Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science
Abstract
:1. Introduction
2. Epidemiology and Current Interventions
3. The Limitations of ACL Reconstruction and Rehabilitation
4. Non-Surgical and Surgical ACL Repair: Growing Evidence
5. Native ACL Blood Supply
6. Regenerative Orthobiologics
7. Regional ACL Histological Differences and Complexities
8. The Extracellular Matrix
9. Causal Tissue Histogenesis
10. Exercise Dosage
11. Traumatic ACL Rupture and CNS Reorganizational Plasticity
12. Homeostasis Modulation
13. Nutrition and Exercise
14. Sleep and the Autonomic Nervous System
15. Entheses and Crimp
16. Primary Prevention: Re-Thinking the Approach
17. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL Injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Wojtys, E.M.; Beaulieu, M.L.; Ashton-Miller, J.A. New perspectives on ACL injury: On the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. J. Orthop. Res. 2016, 34, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Grodman, L.H.; Beaulieu, M.L.; Ashton-Miller, J.A.; Wojtys, E.M. Levels of ACL-straining activities increased in the six months prior to non-contact ACL injury in a retrospective survey: Evidence consistent with ACL fatigue failure. Front. Physiol. 2023, 14, 1166980. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Webster, K.E.; Taylor, N.F.; Feller, J.A. Return to sport following anterior cruciate ligament reconstruction surgery: A systematic review and meta-analysis of the state of play. Br. J. Sports Med. 2011, 45, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Herzog, M.M.; Marshall, S.W.; Lund, J.L.; Pate, V.; Mack, C.D.; Spang, J.T. Trends in Incidence of ACL Reconstruction and Concomitant Procedures Among Commercially Insured Individuals in the United States, 2002–2014. Sports Health 2018, 10, 523–531. [Google Scholar] [CrossRef]
- Lindaman, L.M. Bone healing in children. Clin. Podiatr. Med. Surg. 2001, 18, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.; Carter, S.E.; Green, D.J. Arterial structure and function in vascular ageing: Are you as old as your arteries? J. Physiol. 2016, 59, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child. Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Sawyer, S.M.; Baltag, V. Toward an Adolescent Competent Workforce. In International Handbook on Adolescent Health and Development; Cherry, A., Baltag, V., Dillon, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Merkel, D.L. Youth sport: Positive and negative impact on young athletes. Open Access J. Sports Med. 2013, 4, 151–160. [Google Scholar] [CrossRef]
- Caine, D.; Purcell, L.; Maffulli, N. The child and adolescent athlete: A review of three potentially serious injuries. BMC Sports Sci. Med. Rehabil. 2014, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Dodwell, E.R.; Lamont, L.E.; Green, D.W.; Pan, T.J.; Marx, R.G.; Lyman, S. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am. J. Sports Med. 2014, 42, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Welton, K.L.; Kraeutler, M.J.; Pierpoint, L.A.; Bartley, J.H.; McCarty, E.C.; Comstock, R.D. Injury Recurrence Among High School Athletes in the United States: A Decade of Patterns and Trends, 2005–2006 through 2015–2016. Orthop. J. Sports Med. 2018, 6, 2325967117745788. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.; Finch, C.F. Trends in Pediatric and Adolescent Anterior Cruciate Ligament Injuries in Victoria, Australia 2005–2015. Int. J. Environ. Res. Public Health 2017, 14, 599. [Google Scholar] [CrossRef]
- Finch, C.F.; Kemp, J.L.; Clapperton, A.J. The incidence and burden of hospital-treated sports-related injury in people aged 15+ years in Victoria, Australia, 2004–2010: A future epidemic of osteoarthritis? Osteoarthr. Cartil. 2015, 23, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Finch, C.F.; Wong Shee, A.; Clapperton, A. Time to add a new priority target for child injury prevention? The case for an excess burden associated with sport and exercise injury: Population-based study. BMJ Open 2014, 4, e005043. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Hewett, T.E. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J. Orthop. Res. 2018, 36, 2696–2708. [Google Scholar] [CrossRef] [PubMed]
- von Rosen, P.; Heijne, A.; Frohm, A.; Fridén, C.; Kottorp, A. High Injury Burden in Elite Adolescent Athletes: A 52-Week Prospective Study. J. Athl. Train. 2018, 53, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, P.D.; Kocher, M.S. Anterior Cruciate Ligament Injuries in Children and Adolescents. Orthop. Clin. N. Am. 2016, 47, 777–788. [Google Scholar] [CrossRef]
- Chen, J.; Kim, J.; Shao, W.; Schlecht, S.H.; Baek, S.Y.; Jones, A.K.; Ahn, T.; Ashton-Miller, J.A.; Banaszak Holl, M.M.; Wojtys, E.M. An Anterior Cruciate Ligament Failure Mechanism. Am. J. Sports Med. 2019, 47, 2067–2076. [Google Scholar] [CrossRef]
- Lipps, D.B.; Wojtys, E.M.; Ashton-Miller, J.A. Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. Am. J. Sports Med. 2013, 41, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Baek, S.Y.; Schlecht, S.H.; Beaulieu, M.L.; Bussau, L.; Chen, J.; Ashton-Miller, J.A.; Wojtys, E.M.; Banaszak Holl, M.M. Anterior cruciate ligament microfatigue damage detected by collagen autofluorescence in situ. J. Exp. Orthop. 2022, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, M.L.; Wojtys, E.M.; Ashton-Miller, J.A. Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings. Am. J. Sports Med. 2015, 43, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Putera, K.H.; Kim, J.; Baek, S.Y.; Schlecht, S.H.; Beaulieu, M.L.; Haritos, V.; Arruda, E.M.; Ashton-Miller, J.A.; Wojtys, E.M.; Banaszak Holl, M.M. Fatigue-driven compliance increase and collagen unravelling in mechanically tested anterior cruciate ligament. Commun. Biol. 2023, 6, 564. [Google Scholar] [CrossRef] [PubMed]
- Zitnay, J.L.; Jung, G.S.; Lin, A.H.; Qin, Z.; Li, Y.; Yu, S.M.; Buehler, M.J.; Weiss, J.A. Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. Sci. Adv. 2020, 6, eaba2795. [Google Scholar] [CrossRef]
- Nyland, J.; Pyle, B.; Krupp, R.; Kittle, G.; Richards, J.; Brey, J. ACL microtrauma: Healing through nutrition, modified sports training, and increased recovery time. J. Exp. Orthop. 2022, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J. Overuse Noncontact ACL Injury in Young Athletes: Since We Can’t Completely Fix It, Why Not Prevent It? Sports Health 2023, 15, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Loflin, B.E.; Ahn, T.; Colglazier, K.A.; Banaszak Holl, M.M.; Ashton-Miller, J.A.; Wojtys, E.M.; Schlecht, S.H. An Adolescent Murine In Vivo Anterior Cruciate Ligament Overuse Injury Model. Am. J. Sports Med. 2023, 51, 1721–1732. [Google Scholar] [CrossRef]
- Jones, D.S.; Podolsky, S.H.; Greene, J.A. The burden of and the changing task of medicine. N. Engl. J. Med. 2012, 366, 2333–2338. [Google Scholar] [CrossRef]
- Wojtys, E.M. The Missing Link. Sports Health 2023, 15, 9–10. [Google Scholar] [CrossRef]
- Nyland, J.; Gamble, C.; Franklin, T.; Caborn, D.N.M. Permanent knee sensorimotor system changes following ACL injury and surgery. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1461–1474. [Google Scholar] [CrossRef]
- Nyland, J.; Wera, J.; Klein, S.; Caborn, D.N. Lower extremity neuromuscular compensations during instrumented single leg hop testing 2–10 years following ACL reconstruction. Knee 2014, 21, 1191–1197. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Ramwadhdoebe, T.H.; van der Hart, C.P.; Blankevoort, L.; Tak, P.P.; van Dijk, C.N. Intrinsic healing response of the human anterior cruciate ligament: An histological study of reattached ACL remnants. J. Orthop. Res. 2014, 32, 296–301. [Google Scholar] [CrossRef]
- Lin, K.M.; Vermeijden, H.D.; Klinger, C.E.; Lazaro, L.E.; Rodeo, S.A.; Dyke, J.P.; Helfet, D.L.; DiFelice, G.S. Differential regional perfusion of the human anterior cruciate ligament: Quantitative magnetic resonance imaging assessment. J. Exp. Orthop. 2022, 9, 50. [Google Scholar] [CrossRef]
- Nyland, J.; Fisher, B.; Brand, E.; Krupp, R.; Caborn, D.N. Osseous deficits after anterior cruciate ligament injury and reconstruction: A systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 2010, 26, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J.; Lee, Y.H.; McGinnis, M.; Kibbe, S.; Kocabey, Y.; Caborn, D.N. ACL double bundle linked cortical-aperture tibial fixation: A technical note. Arch. Orthop. Trauma Surg. 2014, 134, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Otani, T.; Takeda, K.; Matsumoto, H.; Harato, K.; Toyama, Y.; Nagura, T. Anterior Cruciate Ligament Reconstruction Does Not Fully Restore Normal 3D Knee Kinematics at 12 Months during Walking and Walk-Pivoting: A Longitudinal Gait Analysis Study. J. Appl. Biomech. 2015, 31, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wang, Y.; Han, Q.; Wang, Z.; Jiao, J.; Gong, X.; Liu, Y.; Zhang, A.; Zhang, H.; Chen, H.; et al. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J. Tissue Eng. 2022, 13, 20417314221144714. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.; Xiang, L.; Zhao, Z.; Cui, W. Functional biomaterials for tendon/ligament repair and regeneration. Regen. Biomater. 2022, 9, rbac062. [Google Scholar] [CrossRef]
- Gögele, C.; Hahn, J.; Schulze-Tanzil, G. Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses. Int. J. Mol. Sci. 2023, 24, 9745. [Google Scholar] [CrossRef]
- Chu, C.R.; Millis, M.B.; Olson, S.A. Osteoarthritis: From Palliation to Prevention: AOA Critical Issues. J. Bone Jt. Surg. Am. 2014, 96, e130. [Google Scholar] [CrossRef]
- Martin, R.; Nyland, J.; Jakob, R.P. ACL surgical innovation cycles: What goes around, comes around. J. ISAKOS 2020, 5, 334–341. [Google Scholar] [CrossRef]
- Getgood, A.M.J.; Bryant, D.M.; Litchfield, R.; Heard, M.; McCormack, R.G.; Rezansoff, A.; Peterson, D.; Bardana, D.; MacDonald, P.B.; Verdonk, P.C.; et al. Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-Year outcomes from the STABILITY study randomized clinical trial. Am. J. Sports Med. 2020, 48, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Neri, T.; Dabirrahmani, D.; Beach, A.; Grasso, S.; Putnis, S.; Oshima, T.; Cadman, J.; Devitt, B.; Coolican, M.; Fritsch, B.; et al. Different anterolateral procedures have variable impact on knee kinematics and stability when performed in combination with anterior cruciate ligament reconstruction. J. ISAKOS 2021, 6, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J.; Moatshe, G.; Martin, R. Combined ACL and anterolateral ligament reconstruction: Time to pivot and shift the focus? Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Filbay, S.R.; Dowsett, M.; Chaker Jomaa, M.; Rooney, J.; Sabharwal, R.; Lucas, P.; Van Den Heever, A.; Kazaglis, J.; Merlino, J.; Moran, M.; et al. Healing of acute anterior cruciate ligament rupture on MRI and outcomes following non-surgical management with the Cross Bracing Protocol. Br. J. Sports Med. 2023, 57, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Malahias, M.A.; Chytas, D.; Nakamura, K.; Raoulis, V.; Yokota, M.; Nikolaou, V.S. A Narrative Review of Four Different New Techniques in Primary Anterior Cruciate Ligament Repair: “Back to the Future” or Another Trend? Sports Med. Open 2018, 4, 37. [Google Scholar] [CrossRef]
- Murray, M.M.; Fleming, B.C.; Badger, G.J.; BEAR Trial Team; Freiberger, C.; Henderson, R.; Barnett, S.; Kiapour, A.; Ecklund, K.; Proffen, B.; et al. Bridge-Enhanced Anterior Cruciate Ligament Repair Is Not Inferior to Autograft Anterior Cruciate Ligament Reconstruction at 2 Years: Results of a Prospective Randomized Clinical Trial. Am. J. Sports Med. 2020, 48, 1305–1315. [Google Scholar]
- Scapinelli, R. Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin. Anat. 1997, 10, 151–162. [Google Scholar] [CrossRef]
- Petersen, W.; Hansen, U. Blood and lymph supply of the anterior cruciate ligament: Cadaver study by immunohistochemical and histochemical methods. J. Orthop. Sci. 1997, 2, 313–318. [Google Scholar] [CrossRef]
- Petersen, W.; Zantop, T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin. Orthop. Relat. Res. 2006, 454, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Duthon, V.B.; Barea, C.; Abrassart, S.; Fasel, J.H.; Fritschy, D.; Ménétrey, J. Anatomy of the anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 204–213. [Google Scholar] [CrossRef]
- Salo, P.; Frank, C.; Marchuk, L. Synovial fluid does not inhibit collagen synthesis. Bovine cruciate ligament studied in vitro. Acta Orthop. Scand. 1990, 61, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Fromm, B.; Kummer, W. Nerve supply of anterior cruciate ligaments and of cryopreserved anterior cruciate ligament allografts: A new method for the differentiation of the nervous tissues. Knee Surg. Sports Traumatol. Arthrosc. 1994, 2, 118–122. [Google Scholar] [CrossRef]
- Yeater, T.D.; Cruz, C.J.; Cruz-Almeida, Y.; Allen, K.D. Autonomic Nervous System Dysregulation and Osteoarthritis Pain: Mechanisms, Measurement, and Future Outlook. Curr. Rheumatol. Rep. 2022, 24, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Baar, K. Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sports Med. 2017, 47, 5–11. [Google Scholar] [CrossRef]
- Lubowitz, J.H.; Brand, J.C.; Rossi, M.J. Arthroscopy and Musculoskeletal Biologics. Arthroscopy 2023, 39, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.F.; Wolf, E.J.; Brindle, T.; Cernich, A.; Dean, W.K.; Dearth, C.L.; Grimm, M.; Kusiak, A.; Nitkin, R.; Potter, K.; et al. The convergence of regenerative medicine and rehabilitation: Federal perspectives. NPJ Regen. Med. 2018, 3, 19. [Google Scholar] [CrossRef]
- Cabaud, H.E.; Chatty, A.; Gildengorin, V.; Feltman, R.J. Exercise effects on the strength of the rat anterior cruciate ligament. Am. J. Sports Med. 1980, 8, 79–86. [Google Scholar] [CrossRef]
- Zhao, L.; Thambyah, A.; Broom, N. Crimp morphology in the ovine anterior cruciate ligament. J. Anat. 2015, 226, 278–288. [Google Scholar] [CrossRef]
- Vailas, A.C.; Tipton, C.M.; Laughlin, H.L.; Tcheng, T.K.; Matthes, R.D. Physical activity and hypophysectomy on the aerobic capacity of ligaments and tendons. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 44, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Fisher, M.B.; Woo, S.L. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 9. [Google Scholar] [CrossRef]
- Williams, J.G. Achilles tendon lesions in sport. Sports Med. 1993, 16, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Kösters, C.; Glasbrenner, J.; Spickermann, L.; Kittl, C.; Domnick, C.; Herbort, M.; Raschke, M.J.; Schliemann, B. Repair with Dynamic Intraligamentary Stabilization versus Primary Reconstruction of Acute Anterior Cruciate Ligament Tears: 2-Year Results From a Prospective Randomized Study. Am. J. Sports Med. 2020, 48, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.T.; Hopper, G.P.; Banger, M.S.; Blyth, M.J.G.; Riches, P.E.; MacKay, G.M. Anterior cruciate ligament repair with internal brace augmentation: A systematic review. Knee 2022, 35, 192–200. [Google Scholar] [CrossRef] [PubMed]
- van der List, J.P.; DiFelice, G.S. Arthroscopic Primary Anterior Cruciate Ligament Repair with Suture Augmentation. Arthrosc. Tech. 2017, 6, e1529–e1534. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z. Anat. Entwickl. 1960, 121, 478–515. [Google Scholar] [CrossRef]
- O’Hara, B.P.; Urban, J.P.; Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 1990, 49, 536–539. [Google Scholar] [CrossRef]
- Ferretti, A. To heal or not to heal: The ACL dilemma. J. Orthop. Traumatol. 2020, 21, 11. [Google Scholar] [CrossRef]
- Murray, M.M.; Martin, S.D.; Martin, T.L.; Spector, M. Histological changes in the human anterior cruciate ligament after rupture. J. Bone Jt. Surg. Am. 2000, 82, 1387–1397. [Google Scholar] [CrossRef]
- Adams, A. Effect of exercise upon ligament strength. Res. Q. 1966, 37, 163–167. [Google Scholar] [CrossRef]
- Rasch, P.J.; Maniscalco, R.; Pierson, W.R.; Logan, G.A. Effect of exercise, immobilization and intermittent stretching on strength of knee ligaments of albino rats. J. Appl. Physiol. 1960, 15, 289–290. [Google Scholar] [CrossRef]
- Tipton, C.M.; Matthes, R.D.; Maynard, J.A.; Carey, R.A. The influence of physical activity on ligaments and tendons. Med. Sci. Sports 1975, 7, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Viidik, A. Elasticity and tensile strength of the anterior cruciate ligament in rabbits as influenced by training. Acta Physiol. Scand. 1968, 74, 372–380. [Google Scholar] [CrossRef]
- Zuckerman, J.; Stull, G.A. Effects of exercise on knee ligament separation force in rats. J. Appl. Physiol. 1969, 26, 716–719. [Google Scholar] [CrossRef]
- Burke Evans, E.; Eggers, G.W.N.; Butler, J.K.; Blumel, J. Experimental Immobilization and Remobilization of Rat Knee Joints. J. Bone Jt. Surg. Am. 1960, 42, 737–758. [Google Scholar] [CrossRef]
- Noyes, F.R. Functional properties of knee ligaments and alterations induced by immobilization: A correlative biomechanical and histological study in primates. Clin. Orthop. Relat. Res. 1977, 123, 210–242. [Google Scholar] [CrossRef]
- Noyes, F.R.; Torvik, P.J.; Hyde, W.B.; DeLucas, J.L. Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates. J. Bone Jt. Surg. Am. 1974, 56, 1406–1418. [Google Scholar] [CrossRef]
- Kobilo, T.; Liu, Q.R.; Gandhi, K.; Mughal, M.; Shaham, Y.; van Praag, H. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 2011, 18, 605–609. [Google Scholar] [CrossRef]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Paxton, J.Z.; Hagerty, P.; Andrick, J.J.; Baar, K. Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments. Tissue Eng. Part A 2012, 18, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Terashima, T.; Yamashita, T.; Hatanaka, Y.; Honda, A.; Umemura, Y. Effect of low-repetition jump training on bone mineral density in young women. J. Appl. Physiol. 2006, 100, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Ushida, T.; Tateishi, T.; Shimojo, H.; Miyanaga, Y. Effects of different exposures of hyperbaric oxygen on ligament healing in rats. J. Orthop. Res. 2002, 20, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Ushida, T.; Shirasaki, Y.; Shimojo, H.; Miyanaga, Y.; Tateishi, T. Dynamic viscoelasticity of the healing ligament treated by in vivo intermittent oxygen exposure in rats. Mater. Sci. Eng. C 2001, 17, 71–73. [Google Scholar] [CrossRef]
- Valeriani, M.; Restuccia, D.; Di Lazzaro, V.; Franceschi, F.; Fabbriciani, C.; Tonali, P. Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol. Scand. 1999, 99, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Kapreli, E.; Athanasopoulos, S.; Gliatis, J.; Papathanasiou, M.; Peeters, R.; Strimpakos, N.; Van Hecke, P.; Gouliamos, A.; Sunaert, S. Anterior cruciate ligament deficiency causes brain plasticity: A functional MRI study. Am. J. Sports Med. 2009, 37, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.R.; Bade, N.D.; Riggin, C.N.; Zhang, S.; Haines, P.G.; Ong, K.L.; Janmey, P.A. The (dys)functional extracellular matrix. Biochim. Biophys. Acta 2015, 1853, 3153–3164. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.; Kogawa, D.; Tokura, S.; Hayashi, K. Effects of the frequency and duration of cyclic stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon. J. Biomech. Eng. 2005, 127, 1168–1175. [Google Scholar] [CrossRef]
- Mengsteab, P.Y.; Otsuka, T.; McClinton, A.; Shemshaki, N.S.; Shah, S.; Kan, H.M.; Obopilwe, E.; Vella, A.T.; Nair, L.S.; Laurencin, C.T. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc. Natl. Acad. Sci. USA 2020, 117, 28655–28666. [Google Scholar] [CrossRef]
- Hu, P.F.; Bao, J.P.; Wu, L.D. The emerging role of adipokines in osteoarthritis: A narrative review. Mol. Biol. Rep. 2011, 38, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Alcock, R.D.; Shaw, G.C.; Tee, N.; Burke, L.M. Plasma Amino Acid Concentrations after the Ingestion of Dairy and Collagen Proteins, in Healthy Active Males. Front. Nutr. 2019, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Nordin, C. Do Dietary Factors Influence Tendon Metabolism? Adv. Exp. Med. Biol. 2016, 920, 283–289. [Google Scholar] [PubMed]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Serpell, B.; Baar, K. Rehabilitation and nutrition protocols for optimising return to play from traditional ACL reconstruction in elite rugby union players: A case study. J. Sports Sci. 2019, 37, 1794–1803. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.E.; Nuite, M.; Krishnan, N.; Ruthazer, R.; Price, L.L.; Burstein, D.; Griffith, J.; Flechsenhar, K. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: A pilot randomized controlled trial. Osteoarthr. Cartil. 2011, 19, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, P.; Lee, A.; Calve, S.; Lee, C.A.; Vidal, M.; Baar, K. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 2012, 33, 6355–6361. [Google Scholar] [CrossRef] [PubMed]
- DePhillipo, N.N.; Aman, Z.S.; Kennedy, M.I.; Begley, J.P.; Moatshe, G.; LaPrade, R.F. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress after Musculoskeletal Injuries: A Systematic Review. Orthop. J. Sports Med. 2018, 6, 2325967118804544. [Google Scholar] [CrossRef] [PubMed]
- Jänig, W.; Green, P.G. Acute inflammation in the joint: Its control by the sympathetic nervous system and by neuroendocrine systems. Auton. Neurosci. 2014, 182, 42–54. [Google Scholar] [CrossRef]
- Jänig, W. Sympathetic nervous system and inflammation: A conceptual view. Auton. Neurosci. 2014, 182, 4–14. [Google Scholar] [CrossRef]
- Graham, J.M.; Janssen, S.A.; Vos, H.; Miedema, H.M. Habitual traffic noise at home reduces cardiac parasympathetic tone during sleep. Int. J. Psychophysiol. 2009, 72, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.; Henderson, R.; Lai, S.; Hart, M.; Booth, S.; Hunyor, S. Cardiovascular and autoimmune response to environmental noise during sleep in night shift workers. Sleep 2002, 25, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W.; Thornton, C.; Doré, C. Heart rate and sleep latency in young men. J. Psychosom. Res. 1976, 20, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L.; Shaw, G.; Versey, N.; Miller, D.J.; Sargent, C.; Roach, G.D.; Nyman, L.; Carter, J.M.; Baar, K. Optimisation and Validation of a Nutritional Intervention to Enhance Sleep Quality and Quantity. Nutrients 2020, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Nose, Y.; Fujinaga, R.; Suzuki, M.; Hayashi, I.; Moritani, T.; Kotani, K.; Nagai, N. Association of evening smartphone use with cardiac autonomic nervous activity after awakening in adolescents living in high school dormitories. Child. Nerv. Syst. 2017, 33, 653–658. [Google Scholar] [CrossRef]
- Weiss, M.; Unterhauser, F.N.; Weiler, A. Crimp frequency is strongly correlated to myofibroblast density in the human anterior cruciate ligament and its autologous tendon grafts. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.M.; Spector, M. Fibroblast distribution in the anteromedial bundle of the human anterior cruciate ligament: The presence of alpha-smooth muscle actin-positive cells. J. Orthop. Res. 1999, 17, 18–27. [Google Scholar] [CrossRef]
- Zhao, L.; Thambyah, A.; Broom, N.D. A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J. Anat. 2014, 224, 624–633. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, P.V.S.; Ackland, D.C.; Broom, N.D.; Thambyah, A. Microstructure Variations in the Soft-Hard Tissue Junction of the Human Anterior Cruciate Ligament. Anat. Rec. 2017, 300, 1547–1559. [Google Scholar] [CrossRef]
- Nyland, J.; Huffstutler, A.; Faridi, J.; Sachdeva, S.; Nyland, M.; Caborn, D. Cruciate ligament healing and injury prevention in the age of regenerative medicine and technostress: Homeostasis revisited. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 777–789. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyland, J.; Sirignano, M.N.; Richards, J.; Krupp, R.J. Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. J. Funct. Morphol. Kinesiol. 2024, 9, 80. https://doi.org/10.3390/jfmk9020080
Nyland J, Sirignano MN, Richards J, Krupp RJ. Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. Journal of Functional Morphology and Kinesiology. 2024; 9(2):80. https://doi.org/10.3390/jfmk9020080
Chicago/Turabian StyleNyland, John, Michael N. Sirignano, Jarod Richards, and Ryan J. Krupp. 2024. "Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science" Journal of Functional Morphology and Kinesiology 9, no. 2: 80. https://doi.org/10.3390/jfmk9020080
APA StyleNyland, J., Sirignano, M. N., Richards, J., & Krupp, R. J. (2024). Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. Journal of Functional Morphology and Kinesiology, 9(2), 80. https://doi.org/10.3390/jfmk9020080