Psychophysiological Effects of Slow-Paced Breathing on Adolescent Swimmers’ Subjective Performance, Recovery States, and Control Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Materials
2.2.1. Biopsychosocial Recovery–Stress States
2.2.2. Cognitive Appraisals—Perceived Stress and Control
2.2.3. Training Load and Performance
2.2.4. Heart Rate Variability and Heart Rate Recovery
- Sub-maximal heart rate exercise (HRex): mean HR over the last minute of the submaximal running test.
- Heart Rate Recovery: absolute and normalized HR recovery during the first 60 s of recovery (HRR60 and nHRR60) of the cessation of the submaximal running test. nHRR60 was obtained by calculating [(HRex-HR60)/HRex].
- Frequency Domain
- ○
- LFnu and HFnu: the power of the low frequency (LF) and high frequency (HF)
- ○
- LF/HF ratio: we calculated the low (LF; 0.04–0.15 Hz) to high (HF; 0.15–0.40 Hz) frequency ratio (LF/HF). This ratio is understood within the context of autonomic balance, recognizing that both sympathetic and parasympathetic activities can simultaneously influence LF power. A low LF/HF ratio often suggests greater parasympathetic activity, while a high ratio may indicate sympathetic dominance or parasympathetic withdrawal [18].
- Time Domain
- ○
- RMSSD: It is the root mean square of successive RR interval differences. The RMSSD reflects the beat-to-beat variance in HR and is the primary time domain measure used to estimate the vagally mediated changes reflected in HRV. By capturing PNS modulation, RMSSD reflects both training- and non-training-related stress and can be indicative of positive or maladaptive responses to training demand. RMSSD is also a relevant measure because it is poorly affected by respiration at rest [45]. We chose to use RMSSD because it predominantly captures vagal activity and consistently demonstrates as much reliability as other spectral measures [46].
- ○
- MeanRR: The meanRR Interval is the average R-R interval duration in a measurement.
2.3. Experimental Design
2.4. Statistical Procedure
3. Results
Growth Curve Models Interaction with Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 30 September 2023).
- Heaven, P. Adolescent Health: The Role of Individual Differences, 1st ed.; Routledge: London, UK, 1996; p. 22. ISBN 9780415115780. [Google Scholar]
- Murray, K.M.; Byrne, D.G.; Rieger, E. Investigating Adolescent Stress and Body Image. J. Adolesc. 2011, 34, 269–278. [Google Scholar] [CrossRef]
- Sorkkila, M.; Ryba, T.V.; Selänne, H.; Aunola, K. Development of School and Sport Burnout in Adolescent Student-Athletes: A Longitudinal Mixed-Methods Study. J. Res. Adolesc. 2020, 30, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.L. The Need for a New Medical Model: A Challenge for Biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef]
- Kellmann, M.; Kallus, K. The Recovery-Stress Questionnaire for Athletes: User Manual; Human Kinetics: Champaign, IL, USA, 2001; ISBN 397 9780736037761. [Google Scholar]
- Kellmann, M. Preventing Overtraining in Athletes in High-Intensity Sports and Stress/Recovery Monitoring: Preventing Overtraining. Scand. J. Med. Sci. Sports 2010, 20, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.; Foster, C.; Gastmann, U.; Keizer, H.; Steinacker, J.M. Definition, Types, Symptoms, Findings, Underlying Mechanisms, and Frequency of Overtraining and Overtraining Syndrome. In Overload, Performance Incompetence, and Regeneration in Sport; Lehmann, M., Foster, C., Gastmann, U., Keizer, H., Steinacker, J.M., Eds.; Springer: Boston, MA, USA, 1999; pp. 1–6. ISBN 978-0-585-34048-7. [Google Scholar]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Balk, Y.A.; Englert, C. Recovery Self-Regulation in Sport: Theory, Research, and Practice. Int. J. Sports Sci. Coach. 2020, 15, 273–281. [Google Scholar] [CrossRef]
- Heidari, J.; Beckmann, J.; Bertollo, M.; Brink, M.; Kallus, K.W.; Robazza, C.; Kellmann, M. Multidimensional Monitoring of Recovery Status and Implications for Performance. Int. J. Sports Physiol. Perform. 2018, 14, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Arminjon, M. Allostasie: Physiologie, cérébralité et normativité sociale. Bull. D’histoire D’épistémologie Des Sci. De La Vie 2014, 21, 87. [Google Scholar] [CrossRef]
- Sterling, P.; Eyer, J. Allostasis: A New Paradigm to Explain Arousal Pathology. In Handbook of Life Stress, Cognition and Health; Wiley: Chichester, UK, 1988; pp. 629–639. ISBN 0471912697. [Google Scholar]
- McEwen, B.S. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Lazarus, R.S. Stress and Emotion: A New Synthesis; Springer: New York, NY, USA, 1999. [Google Scholar]
- Wallston, K.A.; Wallston, B.S.; Smith, S.; Dobbins, C.J. Perceived Control and Health. Curr. Psychol. 1987, 6, 5–25. [Google Scholar] [CrossRef]
- Silvani, A.; Calandra-Buonaura, G.; Dampney, R.A.L.; Cortelli, P. Brain–Heart Interactions: Physiology and Clinical Implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150181. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and HR Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. HR Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. HR Variability (HRV): From Brain Death to Resonance Breathing at 6 Breaths per Minute. Clin. Neurophysiol. 2020, 131, 676–693. [Google Scholar] [CrossRef] [PubMed]
- McCraty, R. Coherence: Bridging Personal, Social and Global Health. Act. Nerv. Super. Rediviva 2011, 53, 85–102. [Google Scholar]
- McCraty, R. Following the Rhythm of the Heart: HeartMath Institute’s Path to HRV Biofeedback. Appl. Psychophysiol.Biofeedback 2022, 47, 305–316. [Google Scholar] [CrossRef]
- Cameron, O.G.; Hamilton, W.D.; Abrams, J.; Hunninghake, D.; Knopp, R.; RPSGB; Beaney, A.M.; Jenkins; Shannon, M.T.; Wilson, B.A.; et al. Visceral Sensory Neuroscience: Interoception; Illustrated, Ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2001; ISBN 978-0-19-513601-2. [Google Scholar]
- McCraty, R.; Mike, A.; Tomasino, D.; Bradley, R. The Coherent Heart Heart–Brain Interactions, Psychophysiological Coherence, and the Emergence of System-Wide Order; Institute of HeartMath: Boulder Creek, CA, USA, 2009; p. 24. [Google Scholar]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The Physiological Effects of Slow Breathing in the Healthy Human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef]
- Laborde, S.; Allen, M.; Borges, U.; Iskra, M.; Zammit, N.; You, M.; Hosang, T.; Mosley, E.; Dosseville, F. Psychophysiological Effects of Slow-Paced Breathing at 6 Cycles per Minute with or without HR Variability Biofeedback. Psychophysiology 2021, 59, e13952. [Google Scholar] [CrossRef]
- Borges, U.; Lobinger, B.; Javelle, F.; Watson, M.; Mosley, E.; Laborde, S. Using Slow-Paced Breathing to Foster Endurance, Well-Being, and Sleep Quality in Athletes During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 624655. [Google Scholar] [CrossRef]
- Migliaccio, G.M.; Russo, L.; Maric, M.; Padulo, J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports 2023, 11, 103. [Google Scholar] [CrossRef]
- Perez-Gaido, M.; Lalanza, J.F.; Parrado, E.; Capdevila, L. Can HRV Biofeedback Improve Short-Term Effort Recovery? Implications for Intermittent Load Sports. Appl. Psychophysiol. Biofeedback 2021, 46, 215–226. [Google Scholar] [CrossRef]
- Brown, D.J.; Fletcher, D.; Henry, I.; Borrie, A.; Emmett, J.; Buzza, A.; Wombwell, S. A British University Case Study of the Transitional Experiences of Student-Athletes. Psychol. Sport Exerc. 2015, 21, 78–90. [Google Scholar] [CrossRef]
- Mosher, A.; Till, K.; Fraser-Thomas, J.; Baker, J. Revisiting Early Sport Specialization: What’s the Problem? Sports Health 2022, 14, 13–19. [Google Scholar] [CrossRef]
- Swann, C.; Moran, A.; Piggott, D. Defining Elite Athletes: Issues in the Study of Expert Performance in Sport Psychology. Psychol. Sport Exerc. 2015, 16, 3–14. [Google Scholar] [CrossRef]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Snijders, T.; Roel, J.; Bosker, R. Standard Errors and Sample Sizes for Two-Level Research. J. Educ. Stat. 1993, 18, 237–259. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 978-0-203-77158-7. [Google Scholar]
- Kellmann, M.; Altenburg, D.; Lormes, W.; Steinacker, J.M. Assessing Stress and Recovery during Preparation for the World Championships in Rowing. Sport Psychol. 2001, 15, 151–167. [Google Scholar] [CrossRef]
- Nicolas, M.; Vacher, P.; Martinent, G.; Mourot, L. Monitoring Stress and Recovery States: Structural and External Stages of the Short Version of the RESTQ Sport in Elite Swimmers before Championships. J. Sport Health Sci. 2019, 8, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Pearlin, L.I.; Schooler, C. The Structure of Coping. J. Health Soc. Behav. 1978, 19, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Williamson, G. Perceived Stress in a Probability Sample of the United States. In The Social Psychology of Health; Sage: Newbury Park, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Martinent, G.; Nicolas, M. Athletes’ Affective Profiles Within Competition Situations: A Two-Wave Study. Sport Exerc. Perform. Psychol. 2017, 6, 643–657. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.; Franklin, J.; Gottschall, L.; Hrovatin, L.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Autonomic Control of HR during and after Exercise: Measurements and Implications for Monitoring Training Status. Sports Med. 2008, 38, 633–646. [Google Scholar] [CrossRef]
- Buchheit, M.; Papelier, Y.; Laursen, P.B.; Ahmaidi, S. Noninvasive Assessment of Cardiac Parasympathetic Function: Postexercise HR Recovery or HR Variability? Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H8–H10. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.K.; Siebenbrock, A. Are All Measures Created Equal? HR Variability and Respiration—Biomed 2009. Biomed. Sci. Instrum. 2009, 45, 71–76. [Google Scholar] [PubMed]
- Plews, D.J.; Meur, Y.L.; Hausswirth, C.; Kilding, A.E.; Buchheit, M. Monitoring Training With Heart-Rate Variability: How Much Compliance Is Needed for Valid Assessment? Int. J. Sports Physiol. Perform. 2014, 9, 783–790. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis; Oxford University Press: Oxford, UK, 2003; ISBN 9780195152968.48. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar] [CrossRef]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Sgobba, P.; Zhang, Y. HR Variability Biofeedback Improves Emotional and Physical Health and Performance: A Systematic Review and Meta Analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Vacher, P.; Nicolas, M.; Mourot, L. Recovery and Stress States: Did Perceived Control and Goal Attainment Matters during Tapering Period? Int. J. Sport Psychol. 2019, 50, 469–484. [Google Scholar] [CrossRef]
- Lischke, A.; Pahnke, R.; Mau-Moeller, A.; Weippert, M. Heart Rate Variability Modulates Interoceptive Accuracy. Front. Neurosci. 2020, 14, 612445. [Google Scholar] [CrossRef]
- Crowther, F.; Sealey, R.; Crowe, M.; Edwards, A.; Halson, S. Team Sport Athletes’ Perceptions and Use of Recovery Strategies: A Mixed-Methods Survey Study. BMC Sports Sci. Med. Rehabil. 2017, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Vacher, P.; Merlin, Q.; Levillain, G.; Mourot, L.; Martinent, G.; Nicolas, M. Asynchronous HR Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States. J. Funct. Morphol. Kinesiol. 2023, 8, 14. [Google Scholar] [CrossRef]
- Sévoz-Couche, C.; Laborde, S. Heart Rate Variability and Slow-Paced Breathing:When Coherence Meets Resonance. Neurosci. Biobehav. Rev. 2022, 135, 104576. [Google Scholar] [CrossRef]
- Van Daele, T.; Hermans, D.; Van Audenhove, C.; Van Den Bergh, O. Stress Reduction Through Psychoeducation: A Meta- Analytic Review. Health Educ. Behav. 2012, 39, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Bagger, M.; Petersen, P.H.; Pedersen, P.K. Biological Variation in Variables Associated with Exercise Training. Int. J. Sports Med. 2003, 24, 433–440. [Google Scholar] [CrossRef]
- Farrell, C.; Turgeon, D.R. Normal Versus Chronic Adaptations to Aerobic Exercise. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023; p. 1. [Google Scholar]
- Buchheit, M. Monitoring Training Status with HR Measures: Do All Roads Lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [PubMed]
- Vacher, P.; Nicolas, M.; Mourot, L. Monitoring Training Response with HR Variability in Elite Adolescent Athletes: Is There a Difference between Judoka and Swimmers? Arch. Budo 2016, 12, 35–42. [Google Scholar]
- Laborde, S.; Hosang, T.; Mosley, E.; Dosseville, F. Influence of a 30-Day Slow-Paced Breathing Intervention Compared to Social Media Use on Subjective Sleep Quality and Cardiac Vagal Activity. J. Clin. Med. 2019, 8, 2. [Google Scholar] [CrossRef]
- You, M.; Laborde, S.; Ackermann, S.; Borges, U.; Dosseville, F.; Mosley, E. Influence of Respiratory Frequency of Slow-Paced Breathing on Vagally-Mediated Heart Rate Variability. Appl. Psychophysiol. Biofeedback 2023. [Google Scholar] [CrossRef]
- Michael, R.B.; Garry, M.; Kirsch, I. Suggestion, Cognition, and Behavior. Curr. Dir. Psychol. Sci. 2012, 21, 151–156. [Google Scholar] [CrossRef]
Time 0 | Time 1 | Time 2 | Time 3 | Time 4 | Time 5 | Time 6 | ||
---|---|---|---|---|---|---|---|---|
Group | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | |
sRPE | I | 3440.14 (1146.34) | 3695 (805.76) | 11,474.28 (2668.34) | 7868.57 (1050.38) | 4930.71 (1421.36) | 5365.71 (1072.81) | |
C | 3205.98 (1640.05) | 4541.67 (745.43) | 12,813.33 (1044.08) | 6290 (1694.68) | 5678.33 (629.11) | 5200 (931.63) | ||
KM | I | 24.32 (11.18) | 21.63 (4.13) | 60.6 (0) | 53.11 (8.76) | 37.14 (7.16) | 35.57 (3.70) | |
C | 24.65 (3.16) | 24.66 (3.16) | 64.8 (0) | 55.23 (4.92) | 38.07 (4.78) | 35.85 (4.84) | ||
General stress | I | 3.25 (1.20) | 2.68 (0.95) | 4.86 (1.13) | 4.97 (1.06) | 5.17 (1.01) | 4.94 (1.07) | 5.11 (1.24) |
C | 3.24 (1.56) | 2.43 (1.54) | 3.55 (1.58) | 3.30 (1.57) | 2.87 (1.83) | 3.30 (1.70) | 2.42 (1.18) | |
General recovery | I | 4.14 (0.94) | 4.52 (1.13) | 4.76 (1.13) | 4.97 (1.06) | 5.17 (1.01) | 4.94 (1.07) | 5.11 (1.24) |
C | 4.70 (1.56) | 5.31 (1.07) | 5.26 (1.22) | 4.86 (1.90) | 4.78 (1.54) | 4.87 (1.47) | 5.58 (0.89) | |
Sport-specific stress | I | 3.25 (1.15) | 2.60 (0.71) | 3 (0.98) | 2.69 (1.02) | 2.03 (0.56) | 2.44 (0.88) | 2.32 (0.65) |
C | 3.14 (0.86) | 2.68 (0.84) | 3.35 (1.06) | 3 (1.17) | 2.71 (1.20) | 3.24 (1.18) | 2.58 (0.66) | |
Sport-specific recovery | I | 3.46 (0.72) | 4.68 (0.70) | 4.25 (0.49) | 4.78 (1.94) | 5.11 (0.88) | 5.09 (1.17) | 4.80 (1.05) |
C | 3.89 (1.24) | 4.54 (1.28) | 4.33 (1.29) | 4.46 (1.59) | 4.51 (1.18) | 3.87 (1.25) | 4.71 (1.29) | |
Total stress | I | 3.25 (0.94) | 2.64 (0.62) | 3.17 (1.11) | 2.71 (0.99) | 2.14 (0.68) | 2.58 (0.90) | 2.57 (0.82) |
C | 3.20 (1.03) | 2.55 (1.01) | 3.45 (1.26) | 3.15 (1.28) | 2.79 (1.38) | 3.27 (1.30) | 2.5 (1.06) | |
Total recovery | I | 3.80 (0.62) | 4.60 (0.73) | 4.50 (0.73) | 4.88 (0.98) | 5.14 (0.87) | 5.02 (1.06) | 4.96 (1.12) |
C | 4.29 (1.37) | 4.92 (1.09) | 4.80 (1.10) | 4.66 (1.73) | 4.64 (1.35) | 4.37 (1.32) | 5.14 (1.06) | |
Perceived Control | I | 3.86 (0.77) | 4.38 (0.36) | 4.24 (0.46) | 4.62 (0.83) | 4.90 (0.74) | 4.78 (0.72) | 4.76 (0.96) |
C | 4.17 (0.98) | 5 (0.29) | 4.5 (1.00) | 4.44 (1.07) | 4.8 (0.77) | 4.44 (0.78) | 4.53 (0.77) | |
Perceived Stress | I | 2.42 (1.13) | 2 (0.58) | 2.38 (0.45) | 2.28 (0.78) | 1.57 (0.50) | 1.89 (0.54) | 1.71 (0.62) |
C | 2.22 (1.07) | 1.05 (0.14) | 2.39 (1.14) | 2.17 (1.13) | 1.6 (0.43) | 1.89 (1.09) | 1.4 (0.55) | |
Subjective Training Performance | I | 7.71 (4.57) | 9.14 (2.85) | 9.14 (1.21) | 10.14 (2.03) | 11 (1.41) | 10.83 (2.86) | 11.14 (0.90) |
C | 9.17 (3.37) | 8.67 (3.08) | 8.83 (1.33) | 9.83 (1.33) | 10.4 (1.52) | 8.17 (2.56) | 8.2 (2.28) | |
HRex | I | 160.6 (12.26) | 167.33 (2.52) | 153 (9.56) | 152.8(11.78) | 162 (9.76) | 154 (17.78) | |
C | 158.4 (9.94) | 164 (14.58) | 151.17 (7.14) | 157.6 (7.10) | 159 (5.90) | 159.3 (8.73) | ||
HRR60 | I | 95.8 (27.29) | 84.67 (24.85) | 91.2 (19.97) | 93.6 (13.70) | 109.5 (15.15) | 90.67 (23.10) | |
C | 83.2 (25.4) | 87.8 (25.40) | 84.83 (12.66) | 83.6 (12.46) | 95.83 (21.25) | 88.33 (13.90) | ||
nHRR60 | I | 0.41 (0.13) | 0.49 (0.15) | 0.41 (0.10) | 0.39 (0.05) | 0.32 (0.08) | 0.41 (0.11) | |
C | 0.47 (0.07) | 0.47 (0.12) | 0.44 (0.06) | 0.47 (0.07) | 0.40 (0.11) | 0.45 (0.08) | ||
RMSSD | I | 36.28 (35.09) | 61.20 (33.45) | 63.69 (82.63) | 36.50 (30.87) | 24.43 (20.69) | 34.69 (34.50) | |
C | 42.22 (15.07) | 49.70 (26.80) | 44.05 (22.30) | 45.06 (32.35) | 35.03 (18.88) | 31.87 (14.34) | ||
LFnu | I | 67.17 (17.59) | 63.70 (25.57) | 54.35 (25.59) | 43.65 (20.45) | 65.57 (16.23) | 56.50 (11.45) | |
C | 48.42 (22.80) | 60.66 (17.01) | 37.87 (13.61) | 54.37 (29.99) | 65.94 (12.36) | 53.99 (22.92) | ||
HFnu | I | 32.79 (17.60) | 36.24 (25.50) | 45.48 (25.62) | 56.16 (20.32) | 34.40 (16.21) | 43.46 (11.42) | |
C | 51.52 (22.83) | 39.29 (17.00) | 62.04 (13.60) | 45.55 (29.92) | 33.77 (12.26) | 45.84 (23.01) | ||
LF/HF | I | 2.71 (1.66) | 2.72 (2.14) | 1.68 (1.20) | 1.02 (0.87) | 2.46 (1.64) | 1.46 (0.75) | |
C | 1.20 (0.77) | 2.16 (1.88) | 0.68 (0.38) | 2.72 (3.59) | 2.37 (1.43) | 2.12 (2.56) | ||
MeanRR | I | 705.47 (133.74) | 751.29 (92.69) | 742.63 (143.99) | 744.77 (159.60) | 706.41 (124.71) | 741.26 (125.94) | |
C | 758.32 (61.57) | 779.52 (107.96) | 777.30 (105.17) | 764.85 (105.90) | 725.00 (84.53) | 739.94 (71.70) |
Weeks | Session Goals | Tools | Modality |
---|---|---|---|
Week 1 (Introduction) | Session 1 (60 min) | Group | |
|
| ||
Week 2 (Skill Development) | Session 2 (60 min) | Group | |
|
| ||
Week 3 (Skill Development) | Session 3 (60 min) | Group | |
|
| ||
Week 4–5 (Home Practice) | Training phase: 2 × 10 min per day | Individually | |
| |||
Week 6 (Home Practice) | Learning Phase | Group | |
|
Performance | Stress–Recovery Balance | Cognitive Appraisal | Heart Rate Recovery and Variability | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
STP | GS | SS | TS | GR | SR | TR | PC | PS | HRex | nHRR60 | RMSSD | |
Fixed effects—Estimates (Standard errors) | ||||||||||||
Intercept | 9.34 *** (1.39) | 3.03 *** (0.52) | 3.05 *** (0.43) | 3.04 *** (0.40) | 4.96 *** (0.50) | 4.24 *** (0.39) | 4.60 *** (0.39) | 4.51 *** (0.25) | 2.02 *** (0.34) | 158.52 *** (4.14) | 0.47 *** (0.05) | 51.69 *** (14.54) |
Time | −0.08 (0.23) | 0.02 (0.06) | −0.01 (0.08) | 0.01 (0.06) | 0.02 (0.06) | 0.01 (0.07) | 0.01 (0.06) | 0.01 (0.05) | −0.05 (0.06) | −0.11 (0.79) | −0.01 (0.01) | −2.94 (2.57) |
Group | −1.69 (1.89) | 0.14 (0.70) | 0.16 (0.58) | 0.15 (0.54) | −0.77 (0.68) | −0.45 (0.54) | −0.61 (0.54) | −0.57 (0.34) | 0.47 (0.47) | 4.22 (5.98) | −0.04 (0.07) | −1.46 (20.96) |
Time*Group | 0.64 * (0.31) | −0.11 (0.07) | −0.13 (0.11) | −0.12 (0.09) | 0.14 (0.09) | 0.19 ¥ (0.10) | 0.16 * (0.08) | 0.12 * (0.07) | −0.06 (0.08) | −1.23 (1.14) | −0.01 (0.01) | 0.21 (3.73) |
Random effects—Variance (Standard deviation) | ||||||||||||
σ2 | 3.15 | 0.45 | 0.36 | 0.34 | 0.38 | 0.39 | 0.28 | 0.30 | 0.52 | 55.11 | 0.01 | 617.25 |
τ00subjects | 9.22 | 1.27 | 0.84 | 0.70 | 1.20 | 0.64 | 0.72 | 0.16 | 0.30 | 47.40 | 0.01 | 643.51 |
τ11subjects.time | 0.19 | 0.00 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | 0.22 | 0.00 | 0.57 |
ρ01subjects | −0.97 | 0.99 | −0.65 | −0.16 | −0.25 | −0.07 | 0.01 | 1.00 | −0.90 | 1.00 | −1.00 | −1.00 |
Performance Model | ||||||||||||
Marginal R² | 0.13 | 0.02 | 0.08 | 0.05 | 0.04 | 0.08 | 0.05 | 0.12 | 0.06 | 0.02 | 0.12 | 0.04 |
logLik | −187.58 | −108.31 | −98.81 | −96.99 | −103.37 | −103.00 | −91.45 | −83.11 | 214.1 | −219.03 | 66.149 | −290.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlin, Q.; Vacher, P.; Mourot, L.; Levillain, G.; Martinent, G.; Nicolas, M. Psychophysiological Effects of Slow-Paced Breathing on Adolescent Swimmers’ Subjective Performance, Recovery States, and Control Perception. J. Funct. Morphol. Kinesiol. 2024, 9, 23. https://doi.org/10.3390/jfmk9010023
Merlin Q, Vacher P, Mourot L, Levillain G, Martinent G, Nicolas M. Psychophysiological Effects of Slow-Paced Breathing on Adolescent Swimmers’ Subjective Performance, Recovery States, and Control Perception. Journal of Functional Morphology and Kinesiology. 2024; 9(1):23. https://doi.org/10.3390/jfmk9010023
Chicago/Turabian StyleMerlin, Quentin, Philippe Vacher, Laurent Mourot, Guillaume Levillain, Guillaume Martinent, and Michel Nicolas. 2024. "Psychophysiological Effects of Slow-Paced Breathing on Adolescent Swimmers’ Subjective Performance, Recovery States, and Control Perception" Journal of Functional Morphology and Kinesiology 9, no. 1: 23. https://doi.org/10.3390/jfmk9010023
APA StyleMerlin, Q., Vacher, P., Mourot, L., Levillain, G., Martinent, G., & Nicolas, M. (2024). Psychophysiological Effects of Slow-Paced Breathing on Adolescent Swimmers’ Subjective Performance, Recovery States, and Control Perception. Journal of Functional Morphology and Kinesiology, 9(1), 23. https://doi.org/10.3390/jfmk9010023