Association between Stress and Physical Fitness of University Students Post-COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Approval
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Female College Students
3.2. Stress Levels among Female College Students
3.3. Physical Fitness Tests
3.4. Association between Stress Levels Using SPST-60 Scores and Physical Fitness of Female College Students
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teasdale, E.; Yardley, L.; Schlotz, W.; Michie, S. The importance of coping appraisal in behavioural responses to pandemic flu. Br. J. Health Psychol. 2012, 17, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Harper, C.; Satchell, L.; Fido, D.; Latzman, R. Functional fear Predicts public health compliance in the COVID-19 pandemic. Int. J. Ment. Health Addict. 2021, 19, 1875–1888. [Google Scholar] [CrossRef]
- Wongrajit, K. Endemic Approach to COVID-19; Strategy and Planning Division of Office of the Permanent Secretary Ministry of Public Health: Bangkok, Thailand, 2022; pp. 1–7.
- Wang, X.; Zhang, N.; Pu, C.; Li, Y.; Chen, H.; Li, M. Anxiety, depression, and PTSD among college students in the post-COVID-19 era: A cross-sectional study. Brain Sci. 2022, 12, 1553. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xi, H.T.; Zhu, Q.Q.; Ji, M.; Zhang, H.; Yang, B.X.; Bai, W.; Cai, H.; Zhao, Y.J.; Chen, L.; et al. The prevalence of fatigue among Chinese nursing students in post-COVID-19 era. PeerJ 2021, 9, e11154. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Marinovich, C.; Rajkumar, R.; Besecker, M.; Zhou, S.; Jacob, L.; Koyanagi, A.; Smith, L. COVID-19 dimensions are related to depression and anxiety among US college students: Findings from the healthy minds survey 2020. J. Affect. Disord. 2021, 292, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, A.; Oh, H.; Vancampfort, D.; Carvalho, A.F.; Veronese, N.; Stubbs, B.; Lara, E. Perceived stress and mild cognitive impairment among 32,715 community-dwelling older adults across six low- and middle-income countries. Gerontology 2019, 65, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Bower, J.E.; Kiefe, C.I.; Seeman, T.E.; Irwin, M.R. Early life stress and inflammatory mechanisms of fatigue in the coronary artery risk development in young adults (CARDIA) study. Brain Behav. Immun. 2012, 26, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Puyat, J.H.; Ranote, H.; Vila-Rodriguez, F.; Kazanjian, A. A cross-sectional survey of activities to support mental wellness during the COVID-19 pandemic. J. Affect. Disord. Rep. 2021, 5, 100167. [Google Scholar] [CrossRef]
- De Camargo, E.M.; Piola, T.S.; dos Santos, L.P.; de Borba, E.F.; de Campos, W.; da Silva, S.G. Frequency of physical activity and stress levels among Brazilian adults during social distancing due to the coronavirus (COVID-19): Cross-sectional study. Sao Paulo Med. J. 2021, 139, 325–330. [Google Scholar] [CrossRef]
- Kong, S.; Koo, J.; Lim, S.K. Associations between stress and physical activity in Korean adolescents with atopic dermatitis based on the 2018-2019 Korea youth risk behavior web-based survey. Int. J. Environ. Res. Public Health 2020, 17, 8175. [Google Scholar] [CrossRef]
- Stults-Kolehmainen, M.A.; Sinha, R. The effects of stress on physical activity and exercise. Sports Med. 2014, 44, 81–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownley, K.A.; Hurwitz, B.E.; Schneiderman, N. Cardiovascular psychophysiology. In Handbook of Psychophysiology, 2nd ed.; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: New York, NY, USA, 2000; pp. 224–264. [Google Scholar]
- Vrijkotte, T.G.M.; van Doornen, L.J.P.; de Geus, E.J.C. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 2000, 35, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, A.; Blumenthal, J.A.; Kaplan, J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 1999, 99, 2192–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooyackers, O.E.; Nair, K.S. Hormonal regulation of human muscle protein metabolism. Annu. Rev. Nutr. 1997, 17, 457–485. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, M.; Chen, Y.J.; Wang, Y.J.; Huang, F.; Liu, J. Oxidative damage and HSP70 expression in masseter muscle induced by psychological stress in rats. Physiol. Behav. 2011, 104, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.J.; Nowson, C.A. Relationship between stress, eating behavior, and obesity. Nutrition 2007, 23, 887–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubera, B.; Leonhard, C.; Rößler, A.; Peters, A. Stress-related changes in body form: Results from the Whitehall II study. Obesity 2017, 25, 1625–1632. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, H.W.; Kavazis, A.N. Body Composition and perceived stress through a calendar year in NCAA I female volleyball players. Int. J. Exerc. Sci. 2019, 12, 433–443. [Google Scholar]
- Mahatnirunkul, S.; Pumpisalchai, W.; Thapanya, P. The construction of Suan Prung Stress Test for Thai population. Bull. Suan Prung 1997, 13, 1–11. [Google Scholar]
- Messiah, S. Body Mass Index. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 247–249. [Google Scholar]
- WHO Library Cataloguing-in-Publication Data. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation, Geneva, Switzerland, 8–11 December 2008; WHO Document Production Services: Geneva, Switzerland, 2011; pp. 5–7. [Google Scholar]
- Alvero-Cruz, J.R.; Marfell-Jones, M.; Alacid, F.; Orta, P.A.; Correas-Gómez, L.; Medina, F.S.; Carnero, E.A. Comparison of two field methods for estimating body fat in different spanish dance disciplines. Nutr. Hosp. 2014, 30, 614–621. [Google Scholar] [CrossRef]
- Das, B.; Ghosh, T.; Gangopadhyay, S. A comparative study of physical fitness index (PFI) and predicted maximum aerobic capacity (VO2max) among the different groups of female students in west Bengal, India. Int. J. Appl. Sport. Sci. 2010, 22, 13–23. [Google Scholar] [CrossRef]
- Massy-Westropp, N.; Rankin, W.; Ahern, M.; Krishnan, J.; Hearn, T.C. Measuring grip strength in normal adults: Reference ranges and a comparison of electronic and hydraulic instruments. J. Hand. Surg. Am. 2004, 29, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, W.W.; Hopkins, D.R. A comparison of the sit and reach and the modified sit and reach in the measurement of flexibility in women. Res. Q. Exerc. Sport. 1992, 63, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Yang, J.; Lin, Z.; Wan, X. Mental health and the role of physical activity during the COVID-19 pandemic. Front. Psychol. 2021, 20, 759987. [Google Scholar] [CrossRef]
- Rantalainen, T.; Ridgers, N.D.; Gao, Y.; Belavý, D.L.; Haapala, E.A.; Finni, T. Physical activity accumulation along the intensity spectrum differs between children and adults. Eur. J. Appl. Physiol. 2021, 121, 2563–2571. [Google Scholar] [CrossRef]
- Verswijveren, S.J.J.M.; Lamb, K.E.; Martín-Fernández, J.A.; Winkler, E.; Leech, R.M.; Timperio, A.; Salmon, J.; Daly, R.M.; Cerin, E.; Dunstan, D.W.; et al. Using compositional data analysis to explore accumulation of sedentary behavior, physical activity and youth health. J. Sport Health Sci. 2021, 11, 234–243. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. Stress in cardiovascular diseases. Med. Sci. Monit. 2002, 8, RA93–RA101. [Google Scholar]
- Kettunen, O.; Kyröläinen, H.; Santtila, M.; Vuorimaa, T.; Vasankari, T.J. Greater levels of cardiorespiratory and muscular fitness are associated with low stress and high mental resources in normal but not overweight men. BMC Public Health 2016, 16, 788. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Yang, Y.K. The study of correlation between physical fitness and stress of female. Korea J. Health Edu. Promot. 2004, 21, 99–108. [Google Scholar]
- Surkan, P.J.; Sakyi, K.S.; Hu, A.; Olinto, M.T.; Gonçalves, H.; Horta, B.L.; Gigante, D.P. Impact of stressful life events on central adiposity in the Pelotas birth cohort. Rev. Saude Publica 2018, 52, 61. [Google Scholar] [CrossRef] [Green Version]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones 2018, 17, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stimson, R.H.; Anderson, A.J.; Ramage, L.E.; Macfarlane, D.P.; de Beaux, A.C.; Mole, D.J.; Andrew, R.; Walker, B.R. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct. Diabetes Obes. Metab. 2017, 19, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.C.I.; Epel, E.S.; White, M.L.; Standen, E.C.; Seckl, J.R.; Tomiyama, A.J. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology 2015, 62, 301–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Marks, D.F. Dyshomeostasis, obesity, addiction and chronic stress. Health Psychol. Open 2016, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ulrich-Lai, Y.M.; Fulton, S.; Wilson, M.; Petrovich, G.; Rinaman, L. Stress exposure, food intake and emotional state. Stress 2015, 18, 381–399. [Google Scholar] [CrossRef]
- Stavrou, S.; Nicolaides, N.C.; Papageorgiou, I.; Papadopoulou, P.; Terzioglou, E.; Chrousos, G.P.; Darviri, C.; Charmandari, E. The effectiveness of a stress-management intervention program in the management of overweight and obesity in childhood and adolescence. J. Mol. Biochem. 2016, 5, 63–70. [Google Scholar]
- Poornima, K.N.; Karthick, N.; Sitalakshmi, R. Study of the effect of stress on skeletal muscle function in geriatrics. J. Clin. Diagn. Res. 2014, 8, 8–9. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Qiu, S.; Deng, L.; Li, J.; Yang, L.; Wei, Q.; Dong, B. The association between grip strength and depression among adults aged 60 years and older: A large-scaled population-based study from the longitudinal aging study in India. Front. Aging Neurosci. 2022, 14, 937087. [Google Scholar] [CrossRef]
- Latroche, C.; Gitiaux, C.; Chrétien, F.; Desguerre, I.; Mounier, R.; Chazaud, B. Skeletal muscle microvasculature: A highly dynamic lifeline. Physiology 2015, 30, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 3, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.R.H.; Azah, H.N.; Yazed, A.M.; Norhamizan, H. Physiological factors affecting the mechanical performance of peripheral muscles: A perspective for long COVID patients through a systematic literature review. Front. Physiol. 2022, 13, 958333. [Google Scholar] [CrossRef]
Parameters | n (%) or Mean ± SD | |
---|---|---|
Age (years), mean ± SD | 20.03 ± 1.36 | |
Underlying disease, n (%) | 0 (0) | |
Smoking, n (%) | 0 (0) | |
Alcohol use, n (%) | 14 (13.9) | |
Exercise frequency, n (%) | <3 days/week or no exercise | 46 (45.5) |
≥3 days/week | 55 (54.5) |
SPST-60 Aspects | Mean | Median | SD | Range |
---|---|---|---|---|
Susceptibility to stress | 25.26 | 25 | 5.36 | 14–43 |
Sources of stress | ||||
Work or study | 19.69 | 20 | 5.14 | 9–33 |
Personal | 9.49 | 9 | 2.99 | 4–18 |
Family | 8.31 | 8 | 3.82 | 4–20 |
Social | 4.92 | 5 | 1.64 | 2–9 |
Environment | 8.60 | 8 | 3.36 | 4–17 |
Financial | 8.54 | 8 | 3.17 | 3–15 |
Total sources of stress | 59.55 | 58 | 16.24 | 26–107 |
Symptom of stress | ||||
Skeletal muscles system | 6.97 | 7 | 2.66 | 3–13 |
Parasympathetic nervous system | 5.33 | 5 | 2.21 | 2–12 |
Sympathetic nervous system | 5.85 | 5 | 2.85 | 3–15 |
Emotion | 9.10 | 9 | 3.79 | 4–20 |
Cognition | 7.01 | 7 | 2.85 | 3–15 |
Endocrine system | 8.32 | 8 | 3.24 | 4–20 |
Immune system | 6.52 | 6 | 2.50 | 4–13 |
Total symptoms of stress | 49.70 | 47 | 17.29 | 24–106 |
Physical Fitness Tests | Mean | Median | SD | Range |
---|---|---|---|---|
Body mass index (kg/m2) | 21.73 | 20.61 | 4.56 | 15.06–41.85 |
Waist-to-hip circumference ratio | 0.79 | 0.78 | 0.09 | 0.68–1.43 |
Body fat (%) | 29.91 | 30.30 | 4.29 | 21.40–38.00 |
Maximal oxygen consumption (mL/kg/min) | 41.47 | 42.17 | 5.13 | 31.27–52.70 |
Relative hand grip strength | 0.46 | 0.47 | 0.08 | 0.25–0.63 |
Relative leg strength | 1.16 | 1.11 | 0.38 | 0.57–2.57 |
Forward back flexibility (cm) | 19.79 | 16.26 | 11.53 | 5.08–50.80 |
SPST-60 Aspect | β (95% CI) | ||||||
---|---|---|---|---|---|---|---|
BMI | WHR | Body Fat | VO2max | Hand Grip Strength | Leg Strength | Flexibility | |
Susceptibility to stress | −0.026 (−0.211, 0.159) | −0.002 (−0.005, 0.002) | −0.040 (−0.214, 0.133) | 0.007 (−0.025, 0.038) | 0.001 (−0.003, 0.004) | 0.009 (−0.006, 0.024) | −0.163 (−0.474, 0.148) |
Sources of stress | |||||||
Work or study | 0.060 (−0.119, 0.239) | 0.002 (−0.001, 0.006) | 0.135 (−0.031, 0.302) | −0.041 (−0.215, 0.133) | −0.003 (−0.006, 0.000) | −0.007 (−0.021, 0.008) | 0.069 (−0.372, 0.234) |
Personal | 0.068 (−0.245, 0.381) | 0.003 (−0.003, 0.009) | 0.084 (−0.210, 0.378) | −0.082 (−0.386, 0.222) | −0.003 (−0.009, 0.003) | −0.016 (−0.042, 0.009) | −0.345 (−0.870, 0.180) |
Family | −0.092 (−0.332, 0.149) | −0.001 (−0.006, 0.003) | −0.066 (−0.292, 0.160) | 0.002 (−0.232, 0.237) | −0.002 (−0.006, 0.003) | −0.002 (−0.022, 0.018) | −0.129 (−0.536, 0.278) |
Social | 0.167 (−0.396, 0.730) | 0.009 (−0.001, 0.020) | 0.171 (−0.358, 0.700) | −0.308 (−0.852, 0.236) | −0.007 (−0.017, 0.003) | −0.035 (−0.081, 0.011) | 0.007 (−0.946, 0.960) |
Environment | −0.019 (−0.294, 0.255) | −0.001 (−0.006, 0.004) | 0.064 (−0.194, 0.322) | −0.291 (−0.551, −0.031) * | −0.686 (−0.005, 0.005) | −0.007 (−0.029, 0.016) | 0.161 (−0.303, 0.624) |
Financial | 0.138 (−0.154, 0.430) | −0.005 (−0.010, 0.001) | 0.007 (−0.269, 0.282) | −0.116 (−0.399, 0.168) | −0.004 (−0.009, 0.001) | −0.004 (−0.028, 0.020) | 0.003 (−0.493, 0.498) |
Total sources of stress scores | 0.009 (−0.048, 0.066) | 0.000 (−0.001, 0.001) | 0.018 (−0.036, 0.071) | −0.027 (−0.082, 0.028) | −0.001 (−0.002, 0.000) | −0.002 (−0.007, 0.003) | −0.019 (−0.115, 0.078) |
Symptoms of stress | |||||||
Skeletal muscles system | −0.030 (−0.383, 0.324) | 0.000 (−0.007, 0.006) | 0.096 (−0.235, 0.428) | −0.141 (−0.483, 0.201) | −0.003 (−0.010, 0.003) | −0.026 (−0.054, 0.003) | −0.234 (−0.830, 0.361) |
Parasympathetic nervous system | 0.119 (−0.299, 0.536) | 0.010 (0.002, 0.017) * | 0.183 (−0.208, 0.574) | −0.200 (−0.604, 0.204) | −0.003 (−0.011, 0.004) | −0.005 (−0.039, 0.029) | −0.419 (−1.120, 0.282) |
Sympathetic nervous system | 0.036 (−0.286, 0.357) | 0.006 (0.000, 0.012) * | 0.152 (−0.149, 0.453) | −0.097 (−0.409, 0.214) | −0.003 (−0.008, 0.003) | −0.015 (−0.041, 0.011) | −0.293 (−0.833, 0.247) |
Emotion | 0.140 (−0.102, 0.381) | 0.005 (0.001, 0.009) * | 0.138 (−0.089, 0.364) | −0.012 (−0.247, 0.224) | −0.005 (−0.009, 0.000) * | −0.012 (−0.032, 0.007) | −0.217 (−0.625, 0.191) |
Cognition | 0.180 (−0.148, 0.508) | 0.005 (−0.001, 0.011) | 0.212 (−0.095, 0.520) | 0.028 (−0.292, 0.349) | −0.005 (−0.011, 0.001) | −0.017 (−0.044, 0.010) | −0.035 (−0.593, 0.522) |
Endocrine system | −0.026 (−0.312, 0.261) | −0.001 (−0.006, 0.005) | 0.027 (−0.242, 0.295) | −0.112 (−0.389, 0.165) | 0.000 (−0.005, 0.006) | −0.005 (−0.029, 0.018) | 0.002 (−0.482, 0.486) |
Immune system | 0.003 (−0.365, 0.371) | 0.002 (−0.005, 0.009) | −0.060 (−0.406, 0.285) | −0.150 (−0.506, 0.206) | −0.002 (−0.008, 0.005) | −0.027 (−0.057, 0.003) | 0.229 (−0.391, 0.849) |
Total symptoms of stress scores | 0.006 (−0.048, 0.059) | 0.001 (0.000, 0.002) | 0.021 (−0.029, 0.071) | −0.017 (−0.069, 0.034) | 0.000 (−0.001, 0.000) | −0.003 (−0.007, 0.002) | −0.037 (−0.127, 0.053) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannakul, B.; Sangkarit, N.; Manoy, P.; Amput, P.; Tapanya, W. Association between Stress and Physical Fitness of University Students Post-COVID-19 Pandemic. J. Funct. Morphol. Kinesiol. 2023, 8, 33. https://doi.org/10.3390/jfmk8010033
Suwannakul B, Sangkarit N, Manoy P, Amput P, Tapanya W. Association between Stress and Physical Fitness of University Students Post-COVID-19 Pandemic. Journal of Functional Morphology and Kinesiology. 2023; 8(1):33. https://doi.org/10.3390/jfmk8010033
Chicago/Turabian StyleSuwannakul, Boonsita, Noppharath Sangkarit, Pacharee Manoy, Patchareeya Amput, and Weerasak Tapanya. 2023. "Association between Stress and Physical Fitness of University Students Post-COVID-19 Pandemic" Journal of Functional Morphology and Kinesiology 8, no. 1: 33. https://doi.org/10.3390/jfmk8010033
APA StyleSuwannakul, B., Sangkarit, N., Manoy, P., Amput, P., & Tapanya, W. (2023). Association between Stress and Physical Fitness of University Students Post-COVID-19 Pandemic. Journal of Functional Morphology and Kinesiology, 8(1), 33. https://doi.org/10.3390/jfmk8010033