Effects of Artificially Induced Breast Augmentation on the Electromyographic Activity of Neck and Trunk Muscles during Common Daily Movements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Testing Procedure
2.2.1. Breast Volumetric Calculations
2.2.2. EMG Recordings
2.2.3. Signal Processing and Data Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical Implications
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Luan, J.; Cheng, H.; Chen, L.; Li, Z.; Panayi, A.C.; Liu, C. Menstrual Cycle-Related Fluctuations in Breast Volume Measured Using Three-Dimensional Imaging: Implications for Volumetric Evaluation in Breast Augmentation. Aesthetic Plast. Surg. 2019, 43, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bayer, C.M.; Bani, M.R.; Schneider, M.; Dammer, U.; Raabe, E.; Haeberle, L.; Faschingbauer, F.; Schneeberger, S.; Renner, S.P.; Fischer, D.; et al. Assessment of Breast Volume Changes during Human Pregnancy Using a Three-Dimensional Surface Assessment Technique in the Prospective CGATE Study. Eur. J. Cancer Prev. 2014, 23, 151–157. [Google Scholar] [CrossRef] [PubMed]
- den Tonkelaar, I.; Peeters, P.H.M.; van Noord, P.A.H. Increase in Breast Size after Menopause: Prevalence and Determinants. Maturitas 2004, 48, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemstrom, H.; Olsson, H. Breast Size in Relation to Endogenous Hormone Levels, Body Constitution, and Oral Contraceptive Use in Healthy Nulligravid Women Aged 19–25 Years. Am. J. Epidemiol. 1997, 145, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Strombeck, J.O. Surgery of the Breast, 1st ed.; Strombeck, J.O., Rosato, F., Eds.; Thieme Publishing Group: Stuttgart, Germany, 1986. [Google Scholar]
- Mansel, R.; Webster, D.; Sweetland, H. Benign Disorders and Diseases of the Breast, 3rd ed.; Saunders Ltd.: Philadelphia, PA, USA, 2009; ISBN 9780702027741. [Google Scholar]
- Baker, J. Choosing Breast Implant Size: A Matter of Aesthetics. Aesthetic Surg. J. 2004, 24, 565–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, E. Prospective Outcome Study of 225 Cases of Breast Augmentation. Plast. Reconstr. Surg. 2013, 131, 1158–1166. [Google Scholar] [CrossRef]
- Parmar, C.; West, M.; Pathak, S.; Nelson, J.; Martin, L. Weight versus Volume in Breast Surgery: An Observational Study. JRSM Short Rep. 2011, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Govrin-Yehudain, J.; Dvir, H.; Preise, D.; Govrin-Yehudain, O.; Govreen-Segal, D. Lightweight Breast Implants: A Novel Solution for Breast Augmentation and Reconstruction Mammaplasty. Aesthetic Surg. J. 2015, 35, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.H.; Garza, R.; Povoski, S.P. A Review of the Use of Silicone Implants in Breast Surgery. Expert Rev. Med. Devices 2016, 13, 143–156. [Google Scholar] [CrossRef]
- Lapid, O.; de Groof, E.J.; Corion, L.U.; Smeulders, M.J.; van der Horst, C.M. The Effect of Breast Hypertrophy on Patient Posture. Arch. Plast. Surg. 2013, 40, 559. [Google Scholar] [CrossRef]
- Findikcioglu, K.; Findikcioglu, F.; Ozmen, S.; Guclu, T. The Impact of Breast Size on the Vertebral Column: A Radiologic Study. Aesthetic Plast. Surg. 2007, 31, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.R.; Coltman, C.E.; McGhee, D.E. Effects of Obesity on Breast Size, Thoracic Spine Structure and Function, Upper Torso Musculoskeletal Pain and Physical Activity in Women. J. Sport Health Sci. 2020, 9, 140–148. [Google Scholar] [CrossRef] [PubMed]
- McGhee, D.E.; Coltman, K.A.; Riddiford-Harland, D.L.; Steele, J.R. Upper Torso Pain and Musculoskeletal Structure and Function in Women with and without Large Breasts: A Cross Sectional Study. Clin. Biomech. 2018, 51, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.M.; Meador, K.A.; McClure, L.R.; Makrozahopoulos, D.; Brooks, D.J.; Mirka, G.A. A Biomechanical Analysis of Anterior Load Carriage. Ergonomics 2007, 50, 2104–2117. [Google Scholar] [CrossRef]
- Motmans, R.R.E.E.; Tomlow, S.; Vissers, D. Trunk Muscle Activity in Different Modes of Carrying Schoolbags. Ergonomics 2006, 49, 127–138. [Google Scholar] [CrossRef]
- Cook, T.M.; Neumann, D.A. The Effects of Load Placement on the EMG Activity of the Low Back Muscles during Load Carrying by Men and Women. Ergonomics 1987, 30, 1413–1423. [Google Scholar] [CrossRef]
- Oo, M.; Wang, Z.; Sakakibara, T.; Kasai, Y. Relationship Between Brassiere Cup Size and Shoulder-Neck Pain in Women. Open Orthop. J. 2012, 6, 140–142. [Google Scholar] [CrossRef]
- Foreman, K.B.; Dibble, L.E.; Droge, J.; Carson, R.; Rockwell, W.B. The Impact of Breast Reduction Surgery on Low-Back Compressive Forces and Function in Individuals with Macromastia. Plast. Reconstr. Surg. 2009, 124, 1393–1399. [Google Scholar] [CrossRef]
- Schinkel-Ivy, A.; Drake, J.D.M. Breast Size Impacts Spine Motion and Postural Muscle Activation. J. Back Musculoskelet. Rehabil. 2016, 29, 741–748. [Google Scholar] [CrossRef]
- Dale, E. Bra Sizes and Bigger Breasts: Where’s the Science? Available online: http://www.huffingtonpost.com/elisabeth-dale/bigger-bra-sizesand-brea_b_3746305.html?ir=Australia (accessed on 20 February 2022).
- American Society of Plastic Surgeons. Plastic Surgery Statistics Report; American Society of Plastic Surgeons: Arlington Heights, IL, USA, 2018. [Google Scholar]
- Risius, D.; Milligan, A.; Mills, C.; Scurr, J. Multiplanar Breast Kinematics during Different Exercise Modalities. Eur. J. Sport Sci. 2015, 15, 111–117. [Google Scholar] [CrossRef]
- Coltman, C.E.; Steele, J.R.; McGhee, D.E. Does Breast Size Affect How Women Participate in Physical Activity? J. Sci. Med. Sport 2019, 22, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Bricout, N. Breast Surgery; Springer Paris: Paris, France, 1996; ISBN 978-2-8178-0928-1. [Google Scholar]
- Rohlmann, A.; Pohl, D.; Bender, A.; Graichen, F.; Dymke, J.; Schmidt, H.; Bergmann, G. Activities of Everyday Life with High Spinal Loads. PLoS ONE 2014, 9, e98510. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Zhou, G.; Ling, Y. Breast Volume Measurement in Young Chinese Women and Clinical Applications. Aesthetic Plast. Surg. 1997, 21, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Kayar, R.; Civelek, S.; Cobanoglu, M.; Gungor, O.; Catal, H.; Emiroglu, M. Five Methods of Breast Volume Measurement: A Comparative Study of Measurements of Specimen Volume in 30 Mastectomy Cases. Breast Cancer Basic Clin. Res. 2011, 5, 43–52. [Google Scholar] [CrossRef]
- Kim, M.H.; Yi, C.H.; Kwon, O.Y.; Cho, S.H.; Yoo, W.G. Changes in Neck Muscle Electromyography and Forward Head Posture of Children When Carrying Schoolbags. Ergonomics 2008, 51, 890–901. [Google Scholar] [CrossRef]
- Mercer, S.R. Surface Electrode Placement and Upper Trapezius. Adv. Physiother. 2002, 4, 50–53. [Google Scholar] [CrossRef]
- Peach, J.P.; Sutarno, C.G.; McGill, S.M. Three-Dimensional Kinematics and Trunk Muscle Myoelectric Activity in the Young Lumbar Spine: A Database. Arch. Phys. Med. Rehabil. 1998, 79, 663–669. [Google Scholar] [CrossRef]
- de Foa, J.L.; Forrest, W.; Biedermann, H.J. Muscle Fibre Direction of Longissimus, Iliocostalis and Multifidus: Landmark-Derived Reference Lines. J. Anat. 1989, 163, 243–247. [Google Scholar]
- Jorgensen, M.J.; Marras, W.S.; Gupta, P.; Waters, T.R. Effect of Torso Flexion on the Lumbar Torso Extensor Muscle Sagittal Plane Moment Arms. Spine J. 2003, 3, 363–369. [Google Scholar] [CrossRef]
- McGill, S.; Seguin, J.; Bennett, G. Passive Stiffness of the Lumber Torso in Flexion, Extension, Lateral Bending, and Axial Roatation. Spine 1994, 19, 696–704. [Google Scholar] [CrossRef]
- Raschke, U.; Chaffin, D.B. Support for a Linear Length-Tension Relation of the Torso Extensor Muscles: An Investigation of the Length and Velocity EMG-Force Relationships. J. Biomech. 1996, 29, 1597–1604. [Google Scholar] [CrossRef]
- Ning, X.; Nussbaum, M.A. Passive Lumbar Tissue Loading during Trunk Bending at Three Speeds: An in Vivo Study. Clin. Biomech. 2015, 30, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.K.; Chaffin, D.B.; Herrin, G.D.; Matthews, L.S. A Biomechanical Model of the Lumbosacral Joint during Lifting Activities. J. Biomech. 1985, 18, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Abouhossein, A.; Weisse, B.; Ferguson, S.J. A Multibody Modelling Approach to Determine Load Sharing between Passive Elements of the Lumbar Spine. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 527–537. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, P.B.; Dankaerts, W.; Burnett, A.F.; Farrell, G.T.; Jefford, E.; Naylor, C.S.; O’Sullivan, K.J. Effect of Different Upright Sitting Postures on Spinal-Pelvic Curvature and Trunk Muscle Activation in a Pain-Free Population. Spine 2006, 31, E707–E712. [Google Scholar] [CrossRef]
- Khan, A.; Khan, Z.; Bhati, P.; Hussain, M.E. Influence of Forward Head Posture on Cervicocephalic Kinesthesia and Electromyographic Activity of Neck Musculature in Asymptomatic Individuals. J. Chiropr. Med. 2020, 19, 230–240. [Google Scholar] [CrossRef]
- Nuzik, S.; Lamb, R.; VanSant, A.; Hirt, S. Sit-to-Stand Movement Pattern. A Kinematic Study. Phys. Ther. 1986, 66, 1708–1713. [Google Scholar] [CrossRef]
- Park, K.-N.; Oh, J.-S. Influence of Wearing a Brassiere on Pain and EMG Activity of the Upper Trapezius in Women with Upper Trapezius Region Pain. J. Phys. Ther. Sci. 2014, 26, 1551–1552. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.L. Pectoral Girdle Myalgia in Women. Clin. J. Pain 2009, 25, 734–736. [Google Scholar] [CrossRef]
- Kroemer, K.H.E.; Grandjean, E. Fitting the Task to the Human: A Textbook of Occupational Ergonomics, 5th ed.; Taylor & Francis: London, UK, 1997; ISBN 020348391X. [Google Scholar]
- Jørgensen, K. Human Trunk Extensor Muscles Physiology and Ergonomics. Acta Physiol. Scand. Suppl. 1997, 637, 1–58. [Google Scholar]
- van Dieën, J.H.; Westebring-van der Putten, E.P.; Kingma, I.; de Looze, M.P. Low-Level Activity of the Trunk Extensor Muscles Causes Electromyographic Manifestations of Fatigue in Absence of Decreased Oxygenation. J. Electromyogr. Kinesiol. 2009, 19, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Veqar, Z. Association Between Forward Head, Rounded Shoulders, and Increased Thoracic Kyphosis: A Review of the Literature. J. Chiropr. Med. 2017, 16, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Page, P. Cervicogenic Headaches: An Evidence-Led Approach to Clinical Managment. Int. J. Sports Phys. Ther. 2011, 6, 254–266. [Google Scholar]
- Chadbourne, E.B.; Zhang, S.; Gordon, M.J.; Ro, E.Y.; Ross, S.D.; Schnur, P.L.; Schneider-Redden, P.R. Clinical Outcomes in Reduction Mammaplasty: A Systematic Review and Meta-Analysis of Published Studies. Mayo Clin. Proc. 2001, 76, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, B.; Björk, J.; Kadi, F.; Lindman, R.; Gerdle, B. Blood Supply and Oxidative Metabolism in Muscle Biopsies of Female Cleaners With and Without Myalgia. Clin. J. Pain 2004, 20, 440–446. [Google Scholar] [CrossRef]
- Barbosa, A.F.; Raggi, G.C.; Sá, d.S.C.; Costa, M.P.; de Lima, J.E.; Tanaka, C. Postural Control in Women with Breast Hypertrophy. Clinics 2012, 67, 757–760. [Google Scholar] [CrossRef]
- Barbosa, A.F.; Lavoura, P.H.; Boffino, C.C.; Siqueira, C.M.; Costa, M.P.; Lima, J.E.; Tanaka, C. The Impact of Surgical Breast Reduction on the Postural Control of Women with Breast Hypertrophy. Aesthetic Plast. Surg. 2013, 37, 321–326. [Google Scholar] [CrossRef]
- Rehnke, R.D.; Groening, R.M.; van Buskirk, E.R.; Clarke, J.M. Anatomy of the Superficial Fascia System of the Breast: A Comprehensive Theory of Breast Fascial Anatomy. Plast. Reconstr. Surg. 2018, 142, 1135–1144. [Google Scholar] [CrossRef]
Characteristic | M-NBV (n = 13) | I-NBV (n = 11) |
---|---|---|
Age (years) | 23.92 ± 4.46 | 24.55 ± 5.68 |
Height (m) | 1.66 ± 0.05 | 1.63 ± 0.06 |
Body mass (kg) | 58.77 ± 4.44 | 57.87 ± 5.91 |
Body Mass Index (kg·m−2) | 21.25 ± 1.58 | 21.70 ± 1.67 |
Breast volume (mL) | 81.54 ± 34.84 | 229.55 ± 21.96 |
Movements | Description | |
---|---|---|
TIST45° | ||
Starting position | Upright standing posture | with trunk straight, arms hanging freely on the side and eyes facing forward |
Transition to final position | Forward inclination of the trunk | |
Final position | 45° of trunk inclination | |
Transition to starting position | Backward inclination of the trunk | |
TISI45° | ||
Starting position | Upright sitting posture | with trunk straight, arms hanging freely on the side and eyes facing forward |
Transition to final position | Forward inclination of the trunk | |
Final position | 45° of trunk inclination | |
Transition to starting position | Backward inclination of trunk | |
STSI and SIST | ||
Starting position | Upright standing posture | with trunk straight, arms hanging freely on the side and eyes facing forward |
Transition to final position | Lowering to the upright sitting posture | |
Starting position | Upright sitting posture | |
Transition to starting position | Rising to the upright standing posture |
Group | BIV | TBV | TBM | BIP | TBP |
---|---|---|---|---|---|
(mL) | (mL) | (gr) | (cm) | (cm) | |
M-NBV | - | 81.5 ± 34.8 (NBV) | 81.5 ± 34.8 (NBM) | - | 2.1 ± 0.4 (NBP) |
40.8 ± 17.4 | 122.3 ± 52.3 (1.5) | 122.3 ± 52.3 (1.5) | 0.7 ± 1.1 | 2.8 ± 1.3 (1.3 ± 0.4) | |
163.1 ± 69.7 | 244.6 ± 104.5 (3.0) | 244.6 ± 104.5 (3.0) | 3.2 ± 0.9 | 5.3 ± 1.3 (2.5 ± 0.3) | |
285.4 ± 122.0 | 366.9 ± 156.8 (4.5) | 366.9 ± 156.8 (4.5) | 4.4 ± 1.0 | 6.5 ± 1.3 (3.0 ± 0.3) | |
407.7 ± 174.2 | 489.2 ± 209.1 (6.0) | 489.2 ± 209.1 (6.0) | 5.5 ± 1.4 | 7.7 ± 1.7 (3.6 ± 0.5) | |
I-NBV | - | 229.5 ± 22.0 (NBV) | 229.5 ± 22.0 (NBM) | - | 3.3 ± 0.3 (NBP) |
114.8 ± 11.0 | 344.3 ± 32.9 (1.5) | 344.3 ± 32.9 (1.5) | 2.2 ± 0.0 | 5.5 ± 0.3 (1.7 ± 0.1) | |
459.1 ± 43.9 | 688.6 ± 65.9 (3.0) | 688.6 ± 65.9 (3.0) | 5.8 ± 0.1 | 9.1 ± 0.3 (2.8 ± 0.1) | |
803.4 ± 76.9 | 1033.0 ± 98.8 (4.5) | 1033.0 ± 98.8 (4.5) | 8.2 ± 0.8 | 11.5 ± 0.1 (3.5 ± 0.2) | |
1147.7 ± 109.8 | 1377.3 ± 131.8 (6.0) | 1377.3 ± 131.8 (6.0) | 11.5 ± 1.2 | 14.7 ± 1.4 (4.5 ± 0.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kateina, C.; Mandalidis, D. Effects of Artificially Induced Breast Augmentation on the Electromyographic Activity of Neck and Trunk Muscles during Common Daily Movements. J. Funct. Morphol. Kinesiol. 2022, 7, 80. https://doi.org/10.3390/jfmk7040080
Kateina C, Mandalidis D. Effects of Artificially Induced Breast Augmentation on the Electromyographic Activity of Neck and Trunk Muscles during Common Daily Movements. Journal of Functional Morphology and Kinesiology. 2022; 7(4):80. https://doi.org/10.3390/jfmk7040080
Chicago/Turabian StyleKateina, Christina, and Dimitris Mandalidis. 2022. "Effects of Artificially Induced Breast Augmentation on the Electromyographic Activity of Neck and Trunk Muscles during Common Daily Movements" Journal of Functional Morphology and Kinesiology 7, no. 4: 80. https://doi.org/10.3390/jfmk7040080
APA StyleKateina, C., & Mandalidis, D. (2022). Effects of Artificially Induced Breast Augmentation on the Electromyographic Activity of Neck and Trunk Muscles during Common Daily Movements. Journal of Functional Morphology and Kinesiology, 7(4), 80. https://doi.org/10.3390/jfmk7040080