Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brorson, S. Cuff tear arthropathy in the nineteenth century: “Chronic rheumatic arthritis” with “partial luxation upwards” of the humeral head. Int. Orthop. 2019, 43, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Neer, C.S.; Craig, E.V.; Fukuda, H. Cuff-tear arthropathy. J. Bone Jt. Surg. Am. 1983, 65, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Mccarty, D.J.; Halverson, P.B.; Carrera, G.F.; Brewer, B.J.; Kozin, F. “Milwaukee shoulder”—Association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. Arthritis Rheum. 1981, 24, 464–473. [Google Scholar] [CrossRef]
- Collins, D.N.; Harryman, D.T.I. Arthroplasty for arthritis and rotator cuff deficiency. Orthop. Clin. N. Am. 1997, 28, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Silldorff, M.D.; Choo, A.D.; Choi, A.J.; Lin, E.; Carr, J.A.; Lieber, R.L.; Lane, J.G.; Ward, S.R. Effect of Supraspinatus Tendon Injury on Supraspinatus and Infraspinatus Muscle Passive Tension and Associated Biochemistry. J. Bone Jt. Surg. 2014, 96, e175. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.C.; Sato, E.J.; Bachasson, D.; Cheng, T.; Azimi, H.; Schenk, S.; Engler, A.J.; Singh, A.; Ward, S.R. Muscle architectural changes after massive human rotator cuff tear. J. Orthop. Res. 2016, 34, 2089–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walch, G.; Collotte, P.; Raiss, P.; Athwal, G.S.; Gauci, M.O. The Characteristics of the Favard E4 Glenoid Morphology in Cuff Tear Arthropathy: A CT Study. J. Clin. Med. 2020, 9, 3704. [Google Scholar] [CrossRef]
- Van Parys, M.; Alkiar, O.; Naidoo, N.; Van Tongel, A.; De Wilde, L. Three-dimensional evaluation of scapular morphology in primary glenohumeral arthritis, rotator cuff arthropathy, and asymptomatic shoulders. J. Shoulder Elb. Surg. 2021, 30, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Visotsky, J.L.; Basamania, C.; Seebauer, L.; Rockwood, C.A.; Jensen, K.L. Cuff tear arthropathy: Pathogenesis, classification, and algorithm for treatment. J. Bone Jt. Surg. Am. 2004, 86-A (Suppl. 2), 35–40. [Google Scholar] [CrossRef]
- Brolin, T.J.; Updegrove, G.F.; Horneff, J.G. Classifications in Brief: Hamada Classification of Massive Rotator Cuff Tears. Clin. Orthop. Relat. Res. 2017, 475, 2819–2823. [Google Scholar] [CrossRef] [PubMed]
- Lévigne, C.; Boileau, P.; Favard, L.; Garaud, P.; Molé, D.; Sirveaux, F.; Walch, G. Scapular notching in reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2008, 17, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Bercik, M.J.; Kruse, K.; Yalizis, M.; Gauci, M.O.; Chaoui, J.; Walch, G. A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging. J. Shoulder Elb. Surg. 2016, 25, 1601–1606. [Google Scholar] [CrossRef]
- Habermeyer, P.; Magosch, P.; Lichtenberg, S. Classifications and Scores of the Shoulder; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-24350-2. [Google Scholar]
- Goutallier, D.; Postel, J.-M.; Bernageau, J.; Lavau, L.; Voisin, M.-C. Fatty Muscle Degeneration in Cuff Ruptures. Pre- and Postoperative Evaluation by CT Scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef]
- Thomazeau, H.; Rolland, Y.; Lucas, C.; Duval, J.; Langlais, F. Atrophy of the supraspinatus belly Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop. Scand. 1996, 67, 264–268. [Google Scholar] [CrossRef]
- Patte, D. Classification of rotator cuff lesions. Clin. Orthop. Relat. Res. 1990, 254, 81–86. [Google Scholar] [CrossRef]
- Nyffeler, R.W.; Werner, C.M.L.; Sukthankar, A.; Schmid, M.R.; Gerber, C. Association of a large lateral extension of the acromion with rotator cuff tears. J. Bone Jt. Surg. Ser. A 2006, 88, 800–805. [Google Scholar] [CrossRef]
- Moor, B.K.; Bouaicha, S.; Rothenfluh, D.A.; Sukthankar, A.; Gerber, C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint? A radiological study of the critical shoulder angle. Bone Jt. J. 2013, 95 B, 935–941. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Heisey, D.M. The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 2001, 55, 19–24. [Google Scholar] [CrossRef]
- Han, O.J.; Hoon, K.S.; Kang, J.Y.; Hee, O.C.; Gong, H.S. Effect of Age on Functional and Structural Outcome after Rotator Cuff Repair. Am. J. Sports Med. 2010, 38, 672–678. [Google Scholar] [CrossRef]
- Gelvosa, M.N.; Azarcon, A. Gender and laterality differences on measurements of acromiohumeral distance (AHD) at rest and at shoulder abduction using musculoskeletal ultrasound in asymptomatic Filipino adults. Ann. Phys. Rehabil. Med. 2018, 61, e435–e436. [Google Scholar] [CrossRef]
- Feeley, B.T.; Gallo, R.A.; Craig, E.V. Cuff tear arthropathy: Current trends in diagnosis and surgical management. J. Shoulder Elb. Surg. 2009, 18, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, S.; Longo, U.G.; Papalia, R.; Denaro, V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: A systematic review. Musculoskelet. Surg. 2017, 101, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Yamamoto, N.; Abe, H.; Fukuda, M.; Seki, N.; Kikuchi, K.; Kijima, H.; Itoi, E. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J. Orthop. 2013, 10, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, A.; Takagishi, K.; Osawa, T.; Yanagawa, T.; Nakajima, D.; Shitara, H.; Kobayashi, T. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elbow Surg. 2010, 19, 116–120. [Google Scholar] [CrossRef]
n = 342 | Female (n = 257) | Male (n = 85) | p |
---|---|---|---|
Age (years) | 74.37 ± 7.5 | 70.11 ± 10.0 | 0.001 |
Side (left/right) | 101 (39.3)/156 (60.7) | 32 (37.6)/53 (62.4) | 0.887 |
n = 342 | <74.5 years (n = 171) | >74.5 years (n = 171) | p |
Gender (female/male) | 120 (70.2)/51 (29.8) | 137 (80.1)/34 (19.9) | 0.045 |
Side (left/right) | 65 (38)/106 (62) | 68 (39.8)/103 (60.2) | 0.824 |
Distribution | Statistical Significance f | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Female | Male | Older | Younger | Median | SD e | f/m | o/y | |
Seebauer (1A/1B/2A/2B) | 341 | 256 | 85 | 171 | 170 | 0.341 | 0.006 | ||
Hamada (1–5) | 329 | 248 | 81 | 166 | 163 | 0.483 | 0.417 | ||
Favard (E0–E4) | 342 | 257 | 85 | 171 | 171 | 0.807 | 0.534 | ||
Walch (A1–2/B1–B3/C/D) | 238 | 180 | 58 | 106 | 132 | 0.686 | 0.107 | ||
Habermeyer (0/A/B/C) | 159 | 117 | 42 | 61 | 98 | 0.652 | <0.001 | ||
Goutallier (0–4) | 166 | 121 | 45 | 63 | 103 | 0.006 | 0.001 | ||
Thomazeau (1–3) | 183 | 121 | 62 | 62 | 103 | 0.063 | 0.037 | ||
Patte (0–3) | 163 | 119 | 44 | 62 | 101 | 0.543 | 0.003 | ||
AHI b | 287 | 214 | 73 | 144 | 143 | 0.71 | 0.11 | 0.219 | 0.397 |
AHD c (mm) | 272 | 203 | 69 | 126 | 146 | 4.9 | 3.2 | 0.076 | 0.001 |
CSA d (°) | 294 | 220 | 74 | 150 | 144 | 31.76 | 4.95 | 0.843 | 0.123 |
Version (°) | 232 | 178 | 54 | 103 | 129 | 5.6 | 8.8 | 0.144 | 0.482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber, M.S.; Bischofreiter, M.; Brandstätter, P.; Hochreiter, J.; Sadoghi, P.; Ortmaier, R. Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. J. Funct. Morphol. Kinesiol. 2023, 8, 8. https://doi.org/10.3390/jfmk8010008
Gruber MS, Bischofreiter M, Brandstätter P, Hochreiter J, Sadoghi P, Ortmaier R. Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. Journal of Functional Morphology and Kinesiology. 2023; 8(1):8. https://doi.org/10.3390/jfmk8010008
Chicago/Turabian StyleGruber, Michael Stephan, Martin Bischofreiter, Patrick Brandstätter, Josef Hochreiter, Patrick Sadoghi, and Reinhold Ortmaier. 2023. "Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis" Journal of Functional Morphology and Kinesiology 8, no. 1: 8. https://doi.org/10.3390/jfmk8010008
APA StyleGruber, M. S., Bischofreiter, M., Brandstätter, P., Hochreiter, J., Sadoghi, P., & Ortmaier, R. (2023). Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. Journal of Functional Morphology and Kinesiology, 8(1), 8. https://doi.org/10.3390/jfmk8010008