Countermovement Jump Performance Is Related to Ankle Flexibility and Knee Extensors Torque in Female Adolescent Volleyball Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Participants
2.3. Experimental Procedure
2.3.1. Flexibility Assessment
2.3.2. Warm Up
2.3.3. Vertical Jumps
2.3.4. Isokinetic Evaluation
2.4. Statistical Analysis
3. Results
3.1. Passive Ankle Dorsi Flexion
3.2. Countermovement Jumps
3.2.1. CMJ Height
3.2.2. CMJ Arm Swing Gain
3.2.3. CMJ Biomechanics
3.3. Isokinetic Tests
3.3.1. Isokinetic Torque
3.3.2. Inter-Limb Torque Deficit
3.3.3. Conventional Ratio
3.3.4. Isokinetic Power
3.4. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calleja-Gonzalez, J.; Mielgo-Ayuso, J.; Sanchez-Ureña, B.; Ostojic, S.M.; Terrados, N. Recovery in volleyball. J. Sports Med. Phys. Fit. 2019, 59, 982–993. [Google Scholar] [CrossRef] [PubMed]
- García-de-Alcaraz, A.; Ramírez-Campillo, R.; Rivera-Rodríguez, M.; Romero-Moraleda, B. Analysis of jump load during a volleyball season in terms of player role. J. Sci. Med. Sport 2020, 23, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Berriel, G.P.; Schons, P.; Costa, R.R.; Oses, V.H.S.; Fischer, G.; Pantoja, P.D.; Kruel, L.F.M.; Peyré-Tartaruga, L.A. Correlations between jump performance in block and attack and the performance in official games, squat jumps, and countermovement jumps of professional volleyball players. J. Strength Cond. Res. 2021, 35 (Suppl. S2), S64–S69. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The effect of plyometric training in volleyball players: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef] [Green Version]
- Ziv, G.; Lidor, R. Vertical jump in female and male volleyball players: A review of observational and experimental studies. Scand J. Med. Sci. Sports 2010, 20, 556–567. [Google Scholar] [CrossRef]
- Harman, E. Measurement of human mechanical power. In Physiological Assessment of Human Fitness; Maud, P., Foster, C., Eds.; Human Kinetics: Champaign, IL, USA, 2006; pp. 87–113. [Google Scholar]
- Vaverka, F.; Jandačka, D.; Zahradník, D.; Uchytil, J.; Farana, R.; Supej, M.; Vodičar, J. Effect of an arm swing on countermovement vertical jump performance in elite volleyball players. J. Hum. Kinet. 2016, 53, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Giatsis, G.; Panoutsakopoulos, V.; Kollias, I.A. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players. J. Sports Sci. 2018, 36, 997–1008. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Fusco, A.; Bell, J.W.; von Duvillard, S.P.; Cortis, C.; Wagner, H. Movement characteristics of volleyball spike jump performance in females. J. Sci. Med. Sport 2019, 22, 833–837. [Google Scholar] [CrossRef]
- Nagano, A.; Gerritsen, K.G. Effects of neuromuscular strength training on vertical jumping performance: A computer simulation study. J. Appl. Biomech. 2001, 17, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Kipp, K.; Kim, H. Relative contributions and capacities of lower extremity muscles to accelerate the body’s center of mass during countermovement jumps. Comput. Methods Biomech. Biomed. Engin. 2020, 23, 914–921. [Google Scholar] [CrossRef]
- Yapici, A.; Findikoglu, G.; Dundar, U. Do isokinetic angular velocity and contraction types affect the predictors of different anaerobic power tests? J. Sports Med. Phys. Fit. 2016, 56, 383–391. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. The relationship between bilateral differences of knee flexor and extensor isokinetic strength and multi-directional speed. Isokinet. Exer. Sci. 2012, 20, 211–219. [Google Scholar] [CrossRef]
- Kellis, E.; Sahinis, C.; Baltzopoulos, V. Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review. J. Sport Health Sci. 2022, 19, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, B.I.; Zatsiorsky, V.M. Tendon action of two-joint muscles: Transfer of mechanical energy between joints during jumping, landing, and running. J. Biomech. 1994, 27, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Hubley, C.L.; Wells, R.P. A work energy approach to determine individual joint contributions to vertical jump performance. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 247–254. [Google Scholar] [CrossRef]
- Bobbert, M.F.; van Zandwijk, J.P. Sensitivity of vertical jumping performance to changes in muscle stimulation onset times: A simulation study. Biol. Cybern. 1999, 81, 101–108. [Google Scholar] [CrossRef]
- Papaiakovou, G. Kinematic and kinetic differences in the execution of vertical jumps between people with good and poor ankle joint dorsiflexion. J. Sports Sci. 2013, 31, 1789–1796. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Nikodelis, T.; Panoutsakopoulos, V.; Kollias, I. Effects of initial posture upon vertical squat jump dynamic and kinematic characteristics of subjects with limited ankle joint dorsi flexion. J. Hum. Mov. Stud. 2003, 44, 311–322. [Google Scholar]
- Guillén-Rogel, P.; San Emeterio, C.; Marín, P.J. Associations between ankle dorsiflexion range of motion and foot and ankle strength in young adults. J. Phys. Ther. Sci. 2017, 29, 1363–1367. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.J.; Kim, M.H.; Weon, J.H.; Kim, Y.; Jung, S.H.; Kwon, O.Y. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump. J. Phys. Ther. Sci. 2016, 28, 2241–2244. [Google Scholar] [CrossRef] [Green Version]
- Chandran, A.; Morris, S.N.; Lempke, L.B.; Boltz, A.J.; Robison, H.J.; Collins, C.L. Epidemiology of injuries in national collegiate athletic association women’s volleyball: 2014–2015 through 2018–2019. J. Athl. Train. 2021, 56, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Papaiakovou, G.; Kollias, I.A. The ankle joint range of motion and its effect on squat jump performance with and without arm swing in adolescent female volleyball players. J. Funct. Morphol. Kinesiol. 2021, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement jump inter-limb asymmetries in collegiate basketball players. Sports 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Arboix-Alió, J.; Buscà, B.; Busquets, A.; Aguilera-Castells, J.; de Pablo, B.; Montalvo, A.M.; Fort-Vanmeerhaeghe, A. Relationship between inter-limb asymmetries and physical performance in rink hockey players. Symmetry 2020, 12, 2035. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and horizontal asymmetries are related to slower sprinting and jump performance in elite youth female soccer players. J. Strength Cond. Res. 2018, 35, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Vicens-Bordas, J.; Arboix-Alió, J. Seasonal variation of inter-limb jumping asymmetries in youth team-sport athletes. J. Sports Sci. 2021, 39, 2850–2858. [Google Scholar] [CrossRef]
- Bartol, V.; Vauhnik, R.; Rugelj, D. Influence of the sport specific training background on the symmetry of the single legged vertical counter movement jump among female ballet dancers and volleyball players. Heliyon 2022, 8, e10669. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Newton, R.U. Long-term training adaptations in elite male volleyball players. J. Strength Cond. Res. 2012, 26, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Sattler, T.; Sekulic, D.; Esco, M.R.; Mahmutovic, I.; Hadzic, V. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes. J. Sci. Med. Sport 2015, 18, 613–618. [Google Scholar] [CrossRef]
- Wilkosz, P.; Kabacinski, J.; Mackala, K.; Murawa, M.; Ostarello, J.; Rzepnicka, A.; Szczesny, L.; Fryzowicz, A.; Maczynski, J.; Dworak, L.B. Isokinetic and Isometric Assessment of the Knee Joint Extensors and Flexors of Professional Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 6780. [Google Scholar] [CrossRef]
- Tanner, J.M. Normal growth and techniques of growth assessment. Clin. Endocrinol. Metab. 1986, 15, 411–451. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, P.X.; Fusco, A.; Cortis, C.; Wagner, H. Effects of differential jump training on balance performance in female volleyball players. Appl. Sci. 2020, 10, 5921. [Google Scholar] [CrossRef]
- Baumbach, S.F.; Brumann, M.; Binder, J.; Mutschler, W.; Regauer, M.; Polzer, H. The influence of knee position on ankle dorsiflexion—A biometric study. BMC Musculoskelet. Disord. 2014, 15, 246. [Google Scholar] [CrossRef] [PubMed]
- Papaiakovou, G.; Kollias, I.; Siatras, T.; Panoutsakopoulos, V. The ankle joint and its influence upon dynamic and kinematic characteristics in a standing vertical jump. Exerc. Soc. 2002, 32, 30–40. [Google Scholar]
- Fuchs, P.X.; Menzel, H.K.; Guidotti, F.; Bell, J.; von Duvillard, S.P.; Wagner, H. Spike jump biomechanics in male versus female elite volleyball players. J. Sports Sci. 2019, 37, 2411–2419. [Google Scholar] [CrossRef] [Green Version]
- Papaiakovou, G.; Katsikas, F.; Nikodelis, T.; Panoutsakopoulos, V.; Kollias, I. Influence of the ankle joint dorsiflexion on the execution of vertical jumps. In Proceedings of the XXIV International Symposium on Biomechanics in Sports, Salzburg, Austria, 14–18 July 2006; Schwameder, H., Strutzenberger, G., Fastenbauer, V., Lindinger, S., Muller, E., Eds.; University of Salzburg: Salzburg, Austria, 2006; Volume 1, pp. 448–451. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 2nd ed.; John Willey & Sons, Inc.: Toronto, ON, Canada, 1990. [Google Scholar]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Pleša, J.; Kozinc, Ž.; Smajla, D.; Šarabon, N. The association between reactive strength index and reactive strength index modified with approach jump performance. PLoS ONE 2022, 17, e0264144. [Google Scholar] [CrossRef]
- Hara, M.; Shibayama, A.; Takeshita, D.; Hay, D.C.; Fukashiro, S. A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping. Hum. Mov. Sci. 2008, 27, 636–648. [Google Scholar] [CrossRef]
- Feltner, M.E.; Fraschetti, D.J.; Crisp, R.J. Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. J. Sports Sci. 1999, 17, 449–466. [Google Scholar] [CrossRef]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M. The effects of arms and countermovement on vertical jumping. Med. Sci. Sports Exerc. 1990, 22, 825–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.S.; Böhm, H.; Butterfield, M.M.; Santhosam, J. Gender bias in the effects of arms and countermovement on jumping performance. J. Strength Cond. Res. 2007, 21, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Nagano, A.; Hay, D.C.; Kanehisa, H. The effects of ankle restriction on the multijoint coordination of vertical jumping. J. Appl. Biomech. 2013, 29, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousanoglou, E.N.; Georgiadis, G.V.; Boudolos, K.D. Muscular strength and jumping performance relationships in young women athletes. J. Strength Cond. Res. 2008, 22, 1375–1378. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Ziv, G.; Arnon, M.; Lidor, R. Physical characteristics and physiological attributes of female volleyball players--the need for individual data. J. Strength Cond. Res. 2012, 26, 2547–2557. [Google Scholar] [CrossRef]
- Lidor, R.; Ziv, G. Physical characteristics and physiological attributes of adolescent volleyball players-a review. Pediatr. Exerc. Sci. 2010, 22, 114–134. [Google Scholar] [CrossRef]
- Barker, L.A.; Harry, J.R.; Mercer, J.A. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J. Strength Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Geiser, C.F. Reactive Strength Index Modified is a valid measure of explosiveness in collegiate female volleyball players. J. Strength Cond. Res. 2016, 30, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of the Reactive Strength Index Modified on force- and power-time curves. Int. J. Sports Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004, 37, 1929–1940. [Google Scholar] [CrossRef]
- Konrad, A.; Reiner, M.M.; Bernsteiner, D.; Glashüttner, C.; Thaller, S.; Tilp, M. Joint flexibility and isometric strength parameters are not relevant determinants for countermovement jump performance. Int. J. Environ. Res. Public Health 2021, 18, 2510. [Google Scholar] [CrossRef] [PubMed]
- Bénard, M.R.; Harlaar, J.; Becher, J.G.; Huijing, P.A.; Jaspers, R.T. Effects of growth on geometry of gastrocnemius muscle in children: A three-dimensional ultrasound analysis. J. Anat. 2011, 219, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Jeon, Y.; Lee, H. Range of motion of the ankle according to pushing force, gender and knee position. Ann. Rehabil. Med. 2016, 40, 27127–27128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Giannakos, A.K.; Kollias, I.A. Relationship of vertical jump performance and ankle joint range of motion: Effect of knee joint angle and handedness in young adult handball players. Sports 2022, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Panidi, I.; Bogdanis, G.C.; Terzis, G.; Donti, A.; Konrad, A.; Gaspari, V.; Donti, O. Muscle architectural and functional adaptations following 12-weeks of stretching in adolescent female athletes. Front. Physiol. 2021, 12, 701338. [Google Scholar] [CrossRef]
- Lieber, R.L.; Ward, S.R. Skeletal muscle design to meet functional demands. Philos. Trans. R. Soc. Lond B Biol. Sci. 2011, 366, 1466–1476. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D. Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003, 33, 439–454. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2001, 90, 520–527. [Google Scholar] [CrossRef] [Green Version]
- de Weijer, V.C.; Gorniak, G.C.; Shamus, E. The effect of static stretch and warm-up exercise on hamstring length over the course of 24 h. J. Orthop. Sports Phys. Ther. 2003, 33, 727–733. [Google Scholar] [CrossRef]
- Markou, S.; Vagenas, G. Multivariate isokinetic asymmetry of the knee and shoulder in elite volleyball players. Eur. J. Sport Sci. 2006, 6, 71–80. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Brazier, J.; Bromley, T.; Turner, A. Magnitude or direction? Seasonal variation of interlimb asymmetry in elite academy soccer players. J. Strength Cond. Res. 2022, 36, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
Parameter | Test | FLX (n = 10) (Mean ± SD) | NFG (n = 14) (Mean ± SD) | Flexibility | Arm Swing | Interaction | |||
---|---|---|---|---|---|---|---|---|---|
p | ηp2 | p | ηp2 | p | ηp2 | ||||
HCMJ (cm) | CMJA CMJF | 25.22 ± 3.25 29.74 ± 4.29 # | 20.21 ± 2.77 * 23.81 ± 2.89 *# | <0.001 | 0.44 | <0.001 | 0.90 | 0.13 | 0.10 |
V0 (m/s) | CMJA CMJF | 2.22 ± 0.15 2.41 ± 0.19 # | 2.00 ± 0.14 * 2.16 ± 0.13 *# | <0.001 | 0.42 | <0.001 | 0.90 | 0.43 | 0.03 |
FZmax (N/kg) | CMJA CMJF | 2.43 ± 0.21 2.42 ± 0.18 | 2.21 ± 0.25 * 2.31 ± 0.16 | 0.01 | 0.26 | 0.48 | 0.02 | 0.38 | 0.04 |
RFDmax (kN/s) | CMJA CMJF | 10.40 ± 4.10 7.55 ± 2.01 # | 8.43 ± 4.22 8.64 ± 3.55 | 0.72 | 0.01 | 0.14 | 0.10 | 0.90 | 0.12 |
PMAX (W/kg) | CMJA CMJF | 24.63 ± 2.83 31.22 ± 4.74 # | 19.31 ± 2.75 * 25.72 ± 3.20 *# | <0.001 | 0.47 | <0.001 | 0.80 | 0.90 | 0.001 |
SD (cm) | CMJA CMJF | −30.01 ± 5.12 −29.95 ± 4.11 | −31.01 ± 3.79 −29.12 ± 4.83 | 0.96 | 0.00 | 0.18 | 0.08 | 0.37 | 0.04 |
SU (cm) | CMJA CMJF | 50.91 ± 6.05 53.87 ± 4.25 | 48.94 ± 4.37 49.52 ± 5.49 | 0.07 | 0.14 | <0.001 | 0.57 | 0.58 | 0.02 |
tC (ms) | CMJA CMJF | 597.60 ± 126.74 651.50 ± 141.72 | 638.36 ± 101.55 642.64 ± 131.12 | 0.59 | 0.01 | 0.50 | 0.02 | 0.57 | 0.02 |
tPROP (ms) | CMJA CMJF | 306.20 ± 36.19 334.70 ± 56.92 | 332.00 ± 37.66 338.21 ± 45.85 | 0.23 | 0.06 | 0.23 | 0.07 | 0.43 | 0.03 |
RSI (m/s) | CMJA CMJF | 0.83 ± 0.12 0.92 ± 0.22 | 0.62 ± 0.11 0.72 ± 0.12 | <0.001 | 0.46 | 0.017 | 0.23 | 0.92 | 0.002 |
Laterality | Torque (Nm) | FLX (n = 10) (Mean ± SD) | NFG (n = 14) (Mean ± SD) | Group | Angular Velocity | Interaction | |||
---|---|---|---|---|---|---|---|---|---|
p | ηp2 | p | ηp2 | p | ηp2 | ||||
DM | Ext 60°/s Ext 180°/s | 186.10 ± 25.77 129.50 ± 20.04 # | 163.71 ± 25.03 * 111.50 ± 16.12 *# | 0.03 | 0.20 | <0.001 | 0.95 | 0.41 | 0.03 |
NDM | Ext 60°/s Ext 180°/s | 181.20 ± 27.50 123.80 ± 17.43 # | 154.21 ± 20.61 * 108.36 ± 15.98 *# | 0.01 | 0.25 | <0.001 | 0.92 | 0.10 | 0.01 |
DM | Flex 60°/s Flex 180°/s | 98.90 ± 17.79 60.60 ± 17.49 # | 92.50 ± 17.43 57.00 ± 13.49 # | 0.43 | 0.03 | <0.001 | 0.89 | 0.61 | 0.01 |
NDM | Flex 60°/s Flex 180°/s | 94.40 ± 21.21 59.00 ± 17.99 # | 90.64 ± 16.56 57.00 ± 14.54 # | 0.68 | 0.01 | <0.001 | 0.93 | 0.66 | 0.01 |
Laterality | Power (W) | FLX (n = 10) (Mean ± SD) | NFG (n = 14) (Mean ± SD) | Group | Angular Velocity | Interaction | |||
---|---|---|---|---|---|---|---|---|---|
p | ηp2 | p | ηp2 | p | ηp2 | ||||
DM | Ext 60°/s Ext 180°/s | 111.46 ± 27.21 207.55 ± 65.22 # | 112.86 ± 19.62 209.64 ± 31.26 # | 0.90 | 0.001 | <0.001 | 0.90 | 0.96 | 0.00 |
NDM | Ext 60°/s Ext 180°/s | 117.90 ± 21.39 230.70 ± 46.03 # | 112.06 ± 16.64 204.19 ± 34.35 # | 0.17 | 0.08 | <0.001 | 0.93 | 0.09 | 0.12 |
DM | Flex 60°/s Flex 180°/s | 66.40 ± 10.90 104.08 ± 31.11 # | 64.04 ± 10.97 103.17 ± 26.26 # | 0.83 | 0.002 | <0.001 | 0.74 | 0.88 | 0.00 |
NDM | Flex 60°/s Flex 180°/s | 68.31 ± 20.52 1119.63 ± 56.45 # | 60.50 ± 10.35 101.91 ± 22.76 # | 0.27 | 0.06 | <0.001 | 0.75 | 0.40 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsakopoulos, V.; Bassa, E. Countermovement Jump Performance Is Related to Ankle Flexibility and Knee Extensors Torque in Female Adolescent Volleyball Athletes. J. Funct. Morphol. Kinesiol. 2023, 8, 76. https://doi.org/10.3390/jfmk8020076
Panoutsakopoulos V, Bassa E. Countermovement Jump Performance Is Related to Ankle Flexibility and Knee Extensors Torque in Female Adolescent Volleyball Athletes. Journal of Functional Morphology and Kinesiology. 2023; 8(2):76. https://doi.org/10.3390/jfmk8020076
Chicago/Turabian StylePanoutsakopoulos, Vassilios, and Eleni Bassa. 2023. "Countermovement Jump Performance Is Related to Ankle Flexibility and Knee Extensors Torque in Female Adolescent Volleyball Athletes" Journal of Functional Morphology and Kinesiology 8, no. 2: 76. https://doi.org/10.3390/jfmk8020076