Do the Testing Posture and the Grip Modality Influence the Shoulder Maximal Voluntary Isometric Contraction?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures and Instruments
- Flexion (Flex) and extension (Ext). Shoulder at 90° of flexion, 0° of horizontal abduction, elbow extended, and forearm pronated (Figure 1A–D);
- Abduction (Abd) and adduction (Add). Shoulder at 90° flexion, 90° of horizontal abduction, forearm in neutral position (“full can position”) (Figure 1B–E);
- Internal (IR) and external rotation (ER). Shoulder in adduction and 45° of internal rotation of the humerus. Elbow flexed to 90°. Patients were asked to keep their elbows by their sides during the test (Figure 1C,F).
2.3. Statistical Analysis
3. Results
3.1. Posture Group
3.2. Handle-Cuff Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, J.S.; MacDermid, J.C.; Orton, B.; Tran, T.; Faber, K.J.; Drosdowech, D.; Athwal, G.S. The Concurrent Validity of a Hand-Held versus a Stationary Dynamometer in Testing Isometric Shoulder Strength. J. Hand Ther. 2009, 22, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, U.; Sherman, A.L. Muscle Strength Grading; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Bohannon, R.W. Reliability of Manual Muscle Testing: A Systematic Review. Isokinet. Exerc. Sci. 2018, 26, 245–252. [Google Scholar] [CrossRef]
- Cuthbert, S.C.; Goodheart, G.J. On the Reliability and Validity of Manual Muscle Testing: A Literature Review. Chiropr. Osteopathy 2007, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Dvir, Z. Grade 4 in Manual Muscle Testing: The Problem with Submaximal Strength Assessment. Clin. Rehabil. 2016, 11, 36–41. [Google Scholar] [CrossRef]
- Leggin, B.G.; Neuman, R.M.; Iannotti, J.P.; Williams, G.R.; Thompson, E.C. Intrarater and Interrater Reliability of Three Isometric Dynamometers in Assessing Shoulder Strength. J. Shoulder Elb. Surg. 1996, 5, 18–24. [Google Scholar] [CrossRef]
- Bohannon, R.W. Intertester Reliability of Hand-Held Dynamometry: A Concise Summary of Published Research. Percept. Mot. Ski. 1999, 88, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Wikholm, J.B.; Bohannon, R.W. Hand-Held Dynamometer Measurements: Tester Strength Makes a Difference. J. Orthop. Sport. Phys. Ther. 1991, 13, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkmann, J.R. Comparison of a Hand-Held and Fixed Dynamometer in Measuring Strength of Patients with Neuromuscular Disease. J. Orthop. Sport. Phys. Ther. 1994, 19, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, H.M.; de Bock, G.H.; van Houwelingen, H.C.; van der Meer, R.L.; Mol, M.C.; Plus, B.T.; Rozing, P.M.; Vliet Vlieland, T.P.M. A Comparison of Two Portable Dynamometers in the Assessment of Shoulder and Elbow Strength. Physiotherapy 2005, 91, 101–112. [Google Scholar] [CrossRef]
- Shin, S.J.; Chung, J.; Lee, J.; Ko, Y.W. Recovery of Muscle Strength after Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size. Am. J. Sport. Med. 2016, 44, 972–980. [Google Scholar] [CrossRef]
- Hecker, A.; Aguirre, J.; Eichenberger, U.; Rosner, J.; Schubert, M.; Sutter, R.; Wieser, K.; Bouaicha, S. Deltoid Muscle Contribution to Shoulder Flexion and Abduction Strength: An Experimental Approach. J. Shoulder Elb. Surg. 2021, 30, e60–e68. [Google Scholar] [CrossRef]
- Riemann, B.L.; Davies, G.J.; Ludwig, L.; Gardenhour, H. Hand-Held Dynamometer Testing of the Internal and External Rotator Musculature Based on Selected Positions to Establish Normative Data and Unilateral Ratios. J. Shoulder Elb. Surg. 2010, 19, 1175–1183. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Chen, L.B.; Cao, X.; Han, P.; Wang, C.; Qi, Q. Concurrent Validity and Reliability of a Handheld Dynamometer in Measuring Isometric Shoulder Rotational Strength. J. Sport. Rehabil. 2021, 30, 965–968. [Google Scholar] [CrossRef]
- McLaine, S.J.; Ginn, K.A.; Kitic, C.M.; Fell, J.W.; Bird, M.L. The Reliability of Strength Tests Performed In Elevated Shoulder Positions Using a Handheld Dynamometer. J. Sport. Rehabil. 2016, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Bhanot, K.; Brody, L.T.; Bridges, J.; Berry, D.C.; Ode, J.J. Effects of lower extremity and trunk muscles recruitment on serratus anterior muscle activation in healthy male adults. Int. J. Sport. Phys. Ther. 2014, 9, 924. [Google Scholar]
- Saeterbakken, A.H.; Fimland, M.S. Effects of Body Position and Loading Modality on Muscle Activity and Strength in Shoulder Presses. J. Strength Cond. Res. 2013, 27, 1824–1831. [Google Scholar] [CrossRef]
- Sciascia, A.; Uhl, T. Reliability of strength and performance testing measures and their ability to differentiate persons with and without shoulder symptoms. Int. J. Sport. Phys. Ther. 2015, 10, 655. [Google Scholar]
- Ebben, W.P.; Petushek, E.J.; Fauth, M.L.; Garceau, L.R. EMG Analysis of Concurrent Activation Potentiation. Med. Sci. Sport. Exerc. 2010, 42, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Vega Toro, A.S.; Cools, A.M.J.; de Oliveira, A.S. Instruction and Feedback for Conscious Contraction of the Abdominal Muscles Increases the Scapular Muscles Activation during Shoulder Exercises. Man. Ther. 2016, 25, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, D.M.; Hodges, P.W.; Story, I.H. Postural Activity of the Abdominal Muscles Varies between Regions of These Muscles and between Body Positions. Gait Posture 2005, 22, 295–301. [Google Scholar] [CrossRef]
- Wilk, K.E.; Arrigo, C.A.; Andrews, J.R. Current Concepts: The Stabilizing Structures of the Glenohumeral Joint. J. Orthop. Sport. Phys. Ther. 1997, 25, 364–379. [Google Scholar] [CrossRef]
- Wilk, K.E.; Meister, K.; Andrews, J.R. Current Concepts in the Rehabilitation of the Overhead Throwing Athlete. Am. J. Sport. Med. 2002, 30, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Byram, I.R.; Bushnell, B.D.; Dugger, K.; Charron, K.; Harrell, F.E.; Noonan, T.J. Preseason Shoulder Strength Measurements in Professional Baseball Pitchers: Identifying Players at Risk for Injury. Am. J. Sport. Med. 2010, 38, 1375–1382. [Google Scholar] [CrossRef]
- Hurd, W.J.; Kaplan, K.M.; ElAttrache, N.S.; Jobe, F.W.; Morrey, B.F.; Kaufman, K.R. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part II: Strength. J. Athl. Train. 2011, 46, 289. [Google Scholar] [CrossRef] [Green Version]
- Edouard, P.; Degache, F.; Oullion, R.; Plessis, J.Y.; Gleizes-Cervera, S.; Calmels, P. Shoulder Strength Imbalances as Injury Risk in Handball. Int. J. Sport. Med. 2013, 34, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Sporrong, H.; Palmerud, G.; Herberts, P. Influences of Handgrip on Shoulder Muscle Activity. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Sporrong, H.; Palmerud, G.; Herberts, P. Hand Grip Increases Shoulder Muscle Activity, An EMG Analysis with Static Hand Contractions in 9 Subjects. Acta Orthop. Scand. 1996, 67, 485–490. [Google Scholar] [CrossRef]
- Johanson, M.E.; James, M.A.; Skinner, S.R. Forearm Muscle Activation during Power Grip and Release. J. Hand Surg. Am. 1998, 23, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Mandalidis, D.; O’Brien, M. Relationship between Hand-Grip Isometric Strength and Isokinetic Moment Data of the Shoulder Stabilisers. J. Bodyw. Mov. Ther. 2010, 14, 19–26. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Davies, G.J. The Application of Isokinetics in Testing and Rehabilitation of the Shoulder Complex. J. Athl. Train. 2000, 35, 338. [Google Scholar] [PubMed]
- Lin, H.T.; Ko, H.T.; Lee, K.C.; Chen, Y.C.; Wang, D.C. The Changes in Shoulder Rotation Strength Ratio for Various Shoulder and Speeds in the Scapular Plane between Baseball Players And-Players. J. Phys. Ther. Sci. 2015, 27, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Posture Group (n = 20) 1 | Handle-Cuff Group (n = 20) 1 |
---|---|---|
Age [years] | 24.95 ± 6.82 | 28.10 ± 8.62 |
Gender [m–f] | 11–9 | 12–8 |
Height [m] | 1.75 ± 0.01 | 1.72 ± 0.08 |
Body Mass [kg] | 71.25 ± 15.53 | 72.10 ± 12.25 |
BMI [kg/m2] | 22.80 ± 2.77 | 24.06 ± 2.98 |
Shoulder Strength Tests | Standing | Sitting | Mean Difference | p-Value 1 |
---|---|---|---|---|
Flexion [N] | 114.89 ± 50.78 | 108.80 ± 49.12 | 6.08 ± 10.95 | 0.009 |
Extension [N] | 195.68 ± 80.94 | 184.27 ± 64.34 | 11.40 ± 27.86 | 0.073 |
Abduction [N] | 107.78 ± 49.34 | 103.82 ± 47.66 | 3.95 ± 14.19 | 0.159 |
Adduction [N] | 179.37 ± 74.68 | 164.17 ± 64.18 | 15.19 ± 26.92 | 0.079 |
External rotation [N] | 117.57 ± 41.94 | 110.32 ± 38.80 | 7.24 ± 19.84 | 0.140 |
Internal rotation [N] | 160.35 ± 58.97 | 179.47 ± 68.78 | −19.11 ± 26.74 | 0.003 |
ER/IR [Ratio] | 0.74 ± 0.12 | 0.63 ± 0.14 | 0.11 ± 0.11 | <0.001 |
Shoulder Strength Tests | Handle | Cuff | Mean Difference | p-Value 1 |
---|---|---|---|---|
Flexion [N] | 128.26 ± 52.14 | 148.41 ± 55.57 | −20.15 ± 12.05 | <0.001 |
Extension [N] | 208.85 ± 74.70 | 237.08 ± 84.38 | −28.23 ± 21.59 | <0.001 |
Abduction [N] | 119.61 ± 50.86 | 138.50 ± 50.49 | −18.88 ± 18.79 | 0.001 |
Adduction [N] | 193.46 ± 60.39 | 209.81 ± 63.45 | −16.34 ± 20.55 | 0.004 |
External rotation [N] | 123.30 ± 33.03 | 158.82 ± 45.97 | −35.52 ± 20.72 | <0.001 |
Internal rotation [N] | 170.39 ± 35.42 | 202.86 ± 58.14 | −32.46 ± 29.62 | <0.001 |
ER/IR [Ratio] | 0.72 ± 0.10 | 0.79 ± 0.12 | −0.07 ± 0.1 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravi, M.; Fossati, C.; Giombini, A.; Mannacio, E.; Borzuola, R.; Papalia, R.; Pigozzi, F.; Macaluso, A. Do the Testing Posture and the Grip Modality Influence the Shoulder Maximal Voluntary Isometric Contraction? J. Funct. Morphol. Kinesiol. 2023, 8, 45. https://doi.org/10.3390/jfmk8020045
Bravi M, Fossati C, Giombini A, Mannacio E, Borzuola R, Papalia R, Pigozzi F, Macaluso A. Do the Testing Posture and the Grip Modality Influence the Shoulder Maximal Voluntary Isometric Contraction? Journal of Functional Morphology and Kinesiology. 2023; 8(2):45. https://doi.org/10.3390/jfmk8020045
Chicago/Turabian StyleBravi, Marco, Chiara Fossati, Arrigo Giombini, Elena Mannacio, Riccardo Borzuola, Rocco Papalia, Fabio Pigozzi, and Andrea Macaluso. 2023. "Do the Testing Posture and the Grip Modality Influence the Shoulder Maximal Voluntary Isometric Contraction?" Journal of Functional Morphology and Kinesiology 8, no. 2: 45. https://doi.org/10.3390/jfmk8020045
APA StyleBravi, M., Fossati, C., Giombini, A., Mannacio, E., Borzuola, R., Papalia, R., Pigozzi, F., & Macaluso, A. (2023). Do the Testing Posture and the Grip Modality Influence the Shoulder Maximal Voluntary Isometric Contraction? Journal of Functional Morphology and Kinesiology, 8(2), 45. https://doi.org/10.3390/jfmk8020045