Asynchronous Heart Rate Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Materials
2.2.1. Biopsychosocial Recovery-Stress States
2.2.2. Cognitive Appraisals—Perceived Stress and Control
2.3. Experimental Design
2.4. Procedure
Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engel, G.L. The Need for a New Medical Model: A Challenge for Biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Kallus, K. The Recovery-Stress Questionnaire for Athletes: User Manual; Human Kinetics: Champaign, IL, USA, 2001; ISBN 9780736037761. [Google Scholar]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S.; Stellar, E. Stress and the Individual. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Sterling, P.; Eyer, J. Allostasis: A New Paradigm to Explain Arousal Pathology. In Handbook of Life Stress, Cognition and Health; Wiley: Chichester, UK, 1988; pp. 629–639. ISBN 0471912697. [Google Scholar]
- Lazarus, R.S.; Folkman, S. Stress, Coping and Adaptation; Springer Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Wallston, K.A.; Wallston, B.S.; Smith, S.; Dobbins, C.J. Perceived Control and Health. Curr. Psychol. Res. Rev. 1987, 6, 5–25. [Google Scholar] [CrossRef]
- Lane, R.; McRae, K.; Reiman, E.; Chen, K.; Ahern, G.; Thayer, J. Neural Correlates of Heart Rate Variability during Emotion. Neuroimage 2009, 44, 213–222. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A Model of Neurovisceral Integration in Emotion Regulation and Dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Lane, R.D.; Waldstein, S.R.; Critchley, H.D.; Derbyshire, S.W.G.; Drossman, D.A.; Wager, T.D.; Schneiderman, N.; Chesney, M.A.; Jennings, J.R.; Lovallo, W.R.; et al. The Rebirth of Neuroscience in Psychosomatic Medicine, Part II: Clinical Applications and Implications for Research. Psychosom. Med. 2009, 71, 135–151. [Google Scholar] [CrossRef]
- Levy, M.N. Brief Reviews. Circ. Res. 1971, 29, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Billman, G.E. The LF/HF Ratio Does Not Accurately Measure Cardiac Sympatho-Vagal Balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Wulsin, L.; Herman, J.; Thayer, J.F. Stress, Autonomic Imbalance, and the Prediction of Metabolic Risk: A Model and a Proposal for Research. Neurosci. Biobehav. Rev. 2018, 86, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. Heart Rate Variability (HRV): From Brain Death to Resonance Breathing at 6 Breaths per Minute. Clin. Neurophysiol. 2020, 131, 676–693. [Google Scholar] [CrossRef]
- McCraty, R.; Childre, D. Childre Coherence: Bridging Personal, Social, and Global Health. Altern. Ther. Health Med. 2010, 16, 10–24. [Google Scholar] [PubMed]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B. Resonant Frequency Biofeedback Training to Increase Cardiac Variability: Rationale and Manual for Training. Appl. Psychophysiol. Biofeedback 2000, 25, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Vaschillo, E.; Vaschillo, B.; Lehrer, P.M. Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback. Appl. Psychophysiol. Biofeedback 2006, 31, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Gevirtz, R. Heart Rate Variability Biofeedback: How and Why Does It Work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, M.E.; Price, J.L.; Leganes-Fonteneau, M.; Muzumdar, N.; Piersol, K.; Frazier, I.; Buckman, J.F. The Process of Heart Rate Variability, Resonance at 0.1 Hz, and the Three Baroreflex Loops: A Tribute to Evgeny Vaschillo. Appl. Psychophysiol. Biofeedback 2022, 47, 327–340. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.-E.; Eckberg, D.L.; Edelberg, R.; Shih, W.J.; Lin, Y.; Kuusela, T.A.; Tahvanainen, K.U.O.; et al. Heart Rate Variability Biofeedback Increases Baroreflex Gain and Peak Expiratory Flow. Psychosom. Med. 2003, 65, 796–805. [Google Scholar] [CrossRef] [Green Version]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulczewski, M.T.; Rynkiewicz, A. The Effects of Breathing at a Frequency of 0.1 Hz on Affective State, the Cardiovascular System, and Adequacy of Ventilation. Psychophysiology 2018, 55, e13221. [Google Scholar] [CrossRef]
- Laborde, S.; Allen, M.S.; Borges, U.; Dosseville, F.; Hosang, T.J.; Iskra, M.; Mosley, E.; Salvotti, C.; Spolverato, L.; Zammit, N.; et al. Effects of Voluntary Slow Breathing on Heart Rate and Heart Rate Variability: A Systematic Review and a Meta-Analysis. Neurosci. Biobehav. Rev. 2022, 138, 104711. [Google Scholar] [CrossRef]
- Del Pozo, J.M.; Gevirtz, R.N.; Scher, B.; Guarneri, E. Biofeedback Treatment Increases Heart Rate Variability in Patients with Known Coronary Artery Disease. Am. Heart J. 2004, 147, 545. [Google Scholar] [CrossRef] [PubMed]
- McCraty, R.; Tomasino, D. Emotional Stress, Positive Emotions, and Psychophysiological Coherence. In Stress in Health and Disease; Wiley-VCH Verlag GmbH & CO. KGaA: Weinheim, Germany, 2006; pp. 342–365. [Google Scholar]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Sgobba, P.; Zhang, Y. Heart Rate Variability Biofeedback Improves Emotional and Physical Health and Performance: A Systematic Review and Meta Analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Mather, M.; Thayer, J.F. How Heart Rate Variability Affects Emotion Regulation Brain Networks. Curr. Opin. Behav. Sci. 2018, 19, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gaido, M.; Lalanza, J.F.; Parrado, E.; Capdevila, L. Can HRV Biofeedback Improve Short-Term Effort Recovery? Implications for Intermittent Load Sports. Appl. Psychophysiol. Biofeedback 2021, 46, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Rijken, N.H.; Soer, R.; de Maar, E.; Prins, H.; Teeuw, W.B.; Peuscher, J.; Oosterveld, F.G.J. Increasing Performance of Professional Soccer Players and Elite Track and Field Athletes with Peak Performance Training and Biofeedback: A Pilot Study. Appl. Psychophysiol. Biofeedback 2016, 41, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Steward, C.J.; Cullen, T.; Che, K.; Zhou, Y. Presleep Heart-Rate Variability Biofeedback Improves Mood and Sleep Quality in Chinese Winter Olympic Bobsleigh Athletes. Int. J. Sports Physiol. Perform. 2022, 17, 1516–1526. [Google Scholar] [CrossRef]
- Weber, S.; Winkelmann, Z.; Monsma, E.; Arent, S.; Torres-McGehee, T. Effects of a 4-Week Heart Rate Variability Biofeedback Intervention on Psychological and Performance Variables in Student-Athletes: A Pilot Study. J. Sports Med. Allied Health Sci. Off. J. Ohio Athl. Trainers Assoc. 2022, 8, 4. [Google Scholar] [CrossRef]
- Deschodt-Arsac, V.; Lalanne, R.; Spiluttini, B.; Bertin, C.; Arsac, L.M. Effects of Heart Rate Variability Biofeedback Training in Athletes Exposed to Stress of University Examinations. PLoS ONE 2018, 13, e0201388. [Google Scholar] [CrossRef] [Green Version]
- Collette, R.; Kellmann, M.; Ferrauti, A.; Meyer, T.; Pfeiffer, M. Relation between Training Load and Recovery-Stress State in High-Performance Swimming. Front. Physiol. 2018, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Vacher, P.; Nicolas, M.; Martinent, G.; Mourot, L. Changes of Swimmers’ Emotional States during the Preparation of National Championship: Do Recovery-Stress States Matter? Front. Psychol. 2017, 8, 1043. [Google Scholar] [CrossRef] [Green Version]
- Vacher, P.; Martinent, G.; Mourot, L.; Nicolas, M. Elite Swimmers’ Internal Markers Trajectories in Ecological Training Conditions. Scand. J. Med. Sci. Sports 2018, 28, 1866–1877. [Google Scholar] [CrossRef] [PubMed]
- Snijders, T.A.B.; Bosker, R.J. Standard Errors and Sample Sizes for Two-Level Research. J. Educ. Stat. 1993, 18, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, M.; Vacher, P.; Martinent, G.; Mourot, L. Monitoring Stress and Recovery States: Structural and External Stages of the Short Version of the RESTQ Sport in Elite Swimmers before Championships. J. Sport Health Sci. 2019, 8, 77–88. [Google Scholar] [CrossRef]
- Kellmann, M.; Altenburg, D.; Lormes, W.; Steinacker, J. Assessing Stress and Recovery during Preparation for the World Championships in Rowing. Sport Psychol. 2001, 15, 151–167. [Google Scholar] [CrossRef]
- Pearlin, L.I.; Schooler, C. The Structure of Coping. J. Health Soc. Behav. 1978, 19, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Williamson, G. Perceived Stress in a Probability Sample of the United States. In The Social Psychology of Health; Sage: Newbury Park, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Lazarus, R.S. Stress and Emotion: A New Synthesis.; Springer Publishing Company: New York, NY, USA, 1999. [Google Scholar]
- Martinent, G.; Nicolas, M. Athletes’ Affective Profiles within Competition Situations: A Two-Wave Study. Sport Exerc. Perform. Psychol. 2017, 6, 143–157. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis; Oxford University Press: Oxford, UK, 2003; ISBN 9780195152968. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Fletcher, D.; Hanton, S. Sources of Organizational Stress in Elite Sports Performers. Sport Psychol. 2003, 17, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Pagaduan, J.C.; Chen, Y.-S.; Fell, J.W.; Wu, S.S.X. Can Heart Rate Variability Biofeedback Improve Athletic Performance? A Systematic Review. J. Hum. Kinet. 2020, 73, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Eddie, D.; Vaschillo, E.; Vaschillo, B.; Lehrer, P. Heart Rate Variability Biofeedback: Theoretical Basis, Delivery, and Its Potential for the Treatment of Substance Use Disorders. Addict. Res. Theory 2015, 23, 266–272. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Peters, A. Allostatic Load. Physiol. Behav. 2012, 106, 1–4. [Google Scholar] [CrossRef]
- Quadt, L.; Critchley, H.; Nagai, Y. Cognition, Emotion, and the Central Autonomic Network. Auton. Neurosci. 2022, 238, 102948. [Google Scholar] [CrossRef]
- Ali, N.; Pruessner, J.C. The Salivary Alpha Amylase over Cortisol Ratio as a Marker to Assess Dysregulations of the Stress Systems. Physiol. Behav. 2012, 106, 65–72. [Google Scholar] [CrossRef]
- Filaire, E.; Massart, A.; Hua, J.; Scanff, C. Le Dietary Intake, Eating Behaviors, and Diurnal Patterns of Salivary Cortisol and Alpha-Amylase Secretion among Professional Young Adult Female Tennis Players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 233–242. [Google Scholar] [CrossRef]
- Vacher, P.; Filaire, E.; Mourot, L.; Nicolas, M. Stress and Recovery in Sports: Effects on Heart Rate Variability, Cortisol, and Subjective Experience. Int. J. Psychophysiol. 2019, 143, 25–35. [Google Scholar] [CrossRef]
Time 1 | Time 2 | Time 3 | Time 4 | Time 5 | Time 6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | M (SD) | α | M (SD) | α | M (SD) | α | M (SD) | α | M (SD) | α | M (SD) | α | |
sRPE | I | 4782 (1447) | − | 3857 (1277) | − | 3174 (1380) | − | 3684 (1056) | − | 3429 (860) | − | 1708 (895) | − |
C | 4345 (969) | 3316 (1402) | 3410 (1080) | 3426 (1245) | 3306 (1111) | 1809 (732) | |||||||
General stress | I | 2.07 (1.12) | 0.90 | 2.26 (1.09) | 0.89 | 1.87 (0.96) | 0.92 | 2.03 (0.82) | 0.90 | 1.81 (0.82) | 0.92 | 1.60 (0.78) | 0.94 |
C | 2.76 (0.99) | 2.66 (1.17) | 2.63 (0.93) | 2.38 (0.58) | 2.31 (0.86) | 1.84 (0.95) | |||||||
General recovery | I | 3.72 (1.17) | 0.89 | 3.70 (1.33) | 0.93 | 3.58 (1.02) | 0.90 | 3.76 (0.69) | 0.82 | 3.93 (0.65) | 0.87 | 3.87 (0.97) | 0.87 |
C | 2.94 (1.05) | 3.08 (1.08) | 3.15 (1.21) | 3.56 (1.22) | 3.68 (1.13) | 3.41 (1.18) | |||||||
Sport-specific stress | I | 1.74 (0.78) | 0.60 | 1.69 (0.92) | 0.84 | 1.50 (0.70) | 0.90 | 1.77 (0.78) | 0.91 | 1.50 (0.71) | 0.91 | 1.44 (0.75) | 0.92 |
C | 3.05 (1.86) | 2.29 (1.09) | 2.34 (0.77) | 1.94 (0.48) | 1.95 (0.47) | 1.81 (0.76) | |||||||
Sport-specific recovery | I | 3.32 (1.06) | 0.90 | 3.32 (1.06) | 0.90 | 3.45 (1.12) | 0.80 | 3.50 (1.08) | 0.74 | 3.29 (0.90) | 0.79 | 3.51 (3.04) | 0.77 |
C | 2.63 (1.17) | 2.56 (0.95) | 2.72 (1.07) | 3.33 (1.32) | 2.91 (1.42) | 3.04 (1.24) | |||||||
Total stress | I | 1.90 (0.92) | 0.83 | 1.98 (0.95) | 0.92 | 1.69 (0.75) | 0.87 | 1.90 (0.66) | 0.82 | 1.66 (0.64) | 0.82 | 1.52 (0.69) | 0.88 |
C | 2.90 (1.37) | 2.47 (1.02) | 2.49 (0.78) | 2.16 (0.48) | 2.13 (0.63) | 1.83 (0.82) | |||||||
Total recovery | I | 3.52 (1.09) | 0.94 | 3.51 (1.15) | 0.94 | 3.52 (1.02) | 0.88 | 3.63 (0.74) | 0.78 | 3.61 (0.68) | 0.82 | 3.69 (0.92) | 0.80 |
C | 2.79 (1.05) | 2.82 (0.90) | 2.94 (1.00) | 3.44 (1.10) | 3.30 (1.19) | 3.22 (1.14) | |||||||
Perceived Control | I | 4.21 (1.24) | 0.85 | 4.59 (1.17) | 0.91 | 4.59 (1.16) | 0.89 | 4.69 (1.05) | 0.90 | 4.67 (1.02) | 0.88 | 4.53 (0.95) | 0.94 |
C | 4.12 (1.17) | 4.00 (1.06) | 4.11 (1.13) | 4.57 (1.05) | 4.44 (1.37) | 4.61 (1.09) | |||||||
Perceived Stress | I | 2.29 (1.47 | 0.88 | 2.44 (1.31) | 0.89 | 1.90 (1.31) | 0.91 | 1.89 (1.10) | 0.81 | 1.86 (1.09) | 0.82 | 1.56 (0.70) | 0.74 |
C | 2.38 (1.22) | 2.18 (1.31) | 2.42 (1.11) | 2.23 (0.93) | 2.15 (0.78) | 1.70 (0.66) |
Weeks | Session Goals | Tools | Modality |
---|---|---|---|
Week 1 (introduction) | Session 1 (60 min)
|
| Classroom/ Group |
Week 2 (skill development) | Session 2 (60 min)
|
| Classroom/ Group |
Week 3 (skill development) | Session 3 (60 min)
|
| Individual |
Week 4–5 (home practice) | Session 4 and 5 (2 × 10 min per day + 40 min face-to-face):
|
| Individual |
Week 6. (Autonomy) | Session 6 (60 min):
|
| Classroom |
Training Load | Stress-Recovery Balance | Cognitive Appraisals | |||||||
---|---|---|---|---|---|---|---|---|---|
sRPE | GS | SS | TS | GR | SR | TR | PC | P.S. | |
Fixed effects—Estimates (Standard errors) | |||||||||
Intercept | 6919.17 (9579.99) | 6.01 (4.91) | 10.95 (4.80) * | 8.23 (3.87) | 0.27 (5.30) | −3.44 (5.14) | −1.96 (4.55) | −0.89 (6.04) | 10.42 * (6.61) |
sRPE | − | 0.00 (0.00) | −0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 * (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Time [1st degree] | −3538.63 (19,975.33) | −7.04 (0.11) | −15.57 (9.98) | −10.83 (8.04) | 5.52 (10.01) | 12.49 (10.69) | 9.44 (9.46) | 10.56 (12.52) | −16.13 (9.55) |
Time [2nd degree] | 1382.18 (14,608.34) | 5.26 (7.45) | 10.68 (7.29) | 7.68 (5.887) | −3.91 (8.06) | −9.98 (7.82) | −7.17 (6.92) | −8.22 (9.14) | 11.40 (6.98) |
Time [3rd degree] | −301.96 (4835.00) | −1.81 (2.46) | −3.44 (2.41) | −2.55 (1.94) | 1.25 (2.67) | 3.60 (2.59) | 2.48 (2.29) | 2.87 (3.02) | −3.68 (2.31) |
Group | −13,565.79 (130,393.40) | −11.54 (6.72) | −15.96 * (6.57) | −13.09 * (5.28) | 0.77 (7.27) | 6.87 (7.05) | 4.65 (6.22) | 2.45 (8.25) | −16.35 * (6.31) |
Time [1st degree] * Group | 29,061.14 (27,304.04) | 22.81 (14.00) | 30.41 * (13.69) | 25.36 * (11.01) | −0.35 (15.15) | −14.06 (14.70) | −8.72 (12.96) | −6.29 (17.17) | 33.53 * (13.12) |
Time [2nd degree] * Group | −21,117.54 (19,963.30) | −16.53 (10.23) | −21.92 * (10.00) | −18.36 * (8.04) | 0.33 (11.07) | 11.05 (10.75) | 6.66 (9.47) | 5.83 (12.55) | −23.84 * (9.59) |
Time [3rd degree] * Group | 6873.37 (6602.85) | 5.43 (3.38) | 7.23 * (3.31) | 60.67 * (26.60) | −0.16 (3.66) | −3.85 (3.56) | −2.28 (3.13) | −2.24 (4.15) | 7.62 * (3.17) |
Random effects—Variance (Standard deviation) | |||||||||
σ2 | 1,091,471 (1044.74) | 0.28 (0.53) | 0.26 (0.51) | 0.17 (0.41) | 0.33 (0.57) | 0.31 (0.56) | 0.24 (0.49) | 0.42 (0.64) | 0.24 (0.49) |
τ00subjects | 485,676 (696.90) | 0.41 (0.64) | 0.39 (0.63) | 0.23 (0.48) | 0.44 (0.67) | 0.38 (0.61) | 0.85 (0.92) | 0.49 (0.70) | 1.68 (1.29) |
τ11subjects.time | 9763 (98.81) | 0.03 (0.16) | 0.03 (0.16) | 0.02 (0.14) | 0.03 (0.18) | 0.02 (0.01) | 0.00 (0.04) | 0.04 (0.20) | 0.02 (0.15) |
τ11subjects.sRPE | − | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
Performance Model | |||||||||
Marginal R² | 0.412 | 0.315 | 0.42 | 0.14 | 0.19 | 0.28 | 0.31 | 0.13 | 0.20 |
logLik | −1190.0 | −151.83 | −146.85 ** | −123.69 * | 161.60 | −155.16 | 279.82 | −176.39 | −153.93 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacher, P.; Merlin, Q.; Levillain, G.; Mourot, L.; Martinent, G.; Nicolas, M. Asynchronous Heart Rate Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States. J. Funct. Morphol. Kinesiol. 2023, 8, 94. https://doi.org/10.3390/jfmk8030094
Vacher P, Merlin Q, Levillain G, Mourot L, Martinent G, Nicolas M. Asynchronous Heart Rate Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States. Journal of Functional Morphology and Kinesiology. 2023; 8(3):94. https://doi.org/10.3390/jfmk8030094
Chicago/Turabian StyleVacher, Philippe, Quentin Merlin, Guillaume Levillain, Laurent Mourot, Guillaume Martinent, and Michel Nicolas. 2023. "Asynchronous Heart Rate Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States" Journal of Functional Morphology and Kinesiology 8, no. 3: 94. https://doi.org/10.3390/jfmk8030094
APA StyleVacher, P., Merlin, Q., Levillain, G., Mourot, L., Martinent, G., & Nicolas, M. (2023). Asynchronous Heart Rate Variability Biofeedback Protocol Effects on Adolescent Athletes’ Cognitive Appraisals and Recovery-Stress States. Journal of Functional Morphology and Kinesiology, 8(3), 94. https://doi.org/10.3390/jfmk8030094