. Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. J. Sport Health Sci. 2022, 11, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Mrówczyński, W. Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor—A Systematic Review. Neural Plast. 2019, 2019, 5413067. [Google Scholar] [CrossRef]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Walsh, J.J.; Tschakovsky, M.E. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl. Physiol. Nutr. Metab. 2018, 43, 1095–1104. [Google Scholar] [CrossRef]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef]
- Liu, P.Z.; Nusslock, R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018, 12, 332010. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhou, H.H.; Luo, Q.; Cui, S. The effect of physical exercise on circulating brain-derived neurotrophic factor in healthy subjects: A meta-analysis of randomized controlled trials. Brain Behav. 2022, 12, e2544. [Google Scholar] [CrossRef]
- Berchtold, N.C.; Chinn, G.; Chou, M.; Kesslak, J.P.; Cotman, C.W. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 2005, 133, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Marston, K.J.; Newton, M.J.; Brown, B.M.; Rainey-Smith, S.R.; Bird, S.; Martins, R.N.; Peiffer, J.J. Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J. Sci. Med. Sport 2017, 20, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Żebrowska, A.; Hall, B.; Maszczyk, A.; Banaś, R.; Urban, J. Brain-derived neurotrophic factor, insulin like growth factor-1 and inflammatory cytokine responses to continuous and intermittent exercise in patients with type 1 diabetes. Diabetes Res. Clin. Pract. 2018, 144, 126–136. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Arrieta, H.; Rezola-Pardo, C.; Kortajarena, M.; Hervás, G.; Gil, J.; Yanguas, J.J.; Iturburu, M.; Gil, S.M.; Irazusta, J.; Rodriguez-Larrad, A. The impact of physical exercise on cognitive and affective functions and serum levels of brain-derived neurotrophic factor in nursing home residents: A randomized controlled trial. Maturitas 2020, 131, 72–77. [Google Scholar] [CrossRef]
- Baird, J.F.; Gaughan, M.E.; Saffer, H.M.; Sarzynski, M.A.; Herter, T.M.; Fritz, S.L.; Ouden, D.B.D.; Stewart, J.C. The effect of energy-matched exercise intensity on brain-derived neurotrophic factor and motor learning. Neurobiol. Learn. Mem. 2018, 156, 33–44. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, C.; Bi, Y.; Chen, L. Effect of Integrative Neuromuscular Training for Injury Prevention and Sports Performance of Female Badminton Players. Biomed. Res. Int. 2021, 2021, 5555853. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Farrell, A.; Fabiano, M.; Radler, T.; Naclerio, F.; Ratamess, N.A.; Kang, J.; Myer, G.D. Effects of integrative neuromuscular training on fitness performance in children. Pediatr. Exerc. Sci. 2011, 23, 573–584. [Google Scholar] [CrossRef]
- Font-Lladó, R.; López-Ros, V.; Montalvo, A.M.; Sinclair, G.; Prats-Puig, A.; Fort-Vanmeerhaeghe, A. A Pedagogical Approach to Integrative Neuromuscular Training to Improve Motor Competence in Children: A Randomized Controlled Trail. J. Strength Cond. Res. 2020, 34, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Hestbaek, L.; Andersen, S.T.; Skovgaard, T.; Olesen, L.G.; Elmose, M.; Bleses, D.; Andersen, S.C.; Lauridsen, H.H. Influence of motor skills training on children’s development evaluated in the Motor skills in PreSchool (MiPS) study-DK: Study protocol for a randomized controlled trial, nested in a cohort study. Trials 2017, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.W.; Ross, S.M.; Chee, K.; Stodden, D.F.; Robinson, L.E. Fundamental motor skills: A systematic review of terminology. J. Sports Sci. 2018, 36, 781–796. [Google Scholar] [CrossRef]
- Kokstejn, J.; Musalek, M.; Wolanski, P.; Murawska-Cialowicz, E.; Stastny, P. Fundamental motor skills mediate the relationship between physical fitness and soccer-specific motor skills in young soccer players. Front. Physiol. 2019, 10, 457919. [Google Scholar] [CrossRef]
- Capio, C.M.; Eguia, K.F. Object Control Skills Training for Children with Intellectual Disability: An Implementation Case Study. SAGE Open 2021, 11, 21582440211030603. [Google Scholar] [CrossRef]
- Chen, W.; Mason, S.; Hammond-Bennett, A.; Zalmout, S. Manipulative skill competency and health-related physical fitness in elementary school students. J. Sport Health Sci. 2016, 5, 491. [Google Scholar] [CrossRef]
- Hurtado-Almonacid, J.; Reyes-Amigo, T.; Yáñez-Sepúlveda, R.; Cortés-Roco, G.; Oñate-Navarrete, C.; Olivares-Arancibia, J.; Páez-Herrera, J. Development of Basic Motor Skills from 3 to 10 Years of Age: Comparison by Sex and Age Range in Chilean Children. Children 2024, 11, 715. [Google Scholar] [CrossRef]
- Hardy, L.L.; King, L.; Farrell, L.; Macniven, R.; Howlett, S. Fundamental movement skills among Australian preschool children. J. Sci. Med. Sport 2010, 13, 503–508. [Google Scholar] [CrossRef]
- Hill, P.J.; McNarry, M.A.; Lester, L.; Foweather, L.; Boddy, L.M.; Fairclough, S.J.; Mackintosh, K.A. Sex-Related Differences in the Association of Fundamental Movement Skills and Health and Behavioral Outcomes in Children. J. Mot. Learn. Dev. 2021, 10, 27–40. [Google Scholar] [CrossRef]
- Sutapa, P.; Pratama, K.W.; Rosly, M.M.; Ali, S.K.S.; Karakauki, M. Improving Motor Skills in Early Childhood through Goal-Oriented Play Activity. Children 2021, 8, 994. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Liu, J.; Sun, H.; Gao, W. A Follow-Up Study of Motor Skill Development and Its Determinants in Preschool Children from Middle-Income Family. Biomed. Res. Int. 2020, 2020, 6639341. [Google Scholar] [CrossRef] [PubMed]
- Vandaele, B.; Cools, W.; de Decker, S.; de Martelaer, K. Mastery of fundamental movement skills among 6-year-old Flemish pre-school children. Eur. Phys. Educ. Rev. 2011, 17, 3–17. [Google Scholar] [CrossRef]
- Knudsen, E.I. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 2004, 16, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.; Corey-Bloom, J.; Thomas, E.A.; Desplats, P. Evaluation of Biochemical and Epigenetic Measures of Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker in Huntington’s Disease Patients. Front. Mol. Neurosci. 2020, 12, 508713. [Google Scholar] [CrossRef]
- Trajković, N.; Bogataj, Š. Effects of Neuromuscular Training on Motor Competence and Physical Performance in Young Female Volleyball Players. Int. J. Environ. Res. Public Health 2020, 17, 1755. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, R.; Shen, J.; Zhou, A. Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: A systematic review. PeerJ 2022, 10, e13726. [Google Scholar] [CrossRef]
- Sadowska-Krȩpa, E.; Domaszewski, P.; Pokora, I.; Zebrowska, A.; Gdańska, A.; Podgórski, T. Effects of medium-term green tea extract supplementation combined with CrossFit workout on blood antioxidant status and serum brain-derived neurotrophic factor in young men: A pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 13. [Google Scholar] [CrossRef]
- Vasileva, F.; Font-Lladó, R.; Carreras-Badosa, G.; Roman-Viñas, B.; Cadellans-Arróniz, A.; López-Bermejo, A.; Prats-Puig, A. Salivary cardiac-enriched FHL2-interacting protein is associated with higher diastolic-to-systolic-blood pressure ratio, sedentary time and center of pressure displacement in healthy 7–9 years old school-children. Front. Endocrinol. 2024, 15, 1292653. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Schröder, H.; Subirana, I.; Wärnberg, J.; Medrano, M.; Gonzalez-Gross, M.; Gusi, N.; Aznar, S.; Alcaraz, P.E.; Gonzalez-Valeiro, M.A.; Serra-Majem, M.; et al. Validity, reliability, and calibration of the physical activity unit 7 item screener (PAU-7S) at population scale. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 98. [Google Scholar] [CrossRef]
- Fernandez-Agullo, R.; Merino-Marban, R. Effect of Warm-up on Fitness Performance of Schoolchildren. A Systematic Review. Pol. J. Sport Tour. 2022, 29, 3–8. [Google Scholar] [CrossRef]
- Carrascosa-Lezcano, A.; Fernandez-Garcia, J.; Ferandez-Longas, A.; Lopez-Siguero, J.S.-G.E. Cross-Sectional Study of Growth and Development, 1st ed.; Pfizer S.A.: Barcelona, Spain, 2008. [Google Scholar]
- Longmuir, P.E.; Boyer, C.; Lloyd, M.; Borghese, M.M.; Knight, E.; Saunders, T.J.; Boiarskaia, E.; Zhu, W.; Tremblay, M.S. Canadian Agility and Movement Skill Assessment (CAMSA): Validity, objectivity, and reliability evidence for children 8–12 years of age. J. Sport Health Sci. 2017, 6, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Menescardi, C.; Villarrasa-Sapiña, I.; Lander, N.; Estevan, I. Canadian Agility Movement Skill Assessment (CAMSA) in a Spanish Context: Evidences of Reliability and Validity. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 245–255. [Google Scholar] [CrossRef]
- Cefis, M.; Chaney, R.; Wirtz, J.; Méloux, A.; Quirié, A.; Leger, C.; Prigent-Tessier, A.; Garnier, P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front. Mol. Neurosci. 2023, 16, 1275924. [Google Scholar] [CrossRef]
- Li, J.; Xing, J. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease. Front. Physiol. 2012, 3, 26841. [Google Scholar] [CrossRef]
- Asadi, A.; de Villarreal, E.S.; Arazi, H. The Effects of Plyometric Type Neuromuscular Training on Postural Control Performance of Male Team Basketball Players. J. Strength Cond. Res. 2015, 29, 1870–1875. [Google Scholar] [CrossRef]
- Duncan, M.J.; Eyre, E.L.J.; Oxford, S.W. The Effects of 10-week Integrated Neuromuscular Training on Fundamental Movement Skills and Physical Self-efficacy in 6–7-Year-Old Children. J. Strength Cond. Res. 2018, 32, 3348–3356. [Google Scholar] [CrossRef]
- Navarro-Martínez, R.; Fernández-Garrido, J.; Buigues, C.; Torralba-Martínez, E.; Martinez-Martinez, M.; Verdejo, Y.; Mascarós, M.C.; Cauli, O. Brain-derived neurotrophic factor correlates with functional and cognitive impairment in non-disabled older individuals. Exp. Gerontol. 2015, 72, 129–137. [Google Scholar] [CrossRef] [PubMed]
Participant Characteristics at Baseline | Control Group (N = 32) | INT Group (N = 35) | p-Value |
---|---|---|---|
Age (years) | 7.52 ± 0.31 | 7.56 ± 0.29 | 0.537 |
Sex (m/f) | 16/16 | 18/17 | 0.144 |
Sleep (hours/day) | 10.35 ± 2.05 | 9.62 ± 1.29 | 0.089 |
Physical activity (hours/day) | 1.45 ± 0.93 | 1.85 ± 0.78 | 0.153 |
KIDMED (score) | 6.61 ± 2.23 | 7.03 ± 2.04 | 0.448 |
Parental profession (non-degree/degree profession/NA) | 2/25/5 | 8/26/1 | 0.091 |
Body mass (kg) | 26.03 ± 3.33 | 27.32 ± 5.58 | 0.188 |
Body mass SDS | −0.28 (−0.67–0.10) | −0.23 (−0.78–0.22) | 0.135 |
Height (cm) | 126.22 ± 6.05 | 126.44 ± 5.22 | 0.862 |
Height SDS | −0.08 (−0.52–0.73) | −0.01 (−0.55–0.67) | 0.682 |
BMI (kg/m2) | 16.33 ± 1.44 | 16.82 ± 2.19 | 0.269 |
BMI SDS | −0.40 (−0.71–0.04) | −0.21 (−0.82–0.21) | 0.251 |
BDNF (pg/mL) | 116.58 (30.67–315.54) | 327.69 (266.17–379.70) | 0.154 |
Fundamental motor skills at baseline | |||
CAMSA time (s) | 21.22 ± 4.36 | 21.77 ± 4.47 | 0.171 |
CAMSA 2-foot jump (score) | 3.75 ± 0.57 | 3.86 ± 0.36 | 0.066 |
CAMSA sidestep (score) | 2.00 (1.00–3.75) | 1.00 (0.01–3.00) | 0.327 |
CAMSA catch (score) | 1.28 ± 0.85 | 1.00 ± 0.86 | 0.154 |
CAMSA overhand throw (score) | 2.31 ± 1.59 | 2.20 ± 1.39 | 0.748 |
CAMSA skip (score) | 2.00 (0.01–4.00) | 3.00 (1.50–4.00) | 0.142 |
CAMSA 1-foot hop (score) | 2.00 (1.25–3.00) | 2.00 (0.01–2.00) | 0.272 |
CAMSA kick (score) | 3.00 (1.00–4.00) | 2.00 (1.00–3.00) | 0.209 |
CAMSA locomotor skills (score) | 10.06 ± 3.06 | 9.88 ± 3.83 | 0.819 |
CAMSA control and manipulative skills (score) | 5.09 ± 2.90 | 4.12 ± 2.35 | 0.102 |
CAMSA total (score) | 15.16 ± 3.67 | 13.53 ± 4.53 | 0.094 |
Participant Characteristics after 3 Months | Control Group (N = 32) | INT Group (N = 35) | F | p-Value |
---|---|---|---|---|
Body mass (kg) | 26.47 ± 3.64 | 27.44 ± 4.94 | 0.131 | 0.718 |
Body mass SDS | −0.29 (−0.64–0.16) | −0.14 (−0.58–1.20) | 0.311 | 0.579 |
Height (cm) | 127.67 ± 6.12 | 128.19 ± 5.51 | 0.308 | 0.581 |
Height SDS | 0.04 (−0.48–0.89) | 0.19 (−0.34–0.89) | 0.831 | 0.365 |
BMI (kg/m2) | 16.18 ± 1.44 | 16.66 ± 2.13 | 0.221 | 0.639 |
BMI SDS | −0.50 (−0.84–0.12) | −0.23 (−0.89–0.08) | 0.074 | 0.786 |
BDNF (pg/mL) | 138.38 (30.67–370.89) | 406.78 (106.63–457.40) | 8.865 | 0.004 |
Fundamental motor skills after 3 months | ||||
CAMSA time (s) | 19.87 ± 3.45 | 19.19 ± 2.53 | 2.581 | 0.114 |
CAMSA 2-foot jump (score) | 3.71 ± 0.86 | 3.82 ± 0.46 | 1.853 | 0.179 |
CAMSA sidestep (score) | 2.87 ± 1.81 | 4.45 ± 2.01 | 13.240 | 0.001 |
CAMSA catch (score) | 1.27 ± 0.73 | 1.52 ± 0.67 | 3.357 | 0.073 |
CAMSA overhand throw (score) | 2.47 ± 1.47 | 2.58 ± 1.25 | 3.283 | 0.076 |
CAMSA skip (score) | 2.93 ± 1.53 | 3.61 ± 0.84 | 3.808 | 0.056 |
CAMSA 1-foot hop (score) | 2.16 ± 1.21 | 2.70 ± 1.06 | 11.684 | 0.001 |
CAMSA kick (score) | 2.45 ± 1.45 | 2.71 ± 1.27 | 4.010 | 0.050 |
CAMSA locomotor skills (score) | 11.70 ± 3.04 | 14.58 ± 2.99 | 18.799 | <0.0001 |
CAMSA control and manipulative skills (score) | 5.33 ± 2.80 | 5.77 ± 2.44 | 8.151 | 0.006 |
CAMSA total (score) | 16.42 ± 5.02 | 18.53 ± 5.02 | 11.266 | 0.001 |
BDNF Δ % | ||||||
---|---|---|---|---|---|---|
Control Group (N = 32) | INT Group (N = 35) | |||||
Beta | p-Value | Adjusted R Squared | Beta | p-Value | Adjusted R Squared | |
CAMSA time Δ % | −0.159 | 0.413 | 0.022 | 0.152 | 0.446 | −0.046 |
CAMSA 2-foot jump Δ % | −0.112 | 0.565 | 0.008 | 0.068 | 0.731 | −0.061 |
CAMSA sidestep Δ % | −0.292 | 0.203 | 0.123 | −0.154 | 0.560 | 0.046 |
CAMSA catch Δ % | −0.059 | 0.807 | 0.009 | 0.082 | 0.772 | −0.056 |
CAMSA overhand throw Δ % | 0.273 | 0.237 | 0.069 | −0.210 | 0.449 | −0.050 |
CAMSA skip Δ % | 0.065 | 0.803 | −0.043 | 0.196 | 0.379 | −0.033 |
CAMSA 1-foot hop Δ % | 0.171 | 0.426 | 0.030 | −0.054 | 0.804 | −0.045 |
CAMSA kick Δ % | 0.098 | 0.661 | −0.009 | 0.194 | 0.375 | 0.021 |
CAMSA locomotor skills Δ % | −0.213 | 0.268 | 0.044 | 0.385 | 0.039 | 0.088 |
CAMSA control and manipulative skills Δ % | −0.039 | 0.851 | −0.015 | 0.101 | 0.621 | −0.057 |
CAMSA total Δ % | −0.249 | 0.196 | 0.061 | 0.428 | 0.020 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileva, F.; Font-Lladó, R.; Carreras-Badosa, G.; López-Ros, V.; Ferrusola-Pastrana, A.; López-Bermejo, A.; Prats-Puig, A. Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School. J. Funct. Morphol. Kinesiol. 2024, 9, 154. https://doi.org/10.3390/jfmk9030154
Vasileva F, Font-Lladó R, Carreras-Badosa G, López-Ros V, Ferrusola-Pastrana A, López-Bermejo A, Prats-Puig A. Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School. Journal of Functional Morphology and Kinesiology. 2024; 9(3):154. https://doi.org/10.3390/jfmk9030154
Chicago/Turabian StyleVasileva, Fidanka, Raquel Font-Lladó, Gemma Carreras-Badosa, Víctor López-Ros, Anna Ferrusola-Pastrana, Abel López-Bermejo, and Anna Prats-Puig. 2024. "Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School" Journal of Functional Morphology and Kinesiology 9, no. 3: 154. https://doi.org/10.3390/jfmk9030154
APA StyleVasileva, F., Font-Lladó, R., Carreras-Badosa, G., López-Ros, V., Ferrusola-Pastrana, A., López-Bermejo, A., & Prats-Puig, A. (2024). Increased Salivary BDNF and Improved Fundamental Motor Skills in Children Following a 3-Month Integrated Neuromuscular Training in Primary School. Journal of Functional Morphology and Kinesiology, 9(3), 154. https://doi.org/10.3390/jfmk9030154