Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Approach
2.2. Exclusion Criteria
2.3. Assessed Outcomes
3. Results
3.1. Search Results
3.2. Descriptive Analysis
3.3. Thematic Analysis
4. Discussion
4.1. Recognition
4.2. Contextual Variables
4.3. Effectiveness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carling, C.; Williams, A.M.; Reilly, T. Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance; Routledge: Abingdon, UK, 2007. [Google Scholar]
- Plakias, S.; Kokkotis, C.; Tsaopoulos, D.; Moustakidis, S.; Papalexi, M.; Giakas, G.; Tsatalas, T. The effectiveness of direct corners in high level soccer depending on the type and the zone of delivery. J. Phys. Educ. Sport 2023, 23, 449–456. [Google Scholar]
- Andersson, H.; Ekblom, B.; Krustrup, P. Elite football on artificial turf versus natural grass: Movement patterns, technical standards, and player impressions. J. Sport. Sci. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Basevitch, I.; Yang, Y.; Tenenbaum, G. Is the best defense a good offense? Comparing the brazilian and italian soccer styles. Kinesiology 2013, 45, 213–221. [Google Scholar]
- Plakias, S.; Mandroukas, A.; Kokkotis, C.; Michailidis, Y.; Mavromatis, G.; Metaxas, T. The correlation of the penetrative pass on offensive third with the possession of the ball in high level soccer. Gazz. Med. Ital.-Arch. Per Le Sci. Med. 2022, 181, 633–638. [Google Scholar] [CrossRef]
- Hughes, M.D.; Bartlett, R.M. The use of performance indicators in performance analysis. J. Sport. Sci. 2002, 20, 739–754. [Google Scholar] [CrossRef]
- Lopez-Valenciano, A.; Garcia-Gómez, J.A.; López-Del Campo, R.; Resta, R.; Moreno-Perez, V.; Blanco-Pita, H.; Valés-Vázquez, Á.; Del Coso, J. Association between offensive and defensive playing style variables and ranking position in a national football league. J. Sport. Sci. 2022, 40, 50–58. [Google Scholar] [CrossRef]
- Gómez, M.-Á.; Mitrotasios, M.; Armatas, V.; Lago-Peñas, C. Analysis of playing styles according to team quality and match location in Greek professional soccer. Int. J. Perform. Anal. Sport 2018, 18, 986–997. [Google Scholar] [CrossRef]
- Hewitt, A.; Greenham, G.; Norton, K. Game style in soccer: What is it and can we quantify it? Int. J. Perform. Anal. Sport 2016, 16, 355–372. [Google Scholar] [CrossRef]
- Clemente, F.M.; Couceiro, M.S.; Martins, F.M.L.; Mendes, R.S. Using network metrics in soccer: A macro-analysis. J. Hum. Kinet. 2015, 45, 123. [Google Scholar] [CrossRef]
- Pollard, R.; Reep, C. Measuring the effectiveness of playing strategies at soccer. J. R. Stat. Soc. Ser. D (Stat.) 1997, 46, 541–550. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Aranda-Malaves, R.; Tudela-Desantes, A.; Nieto, F.; Usó, F.; Aranda, R. Playing tactics, contextual variables and offensive effectiveness in English Premier League soccer matches. A multilevel analysis. PLoS ONE 2020, 15, e0226978. [Google Scholar] [CrossRef] [PubMed]
- Lechner, F.J. Imagined communities in the global game: Soccer and the development of Dutch national identity. Glob. Netw. 2007, 7, 215–229. [Google Scholar] [CrossRef]
- Bradley, P.; Martin-Garcia, A.; Ade, J.; Gomez-Diaz, A. Position Specific & Positional Play Training in Elite Football; Barca Innovation Hub: Barcelona, Spain, 2019. [Google Scholar]
- Chassy, P. Team play in football: How science supports FC Barcelona’s training strategy. Psychology 2013, 4, 7. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, T.; Campaniço, J.; Leitão, J. Development and validation of a notational system to study the offensive process in football. Medicina 2010, 46, 401. [Google Scholar] [CrossRef]
- Pappalardo, L.; Cintia, P.; Rossi, A.; Massucco, E.; Ferragina, P.; Pedreschi, D.; Giannotti, F. A public data set of spatio-temporal match events in soccer competitions. Sci. Data 2019, 6, 236. [Google Scholar] [CrossRef]
- Decroos, T.; Bransen, L.; Van Haaren, J.; Davis, J. Actions speak louder than goals: Valuing player actions in soccer. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1851–1861. [Google Scholar]
- Goes, F.; Meerhoff, L.; Bueno, M.; Rodrigues, D.; Moura, F.; Brink, M.; Elferink-Gemser, M.; Knobbe, A.; Cunha, S.; Torres, R. Unlocking the potential of big data to support tactical performance analysis in professional soccer: A systematic review. Eur. J. Sport Sci. 2021, 21, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; McRobert, A.P. Evaluating the effectiveness of styles of play in elite soccer. Int. J. Sport. Sci. Coach. 2019, 14, 514–527. [Google Scholar] [CrossRef]
- Decroos, T. Soccer Analytics Meets Artificial Intelligence: Learning Value and Style from Soccer Event Stream Data. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2020. [Google Scholar]
- Castellano, J.; Blanco-Villaseñor, A.; Alvarez, D. Contextual variables and time-motion analysis in soccer. Int. J. Sport. Med. 2011, 32, 415–421. [Google Scholar] [CrossRef]
- Manovich, L. What is visualisation? Vis. Stud. 2011, 26, 36–49. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Mackenzie, R.; Cushion, C. Performance analysis in football: A critical review and implications for future research. J. Sport. Sci. 2013, 31, 639–676. [Google Scholar] [CrossRef] [PubMed]
- Kokkotis, C.; Moustakidis, S.; Papageorgiou, E.; Giakas, G.; Tsaopoulos, D. Machine learning in knee osteoarthritis: A review. Osteoarthr. Cartil. Open 2020, 2, 100069. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.P.; Barwood, M.J.; Radcliffe, J.N.; Cooke, C.B.; Kilduff, L.P.; Cook, C.J.; Russell, M. Profiling the responses of soccer substitutes: A review of current literature. Sport. Med. 2018, 48, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
- Pollard, R.; Reep, C.; Hartley, S. The quantitative comparison of playing styles in soccer. In Science and Football; Routledge: Abingdon, UK, 1988; pp. 309–315. [Google Scholar]
- Tenga, A.; Larsen, Ø. Testing the validity of match analysis to describe playing styles in football. Int. J. Perform. Anal. Sport 2003, 3, 90–102. [Google Scholar] [CrossRef]
- Lago, C. The influence of match location, quality of opposition, and match status on possession strategies in professional association football. J. Sport. Sci. 2009, 27, 1463–1469. [Google Scholar] [CrossRef]
- Sporiš, G.; Šamija, K.; Vlahović, T.; Milanović, Z.; Barišić, V.; Bonacin, D.; Talović, M. The latent structure of soccer in the phases of attack and defense. Coll. Antropol. 2012, 36, 593–603. [Google Scholar]
- Kempe, M.; Vogelbein, M.; Memmert, D.; Nopp, S. Possession vs. direct play: Evaluating tactical behavior in elite soccer. Int. J. Sport. Sci. 2014, 4, 35–41. [Google Scholar]
- Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; Ford, P.R.; McRobert, A.P. Attacking and defensive styles of play in soccer: Analysis of Spanish and English elite teams. J. Sport. Sci. 2016, 34, 2195–2204. [Google Scholar] [CrossRef]
- Lago-Peñas, C.; Gómez-Ruano, M.; Yang, G. Styles of play in professional soccer: An approach of the Chinese Soccer Super League. Int. J. Perform. Anal. Sport 2017, 17, 1073–1084. [Google Scholar] [CrossRef]
- Santos, P.; Lago-Peñas, C.; García-García, O. The influence of situational variables on defensive positioning in professional soccer. Int. J. Perform. Anal. Sport 2017, 17, 212–219. [Google Scholar] [CrossRef]
- Gollan, S.; Ferrar, K.; Norton, K. Characterising game styles in the English Premier League using the “moments of play” framework. Int. J. Perform. Anal. Sport 2018, 18, 998–1009. [Google Scholar] [CrossRef]
- Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; McRobert, A.P. Influence of contextual variables on styles of play in soccer. Int. J. Perform. Anal. Sport 2018, 18, 423–436. [Google Scholar] [CrossRef]
- Yi, Q.; Groom, R.; Dai, C.; Liu, H.; Gómez Ruano, M.Á. Differences in technical performance of players from ‘the big five’European football leagues in the UEFA Champions League. Front. Psychol. 2019, 10, 2738. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.; Pic, M. Identification and preference of game styles in LaLiga associated with match outcomes. Int. J. Environ. Res. Public Health 2019, 16, 5090. [Google Scholar] [CrossRef]
- Mitrotasios, M.; Gonzalez-Rodenas, J.; Armatas, V.; Aranda, R. The creation of goal scoring opportunities in professional soccer. tactical differences between spanish la liga, english premier league, german bundesliga and italian serie A. Int. J. Perform. Anal. Sport 2019, 19, 452–465. [Google Scholar] [CrossRef]
- Praça, G.M.; Lima, B.B.; Bredt, S.d.G.T.; Sousa, R.B.E.; Clemente, F.M.; Andrade, A.G.P.d. Influence of match status on players’ prominence and teams’ network properties during 2018 FIFA World Cup. Front. Psychol. 2019, 10, 695. [Google Scholar] [CrossRef]
- Castellano, J.; Echeazarra, I. Network-based centrality measures and physical demands in football regarding player position: Is there a connection? A preliminary study. J. Sport. Sci. 2019, 37, 2631–2638. [Google Scholar] [CrossRef]
- Drezner, R.; Lamas, L.; Farias, C.; Barrera, J.; Dantas, L. A method for classifying and evaluating the efficiency of offensive playing styles in soccer. J. Phys. Educ. Sport 2020, 20, 1284–1294. [Google Scholar]
- Gollan, S.; Bellenger, C.; Norton, K. Contextual factors impact styles of play in the English premier league. J. Sport. Sci. Med. 2020, 19, 78. [Google Scholar]
- Gonzalez-Rodenas, J.; Aranda, R.; Aranda-Malaves, R. The effect of contextual variables on the attacking style of play in professional soccer. J. Hum. Sport Exerc. 2020, 16, 399–410. [Google Scholar] [CrossRef]
- Fernandes, T.; Camerino, O.; Garganta, J.; Hileno, R.; Barreira, D. How do elite soccer teams perform to ball recovery? Effects of tactical modelling and contextual variables on the defensive patterns of play. J. Hum. Kinet. 2020, 73, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lago-Peñas, C.; Lorenzo, A.; Gómez, M.-Á. Long-term trend analysis of playing styles in the Chinese soccer super league. J. Hum. Kinet. 2021, 79, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Amatria, M.; Maneiro, R.; Casal, C.A.; Papadopoulou, S.; Sarmento, H.; Ardá, A.; Iglesias, X.; Losada, J.L. Differences in Technical Development and Playing Space in Three UEFA Champions Leagues. Front. Psychol. 2021, 12, 695853. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.; Julian, R.; Meyer, T. Exploring factors related to goal scoring opportunities in professional football. Sci. Med. Footb. 2022, 6, 181–188. [Google Scholar] [CrossRef]
- Ruan, L.; Ge, H.; Gómez, M.-Á.; Shen, Y.; Gong, B.; Cui, Y. Analysis of defensive playing styles in the professional Chinese Football Super League. Sci. Med. Footb. 2022, 1–9. [Google Scholar] [CrossRef]
- Ruan, L.; Ge, H.; Shen, Y.; Pu, Z.; Zong, S.; Cui, Y. Quantifying the effectiveness of defensive playing styles in the Chinese Football Super League. Front. Psychol. 2022, 13, 2461. [Google Scholar] [CrossRef]
- Gyarmati, L.; Kwak, H.; Rodriguez, P. Searching for a Unique Style in Soccer. arXiv 2014, arXiv:1409.0308. [Google Scholar]
- Bialkowski, A.; Lucey, P.; Carr, P.; Yue, Y.; Sridharan, S.; Matthews, I. Identifying team style in soccer using formations learned from spatiotemporal tracking data. In Proceedings of the 2014 IEEE International Conference on Data Mining Workshop, Shenzhen, China, 14–17 December 2014; pp. 9–14. [Google Scholar] [CrossRef]
- Bialkowski, A.; Lucey, P.; Carr, P.; Matthews, I.; Sridharan, S.; Fookes, C. Discovering team structures in soccer from spatiotemporal data. IEEE Trans. Knowl. Data Eng. 2016, 28, 2596–2605. [Google Scholar] [CrossRef]
- Brooks, J.; Kerr, M.; Guttag, J. Using machine learning to draw inferences from pass location data in soccer. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 338–349. [Google Scholar] [CrossRef]
- Bekkers, J.; Dabadghao, S. Flow motifs in soccer: What can passing behavior tell us? J. Sport. Anal. 2019, 5, 299–311. [Google Scholar] [CrossRef]
- Narizuka, T.; Yamazaki, Y. Clustering algorithm for formations in football games. Sci. Rep. 2019, 9, 13172. [Google Scholar] [CrossRef]
- Decroos, T.; Roy, M.V.; Davis, J. SoccerMix: Representing soccer actions with mixture models. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Ghent, Belgium, 14 September 2020; pp. 459–474. [Google Scholar]
- Beernaerts, J.; De Baets, B.; Lenoir, M.; Van de Weghe, N. Spatial movement pattern recognition in soccer based on relative player movements. PLoS ONE 2020, 15, e0227746. [Google Scholar] [CrossRef] [PubMed]
- García-Aliaga, A.; Marquina Nieto, M.; Coterón, J.; Rodríguez-González, A.; Gil Ares, J.; Refoyo Román, I. A Longitudinal Study on the Evolution of the Four Main Football Leagues Using Artificial Intelligence: Analysis of the Differences in English Premier League Teams. Res. Q. Exerc. Sport 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Jung, J.J. DNN-based multi-output model for predicting soccer team tactics. PeerJ Comput. Sci. 2022, 8, e853. [Google Scholar] [CrossRef] [PubMed]
- Amatria, M.; Maneiro, R.; Anguera, M.T. Analysis of successful offensive play patterns by the Spanish soccer team. J. Hum. Kinet. 2019, 69, 191. [Google Scholar] [CrossRef]
- Yi, Q.; Gómez, M.A.; Wang, L.; Huang, G.; Zhang, H.; Liu, H. Technical and physical match performance of teams in the 2018 FIFA World Cup: Effects of two different playing styles. J. Sport. Sci. 2019, 37, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Mvududu, N.H.; Sink, C.A. Factor analysis in counseling research and practice. Couns. Outcome Res. Eval. 2013, 4, 75–98. [Google Scholar] [CrossRef]
- Watkins, M.W. Exploratory factor analysis: A guide to best practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Sarkar, S. Paradox of crosses in association football (soccer)–A game-theoretic explanation. J. Quant. Anal. Sport. 2018, 14, 25–36. [Google Scholar] [CrossRef]
- Lekavý, M.; Wagner, J. Various Uses of Potential Map in a Soccer Game. In Proceedings of the In ZNALOSTI 2008, Bratislava, Slovakia, 13–15 February 2008. [Google Scholar]
- Bertuzzi, J. The Soccer Scouting Guide; Reedswain Inc.: Spring City, PA, USA, 1999. [Google Scholar]
- Kim, H.-C.; Kwon, O.; Li, K.-J. Spatial and spatiotemporal analysis of soccer. In Proceedings of the Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011; pp. 385–388. [Google Scholar]
- Mitrotasios, M.; Ródenas, J.G.; Armatas, V.; Malavés, R.A. Creating goal scoring opportunities in men and women UEFA Champions League soccer matches: Tactical similarities and differences. Retos Nuevas Tend. En Educ. Física Deporte Y Recreación 2022, 43, 154–161. [Google Scholar]
- Warwick, J. The Efficacy of Counter-Pressing as an Offensive-Defensive Philosophy; Miami University: Oxford, OH, USA, 2019. [Google Scholar]
- Bauer, P.; Anzer, G. Data-driven detection of counterpressing in professional football. Data Min. Knowl. Discov. 2021, 35, 2009–2049. [Google Scholar] [CrossRef]
- Ramírez-Arroyo, A.; García, L.; Alex-Amor, A.; Valenzuela-Valdés, J.F. Artificial Intelligence and Dimensionality Reduction: Tools for approaching future communications. IEEE Open J. Commun. Soc. 2022, 3, 475–492. [Google Scholar] [CrossRef]
- Barrera, J.; Sarmento, H.; Clemente, F.M.; Field, A.; Figueiredo, A.J. The effect of contextual variables on match performance across different playing positions in professional portuguese soccer players. Int. J. Environ. Res. Public Health 2021, 18, 5175. [Google Scholar] [CrossRef]
- Chena, M.; Morcillo, J.A.; Rodríguez-Hernández, M.L.; Zapardiel, J.C.; Owen, A.; Lozano, D. The effect of weekly training load across a competitive microcycle on contextual variables in professional soccer. Int. J. Environ. Res. Public Health 2021, 18, 5091. [Google Scholar] [CrossRef]
- Bangsbo, J.; Peitersen, B. Soccer Systems and Strategies; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Bradley, P.S.; Carling, C.; Archer, D.; Roberts, J.; Dodds, A.; Di Mascio, M.; Paul, D.; Gomez Diaz, A.; Peart, D.; Krustrup, P. The effect of playing formation on high-intensity running and technical profiles in English FA Premier League soccer matches. J. Sport. Sci. 2011, 29, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Carling, C. Influence of opposition team formation on physical and skill-related performance in a professional soccer team. Eur. J. Sport Sci. 2011, 11, 155–164. [Google Scholar] [CrossRef]
- Granero-Gil, P.; Bastida-Castillo, A.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; de la Cruz Sánchez, E.; Pino-Ortega, J. Influence of contextual variables in the changes of direction and centripetal force generated during an elite-level soccer team season. Int. J. Environ. Res. Public Health 2020, 17, 967. [Google Scholar] [CrossRef]
- He, M.; Cachucho, R.; Knobbe, A.J. Football Player’s Performance and Market Value. In Proceedings of the Mlsa@ pkdd/ecml, Porto, Portugal, 22 June 2015; pp. 87–95. [Google Scholar]
Author | Year | Category | Method | Kind of Data | Sample (Number of Matches & Competitions) | |||
---|---|---|---|---|---|---|---|---|
P.I. (Event) | Tracking Data | Other | ||||||
Pollard [28] | 1998 | CLASSICAL INDUCTIVE STATISTIC (C.I.S.) | Factor-PCA | * | 74 | 1982 World Cup, English Premier League (EPL) 1984–85 | ||
Tenga [29] | 2003 | Chi-square | * | 1 | Brazil-Norway | |||
Andersson [3] | 2008 | Two-way ANOVA, paired t-test, chi-square | * | * | Questionaries | 10 | Male/female Swedish league | |
Lago [30] | 2009 | Linear regression | * | 25 | Spanish league 2005–2006 | |||
Sporiš [31] | 2012 | Factor-PCA, Cronbach’s alpha | * | Rating from 0–5 from ten experts | _ | _ | ||
Basevitch [4] | 2013 | Independent t-tests. Multiple linear regression | * | _ | Brazilian and Italian matches from all the World Cups, Brazilian and Italian premier leagues from 2003 to 2008 | |||
Kempe [32] | 2014 | ANOVA | * | 676 | Bundesliga 2009/10 & 2010/11, FIFA World Cup 2010 | |||
Fernandez-Navarro [33] | 2016 | Factor-PCA | * | 97 | Spanish La Liga and EPL from the seasons 2006–2007 and 2010–2011 | |||
Lago-Peñas [34] | 2017 | Factor-PCA | * | 240 | Chinese Super League (SL) during the 2016 season | |||
Santos [35] | 2017 | Linear regression | * | Ball recovery situations | 13 | An elite Spanish team | ||
Gómez [8] | 2018 | Factor-PCA, ANCOVA, MANOVA | * | 301 | Greek SL during the 2013–2014 regular season | |||
Gollan [36] | 2018 | K-means clustering, chi-square | * | 380 | 2015–16 EPL | |||
Fernandez-Navarro [37] | 2018 | Linear mixed model (cross-classified multilevel design) | Each possession | 380 | 2015–16 EPL | |||
Yi [38] | 2019 | k-means clustering, Separate Poisson regression models | * | 59 | 2018 FIFA World Cup | |||
Fernandez-Navarro [20] | 2019 | linear mixed model (cross-classified multilevel design) | Possession Effectiveness Index | 380 | 2015–16 English Premier League | |||
Castellano [39] | 2019 | Factor-PCA, Discriminant analyses, Chi-square | Subtraction between the P.I. value of one team and the P.I. of the other | 373 | 2016–2017 season of the Spanish first division (LaLiga) | |||
Mitrotasios [40] | 2019 | Kruskal–Wallis, Mann–Whitney | Team possessions | 80 | Spanish, English, German and Italian first division during 2017–2018 season | |||
Praça [41] | 2019 | Social network analysis, one-way ANOVA, two-way ANOVA | Passes | 14 | 2018 FIFA World Cup | |||
Castellano [42] | 2019 | Social network analysis, magnitude-based inference and correlation | * | Passes | 36 | La Liga 2017/18 | ||
Drezner [43] | 2020 | Chi-square | Characteristics of ball possessions | 9 | Champions League | |||
Gollan [44] | 2020 | Odds ratios, logistic regression analysis | * | 380 | 2015-16 EPL | |||
Gonzalez-Rodenas [45] | 2020 | Multivariate logistic regressions | Team possessions | 40 | Spanish La Liga and EPL 2017–2018 | |||
Fernandes [46] | 2020 | Kruskal–Wallis H, Mann–Whitney U, Chi-square, Z-, multinomial logistic regression, sequential analysis | * | 12 | 2014 FIFA World Cup | |||
Zhou [47] | 2021 | Factor-PCA, MANCOVA | * | 1429 | Chinese SL matches from 2012 to 2017 | |||
Amatria [48] | 2021 | Pearson’s chi-square statistic | * | 39 | 2016–2017, 2017–2018, and 2018–2019 Champions League | |||
Schulze [49] | 2021 | Factor-PCA, Linear regressions | * | one team’s games | German 2016/2017 season | |||
Lopez-Valenciano [7] | 2022 | Pearson’s correlation coefficient tests, Spearman’s rank correlation coefficient test and PCA | * | 760 | 2017–2018 and 2018–2019 seasons of the Spanish national league | |||
Ruan [50] | 2022 | Factor-PCA | * | * | 240 | Chinese Super League 2018 | ||
Ruan [51] | 2022 | PCA, multivariate regression model | * | 1120 | Chinese Super League 2016 –2020 | |||
Gyarmati [52] | 2014 | AI | K-means clustering, Ward hierarchical clustering | Flow motifs | all | 2012/13 season of the Spanish, Italian, English, French, and German first division | ||
Bialkowski [53] | 2014 | K-means clustering, LDA, k-NN regression | * | * | 374 | One league | ||
Bialkowski [54] | 2016 | k-means clustering, agglomerative clustering, linear discriminant analysis, k-nearest neighbour | * | * | 374 | one league | ||
Brooks [55] | 2016 | K-nearest neighbor, L2-regularized support vector machine model | Every pass (with 8 descriptors) | _ | 2012–2013 La Liga | |||
Bekkers [56] | 2019 | Mean shift algorithm | Flow motifs | 8219 | 4 seasons (2012/2013 to 2015/2016), 6 different leagues (Dutch, English, Spanish, Italian, French and German first division) | |||
Narizuka [57] | 2019 | Extended clustering algorithm based on role representation (and hierarchical clustering) | * | 45 | Japanese league 2016 | |||
Decroos [58] | 2020 | Mixture models | Actions described by their type, location, and direction | 760 | 2017/18 and 2018/19 seasons of the EPL | |||
Beernaerts [59] | 2020 | Qualitative Trajectory Calculus | * | 1 | 2016–2017 professional soccer competition | |||
García-Aliaga [60] | 2022 | t-SNE dimensionality reduction technique, classification rules with RIPPER | * | all | EPL, Spanish LaLiga, German Bundesliga, and Italian Serie A from the 2014/2015 to 2018/2019 seasons | |||
Lee [61] | 2022 | Deep Neural Networks (DNN) based on Multi-Layer Perceptron (MLP) and feature engineering | * | (a) all Tottenham’s games, (b) 380 | (a) 11 seasons (2010/2011–2020/2021) English premier league, (b) 2020-21 EPL | |||
Amatria [62] | 2019 | C.I.S. & AI | Cohen’s kappa & T-pattern analysis | Team possessions | 7 | UEFA Euro 2012 |
Recognition (28) | Contextual Variables (15) | Effectiveness (7) |
---|---|---|
Pollard, Reep and Hartley [28], Tenga and Larsen [29], Sporiš, Šamija, Vlahović, Milanović, Barišić, Bonacin and Talović [31], Basevitch, Yang and Tenenbaum [4], Gyarmati, Kwak and Rodriguez [52], Bialkowski, Lucey, Carr, Yue, Sridharan and Matthews [53], Kempe, Vogelbein, Memmert and Nopp [32], Fernandez-Navarro, Fradua, Zubillaga, Ford and McRobert [33], Bialkowski, Lucey, Carr, Matthews, Sridharan and Fookes [54], Brooks, Kerr and Guttag [55], Lago-Peñas, Gómez-Ruano and Yang [34], Gómez, Mitrotasios, Armatas and Lago-Peñas [8], Gollan, Ferrar and Norton [36], Bekkers and Dabadghao [56], Castellano and Pic [39], Amatria, Maneiro and Anguera [62], Narizuka and Yamazaki [57], Praça, Lima, Bredt, Sousa, Clemente and Andrade [41], Castellano and Echeazarra [42], Drezner, Lamas, Farias, Barrera and Dantas [43], Decroos, Roy and Davis [58], Fernandes, Camerino, Garganta, Hileno and Barreira [46], Beernaerts, De Baets, Lenoir and Van de Weghe [59], Zhou, Lago-Peñas, Lorenzo and Gómez [47], Amatria, Maneiro, Casal, Papadopoulou, Sarmento, Ardá, Iglesias and Losada [48], García-Aliaga, Marquina Nieto, Coterón, Rodríguez-González, Gil Ares and Refoyo Román [60], Ruan, Ge, Gómez, Shen, Gong and Cui [50], Ruan, Ge, Shen, Pu, Zong and Cui [51] | Andersson, Ekblom and Krustrup [3] Gómez, Mitrotasios, Armatas and Lago-Peñas [8], Gollan, Ferrar and Norton [36], Fernandez-Navarro, Fradua, Zubillaga and McRobert [37], Mitrotasios, Gonzalez-Rodenas, Armatas and Aranda [40], Praça, Lima, Bredt, Sousa, Clemente and Andrade [41], Yi, et al. [63], Bekkers and Dabadghao [56], Gollan, Bellenger and Norton [44], Gonzalez-Rodenas, Aranda and Aranda-Malaves [45], Fernandes, Camerino, Garganta, Hileno and Barreira [46], Zhou, Lago-Peñas, Lorenzo and Gómez [47], García-Aliaga, Marquina Nieto, Coterón, Rodríguez-González, Gil Ares and Refoyo Román [60], Santos, Lago-Peñas and García-García [35], Lago [30] | Fernandez-Navarro, Fradua, Zubillaga and McRobert [20], Bekkers and Dabadghao [56], Castellano and Pic [39], Drezner, Lamas, Farias, Barrera and Dantas [43], Schulze, Julian and Meyer [49], Lopez-Valenciano, Garcia-Gómez, López-Del Campo, Resta, Moreno-Perez, Blanco-Pita, Valés-Vázquez and Del Coso [7], Ruan, Ge, Shen, Pu, Zong and Cui [51] |
Article | Factors’ Names |
---|---|
[28] | Possession style, Crosses, High press |
[31] | Finishing efficiency, Ball possession performance, Counter-attack efficiency, Type of defense (man to man to man/ mixed), Redirection of the opposing team’s attack build-up |
[33] | Possession directness, Width of ball regain, Use of crosses, Possession width, Defensive ball pressure, Progression of the attack |
[34] | Possession style, Set pieces attack, Counterattacking play, Transitional play (2) * |
[8] | Ball possession, Ending actions, Individual challenges, Counter attack, Set pieces, Transitional play, Fouling actions, Free-kick |
[39] | High press, type of attack |
[47] | High intensity play, Possession and passing, Offensive actions, Defensive actions, Individual challenges, Serious fouls, Attacking aggressively |
[50] | Defense close to the own goal, High intensity confrontation, Mid positioning defense with pressure, Error, Defense in advanced zones, Receiving a dangerous situation, Defense of goalkeeper (2) * |
[51] | Constant, Receiving a dangerous situation, Defense closed to the own goal, Error, Keeper claim, High intensity confrontation, Mid-positioning defense with pressure, Defense in advanced zones, Keeper smother |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakias, S.; Moustakidis, S.; Kokkotis, C.; Tsatalas, T.; Papalexi, M.; Plakias, D.; Giakas, G.; Tsaopoulos, D. Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review. J. Funct. Morphol. Kinesiol. 2023, 8, 39. https://doi.org/10.3390/jfmk8020039
Plakias S, Moustakidis S, Kokkotis C, Tsatalas T, Papalexi M, Plakias D, Giakas G, Tsaopoulos D. Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review. Journal of Functional Morphology and Kinesiology. 2023; 8(2):39. https://doi.org/10.3390/jfmk8020039
Chicago/Turabian StylePlakias, Spyridon, Serafeim Moustakidis, Christos Kokkotis, Themistoklis Tsatalas, Marina Papalexi, Dionysios Plakias, Giannis Giakas, and Dimitrios Tsaopoulos. 2023. "Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review" Journal of Functional Morphology and Kinesiology 8, no. 2: 39. https://doi.org/10.3390/jfmk8020039
APA StylePlakias, S., Moustakidis, S., Kokkotis, C., Tsatalas, T., Papalexi, M., Plakias, D., Giakas, G., & Tsaopoulos, D. (2023). Identifying Soccer Teams’ Styles of Play: A Scoping and Critical Review. Journal of Functional Morphology and Kinesiology, 8(2), 39. https://doi.org/10.3390/jfmk8020039