Blood Flow Restriction during Walking Does Not Impact Body Composition or Performance Measures in Highly Trained Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Procedures
2.3.1. Body Composition Assessment
2.3.2. Sprint Test
2.3.3. Graded Exercise Test and Indirect Calorimetry
2.3.4. Walking Training and Blood Flow Restriction
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Body Composition
3.3. Anaerobic Performance
3.4. Aerobic Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sato, Y. The History and Future of KAATSU Training. Int. J. KAATSU Train. Res. 2005, 1, 1–5. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Karabulut, M.; Bemben, M.G. The Evolution of Blood Flow Restricted Exercise. Front. Physiol. 2021, 12, 747759. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Abe, T.; Kearns, C.F.; Fukunaga, T. Sex Differences in Whole Body Skeletal Muscle Mass Measured by Magnetic Resonance Imaging and Its Distribution in Young Japanese Adults. Br. J. Sports Med. 2003, 37, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sports Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Vopat, B.G.; Vopat, L.M.; Bechtold, M.M.; Hodge, K.A. Blood Flow Restriction Therapy: Where We Are and Where We Are Going. J. Am. Acad. Orthop. Surg. 2020, 28, e493–e500. [Google Scholar] [CrossRef] [PubMed]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J. Exercise and Blood Flow Restriction. J. Strength Cond. Res. 2013, 27, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Renzi, C.P.; Tanaka, H.; Sugawara, J. Effects of Leg Blood Flow Restriction during Walking on Cardiovascular Function. Med. Sci. Sports Exerc. 2010, 42, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Sakamaki, M.; Fujita, S.; Ozaki, H.; Sugaya, M.; Sato, Y.; Nakajima, T. Effects of Low-Intensity Walk Training with Restricted Leg Blood Flow on Muscle Strength and Aerobic Capacity in Older Adults. J. Geriatr. Physica. Ther. 2010, 33, 34–40. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Wilson, J.M.; Marín, P.J.; Zourdos, M.C.; Bemben, M.G. Low Intensity Blood Flow Restriction Training: A Meta-Analysis. Eur. J. Appl. Physiol. 2012, 112, 1849–1859. [Google Scholar] [CrossRef]
- Downs, M.E.; Hackney, K.J.; Martin, D.; Caine, T.L.; Cunningham, D.; O’Connor, D.P.; Ploutz-Snyder, L.L. Acute Vascular and Cardiovascular Responses to Blood Flow-Restricted Exercise. Med. Sci. Sports Exerc. 2014, 46, 1489–1497. [Google Scholar] [CrossRef]
- Conceição, M.S.; Junior, E.M.M.; Telles, G.D.; Libardi, C.A.; Castro, A.; Andrade, A.L.L.; Brum, P.C.; Urias, Ú.; Kurauti, M.A.; Júnior, J.M.C.; et al. Augmented Anabolic Responses after 8-Wk Cycling with Blood Flow Restriction. Med. Sci. Sports Exerc. 2019, 51, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Tangchaisuriya, P.; Chuensiri, N.; Tanaka, H.; Suksom, D. Physiological Adaptations to High-Intensity Interval Training Combined with Blood Flow Restriction in Masters Road Cyclists. Med. Sci. Sports Exerc. 2022, 54, 830–840. [Google Scholar] [CrossRef]
- Picón, M.M.; Chulvi, I.M.; Cortell, J.-M.T.; Tortosa, J.; Alkhadar, Y.; Sanchís, J.; Laurentino, G. Acute Cardiovascular Responses after a Single Bout of Blood Flow Restriction Training. Int. J. Exerc. Sci. 2018, 11, 20–31. [Google Scholar] [PubMed]
- Lemos, L.K.; Toledo Teixeira Filho, C.A.; Biral, T.M.; De Souza Cavina, A.P.; Junior, E.P.; Oliveira Damasceno, S.D.; Vanderlei, F.M. Acute Effects of Resistance Exercise with Blood Flow Restriction on Cardiovascular Response: A Meta-Analysis. J. Comp. Eff. Res. 2022, 11, 829–842. [Google Scholar] [CrossRef]
- Yan, Z.; Aicui, L.; Andong, C.; Beibei, L. Effect of Cardiovascular Function to Resistance Exercise Training with Blood Flow Restriction. Ann. Phys. Rehabil. Med. 2018, 61, e275. [Google Scholar] [CrossRef]
- Paton, C.D.; Addis, S.M.; Taylor, L.-A. The Effects of Muscle Blood Flow Restriction during Running Training on Measures of Aerobic Capacity and Run Time to Exhaustion. Eur. J. Appl. Physiol. 2017, 117, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.G.; Domingos-Gomes, J.R.; Freitas, E.D.S.; Neto, G.R.; Aniceto, R.R.; Bemben, M.G.; Lima-Dos-Santos, A.; Cirilo-Sousa, M.S. Physiological and Perceptual Responses to Aerobic Exercise with and Without Blood Flow Restriction. J. Strength Cond. Res. 2021, 35, 2479–2485. [Google Scholar] [CrossRef]
- Mendonca, G.V.; Vaz, J.R.; Teixeira, M.S.; Grácio, T.; Pezarat-Correia, P. Metabolic Cost of Locomotion during Treadmill Walking with Blood Flow Restriction. Clin. Physiol. Funct. Imaging 2014, 34, 308–316. [Google Scholar] [CrossRef]
- Takano, H.; Morita, T.; Iida, H.; Asada, K.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A.; Takenaka, K.; Hirata, Y.; et al. Hemodynamic and Hormonal Responses to a Short-Term Low-Intensity Resistance Exercise with the Reduction of Muscle Blood Flow. Eur. J. Appl. Physiol. 2005, 95, 65–73. [Google Scholar] [CrossRef]
- Mattocks, K.T.; Jessee, M.B.; Mouser, J.G.; Dankel, S.J.; Buckner, S.L.; Bell, Z.W.; Owens, J.G.; Abe, T.; Loenneke, J.P. The Application of Blood Flow Restriction: Lessons from the Laboratory. Curr. Sports Med. Rep. 2018, 17, 129–134. [Google Scholar] [CrossRef]
- Ozaki, H.; Sakamaki, M.; Yasuda, T.; Fujita, S.; Ogasawara, R.; Sugaya, M.; Nakajima, T.; Abe, T. Increases in Thigh Muscle Volume and Strength by Walk Training with Leg Blood Flow Reduction in Older Participants. J. Gerontol. A. Biol. Sci. Med. Sci. 2011, 66, 257–263. [Google Scholar] [CrossRef]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle Size and Strength Are Increased Following Walk Training with Restricted Venous Blood Flow from the Leg Muscle, Kaatsu-Walk Training. J. Appl. Physiol. 2006, 100, 1460–1466. [Google Scholar] [CrossRef]
- Hollander, K.; Baumann, A.; Zech, A.; Verhagen, E. Prospective Monitoring of Health Problems among Recreational Runners Preparing for a Half Marathon. BMJ Open Sport Exerc. Med. 2018, 4, e000308. [Google Scholar] [CrossRef]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) Scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Solberg, G.; Robstad, B.; Skjønsberg, O.H.; Borchsenius, F. Respiratory Gas Exchange Indices for Estimating the Anaerobic Threshold. J. Sports Sci. Med. 2005, 4, 29–36. [Google Scholar] [PubMed]
- Loenneke, J.; Fahs, C.A.; Rossow, L.M.; Abe, T.; Bemben, M.G. The Anabolic Benefits of Venous Blood Flow Restriction Training May Be Induced by Muscle Cell Swelling. Med. Hypotheses 2012, 78, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of RPE (Rating of Perceived Exertion) Scales for Session RPE. Int. J. Sports Physiol. Perform. 2019, 14, 994–996. [Google Scholar] [CrossRef] [PubMed]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; ISBN 978-1-4698-2666-0. [Google Scholar]
- Park, S.; Kim, J.K.; Choi, H.M.; Kim, H.G.; Beekley, M.D.; Nho, H. Increase in Maximal Oxygen Uptake Following 2-Week Walk Training with Blood Flow Occlusion in Athletes. Eur. J. Appl. Physiol. 2010, 109, 591–600. [Google Scholar] [CrossRef]
- Held, S.; Behringer, M.; Donath, L. Low Intensity Rowing with Blood Flow Restriction over 5 Weeks Increases VO2max in Elite Rowers: A Randomized Controlled Trial. J. Sci. Med. Sport 2020, 23, 304–308. [Google Scholar] [CrossRef]
BFRINT | BFR10 | CON10 | |||||||
---|---|---|---|---|---|---|---|---|---|
n = 11; F = 6 | n = 11; F = 5 | n = 11; F = 2 | |||||||
Mean | SD | Mean | SD | Mean | SD | ||||
General Descriptives | Age (yrs) | 30.73 | 11.17 | 33.55 | 10.27 | 33.82 | 11.17 | ||
Height (cm) | 174.57 | 13.12 | 169.76 | 8.60 | 178.57 | 8.98 | |||
Total Body Mass (kg) | PRE | 71.04 | 14.89 | 69.61 | 14.94 | 80.46 | 13.72 | ||
POST | 71.09 | 13.96 | 69.17 | 15.19 | 80.90 | 14.39 | |||
BMI (kg/m2) | PRE | 23.04 | 2.24 | 23.84 | 2.86 | 25.17 | 3.20 | ||
POST | 23.07 | 1.99 | 23.76 | 2.94 | 25.29 | 3.35 | |||
Body Composition | Lean Body Mass (kg) | PRE | 57.65 | 12.26 | 56.18 | 14.70 | 62.83 | 11.57 | |
POST | 57.44 | 11.66 | 55.62 | 14.19 | 63.66 | 12.64 | |||
Skeletal Muscle Mass (kg) | PRE | 32.43 | 7.45 | 31.58 | 8.79 | 35.62 | 7.13 | ||
POST | 32.34 | 7.16 | 31.34 | 8.60 | 36.08 | 7.77 | |||
Body Fat (%) | PRE | 18.66 | 7.80 | 20.62 | 7.01 | 21.76 | 8.10 | ||
POST | 19.09 | 7.23 | 20.42 | 7.62 | 21.31 | 7.85 | |||
Fat Mass (kg) | PRE | 13.39 | 6.86 | 13.43 | 4.59 | 17.63 | 7.09 | ||
POST | 13.64 | 6.37 | 13.56 | 5.30 | 17.23 | 6.53 | |||
Leg Lean Mass (kg) | PRE | 18.24 | 4.44 | 16.71 | 3.90 | 19.34 | 3.36 | ||
POST | 18.17 | 4.20 | 16.59 | 3.83 | 19.56 | 3.39 | |||
Skeletal Muscle Index (kg/m2) | PRE | 7.87 | 0.93 | 7.75 | 1.23 | 8.20 | 0.92 | ||
POST | 7.84 | 0.83 | 7.72 | 1.19 | 8.28 | 1.01 | |||
Anaerobic Performance | Sprint Speed (m/s) | PRE | 5.77 | 0.72 | 5.62 | 0.59 | 5.55 | 0.86 | |
POST | 5.71 | 0.79 | 5.55 | 0.51 | 5.56 | 0.90 | |||
40-yard Dash Time (s) | PRE | 14.38 | 1.83 | 14.71 | 1.61 | 15.07 | 2.26 | ||
POST | 14.59 | 2.06 | 14.86 | 1.42 | 15.01 | 2.16 | |||
Aerobic Performance | Absolute VO2 (L/min) | PRE | 3.32 | 0.70 | 3.42 | 1.22 | 3.78 | 0.76 | |
POST | 3.33 | 0.71 | 3.49 | 1.21 | 3.87 | 0.69 | |||
Relative VO2 (mL/kg/min) | PRE | 47.05 | 6.75 | 48.13 | 9.22 | 47.16 | 8.16 | ||
POST | 47.17 | 7.32 | 49.42 | 10.05 | 48.19 | 7.13 | |||
Time to Exhaustion (s) | PRE | 310.82 | 78.09 | 311.82 | 67.33 | 310.36 | 89.85 | ||
POST | 310.18 | 78.27 | 327.91 | 69.14 | 334.00 | 93.59 | |||
V-Slope Threshold (%) | PRE | 70.91 | 9.53 | 65.91 | 10.06 | 72.18 | 3.03 | ||
POST | 74.55 | 10.75 | 65.91 | 14.92 | 73.18 | 7.81 | |||
VO2 at VT (L/min) | PRE | 2.37 | 0.56 | 2.33 | 0.94 | 2.76 | 0.50 | ||
POST | 2.57 * | 0.66 | 2.53 * | 0.93 | 2.91 * | 0.46 | |||
VO2MAX Test Terminal Effort | Speed (mph) | Pre & Post | 6.53 | 1.30 | 6.67 | 0.81 | 6.61 | 0.84 | |
Incline (%) | PRE | 10.72 | 2.72 | 10.82 | 2.40 | 10.54 | 3.24 | ||
POST | 11.27 * | 2.72 | 12.27 * | 2.53 | 11.27 * | 3.13 | |||
Heart Rate (bpm) | PRE | 187.36 | 8.16 | 180.45 | 10.88 | 184.36 | 10.62 | ||
POST | 186.09 | 7.83 | 182.73 | 9.96 | 185.27 | 9.06 | |||
Rating of Perceived Exertion | PRE | 19.0 | 1.10 | 18.81 | 1.17 | 19.55 | 0.69 | ||
POST | 19.0 | 1.18 | 19.64 | 0.67 | 19.0 | 1.18 | |||
Respiratory Exchange Ratio | PRE | 1.11 | 0.07 | 1.09 | 0.07 | 1.11 | 0.05 | ||
POST | 1.13 * | 0.08 | 1.13 * | 0.06 | 1.13 * | 0.04 | |||
Training Session RPE | (Range) | 5.0 ± 1.0 | (4–6) | 4.0 ± 2.3 | (4–6) | 2.0 ± 1.2 | (1–4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herda, A.A.; Cleary, C.J.; Young, D.; Rogers, K.B.; Umana Segura, S.E.; Bernard, C.; Vopat, L.M.; Vopat, B.G. Blood Flow Restriction during Walking Does Not Impact Body Composition or Performance Measures in Highly Trained Runners. J. Funct. Morphol. Kinesiol. 2024, 9, 74. https://doi.org/10.3390/jfmk9020074
Herda AA, Cleary CJ, Young D, Rogers KB, Umana Segura SE, Bernard C, Vopat LM, Vopat BG. Blood Flow Restriction during Walking Does Not Impact Body Composition or Performance Measures in Highly Trained Runners. Journal of Functional Morphology and Kinesiology. 2024; 9(2):74. https://doi.org/10.3390/jfmk9020074
Chicago/Turabian StyleHerda, Ashley A., Christopher J. Cleary, Dana Young, KathleenMae B. Rogers, Santiago E. Umana Segura, Christopher Bernard, Lisa M. Vopat, and Bryan G. Vopat. 2024. "Blood Flow Restriction during Walking Does Not Impact Body Composition or Performance Measures in Highly Trained Runners" Journal of Functional Morphology and Kinesiology 9, no. 2: 74. https://doi.org/10.3390/jfmk9020074
APA StyleHerda, A. A., Cleary, C. J., Young, D., Rogers, K. B., Umana Segura, S. E., Bernard, C., Vopat, L. M., & Vopat, B. G. (2024). Blood Flow Restriction during Walking Does Not Impact Body Composition or Performance Measures in Highly Trained Runners. Journal of Functional Morphology and Kinesiology, 9(2), 74. https://doi.org/10.3390/jfmk9020074