Intraoperative Load Sensing in Total Knee Arthroplasty Leads to a Functional but Not Clinical Difference: A Comparative, Gait Analysis Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Space–Time Parameters
2.2. Gait Profile Score (GPS), Gait Variable Scores (GVSs) and Gait Deviation Index (GDI)
2.3. Kinematic Analysis
2.4. Kinetic Analysis
3. Results
3.1. Radiographic and Clinical–Functional Results
3.2. Gait Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andriacchi, T.; Dyrby, C. Gait Analysis and Total Knee Replacement. In Total Knee Arthroplasty; Bellemans, J., Ries, M.D., Victor, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Begum, F.A.; Kayani, B.; Magan, A.A.; Chang, J.S.; Haddad, F.S. Current concepts in total knee arthroplasty: Mechanical, kinematic, anatomical, and functional alignment. Bone Jt. Open 2021, 2, 397–404. [Google Scholar] [CrossRef]
- Behrend, H.; Giesinger, K.; Giesinger, J.M.; Kuster, M.S. The “Forgotten Joint” as the Ultimate Goal in Joint Arthroplasty. J. Arthroplast. 2012, 27, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar] [PubMed]
- Benedetti, M.; Catani, F.; Bilotta, T.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. 2003, 18, 871–876. [Google Scholar] [CrossRef]
- Blakeney, W.G.; Vendittoli, P.A. Restricted Kinematic Alignment: The Ideal Compromise? Personalized Hip and Knee Joint Replacement; Springer International Publishing: Cham, Switzerland, 2020; pp. 197–206. [Google Scholar]
- Chow, J.C.; Breslauer, L. The Use of Intraoperative Sensors Significantly Increases the Patient-Reported Rate of Improvement in Primary Total Knee Arthroplasty. Orthopedics 2017, 40, e648–e651. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.-J.; Seon, J.-K.; Jang, W.-Y.; Park, C.-G.; Song, E.-K. Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. BMC Musculoskelet. Disord. 2018, 19, 266. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.; Wang, K.; Elson, L.; Anderson, C.; Roche, M. Effects of Cementing on Ligament Balance During Total Knee Arthroplasty. Orthopedics 2017, 40, e455–e459. [Google Scholar] [CrossRef] [Green Version]
- Confalonieri, N.; Biazzo, A. Computer-assisted surgery in total knee replacement: Advantages, surgical procedure and review of the literature. Acta Bio-Med. Atenei Parm. 2019, 90, 16–23. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R.; Haas, B.D.; Stiehl, J.B. Conventry Award Paper: Multicenter Determination of In Vivo Kinematics after Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2003, 416, 37–57. [Google Scholar] [CrossRef] [Green Version]
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016, 1, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Ghirardelli, S.; Asay, J.; Leonardi, E.; Amoroso, T.; Andriacchi, T.; Indelli, P. Kinematic Comparison between Medially Congruent and Posterior-Stabilized Third-Generation TKA Designs. J. Funct. Morphol. Kinesiol. 2021, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Giuntoli, M.; Bonicoli, E.; Bugelli, G.; Valesini, M.; Manca, M.; Scaglione, M. Lessons learnt from COVID 19: An Italian multicentric epidemiological study of orthopaedic and trauma services. J. Clin. Orthop. Trauma 2020, 11, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Golladay, G.J.; Bradbury, T.L.; Gordon, A.C.; Fernandez-Madrid, I.J.; Krebs, V.E.; Patel, P.D.; Suarez, J.C.; Rueda, C.A.H.; Barsoum, W.K. Are Patients More Satisfied With a Balanced Total Knee Arthroplasty? J. Arthroplast. 2019, 34, S195–S200. [Google Scholar] [CrossRef] [PubMed]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Jerry, G.J.; Elson, L.C.; Anderson, C.R. Increased satisfaction after total knee replacement using sensor-guided technology. Bone Jt. J. 2014, 96, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. A new method for defining balance: Promising short-term clinical outcomes of sensor-guided TKA. J. Arthroplast. 2014, 29, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. Primary TKA Patients with Quantifiably Balanced Soft-Tissue Achieve Significant Clinical Gains Sooner than Unbalanced Patients. Adv. Orthop. 2014, 2014, 628695. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, G.L.; Hubley-Kozey, C.; Wilson, J.A.; Dunbar, M.J. The Effect of Total Knee Arthroplasty on Knee Joint Kinematics and Kinetics during Gait. J. Arthroplast. 2011, 26, 309–318. [Google Scholar] [CrossRef]
- Insall, J.N.; Scott, W.N.; Diduch, D.R.; Iorio, R.; Long, W.J. Insall & Scott Surgery of the Knee, 6th ed.; Elsevier: New York, NY, USA, 2018; Volume 2. [Google Scholar]
- Insall, J.N.; Dorr, L.D.; Scott, R.D.; Norman, W. Rationale, of the Knee Society Clinical Rating System. Clin. Orthop. Relat. Res. 1989, 248, 13–14. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V.B. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Z.; Lou, Z.; Wang, H.; Xiao, Q.; Zhou, Z. Long-term results of total knee arthroplasty with single-radius versus multi-radius posterior-stabilized prostheses. J. Orthop. Surg. Res. 2019, 14, 139. [Google Scholar]
- Luyckx, T.; Vandenneucker, H.; Ing, L.S.; Vereecke, E.; Ing, A.V.; Victor, J. Raising the Joint Line in TKA is Associated With Mid-flexion Laxity: A Study in Cadaver Knees. Clin. Orthop. Relat. Res. 2018, 476, 601–611. [Google Scholar] [CrossRef] [PubMed]
- MacDessi, S.J.; Bhimani, A.; Burns, A.W.R.; Chen, D.B.; Leong, A.K.L.; Molnar, R.B.; Mulford, J.S.; Walker, R.M.; Harris, A.I.; Diwan, A.; et al. Does soft tissue balancing using intraoperative pressure sensors improve clinical outcomes in total knee arthroplasty? A protocol of a multicentre randomised controlled trial. BMJ Open 2019, 9, e027812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandeville, D.; Osternig, L.R.; Chou, L.-S. The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clin. Biomech. 2007, 22, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Manning, W.A.; Blain, A.; Longstaff, L.; Deehan, D.J. A load-mea- suring device can achieve fine-tuning of mediolateral load at knee arthroplasty but may lead to a more lax knee state. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2238–2250. [Google Scholar] [CrossRef] [Green Version]
- Meere, P.A. Pressure Sensors and Soft Tissue Balancing. In Insall & Scott, Surgery of the Knee, 6th ed.; Elsevier: New York, NY, USA, 2018; Volume 1, pp. 1766–1769. [Google Scholar]
- Meneghini, R.M.; Ziemba-Davis, M.M.; Lovro, L.R.; Ireland, P.H.; Damer, B.M. Can intraoperative sensors determine the “Target” ligament balance? Early outcomes in total knee arthro- plasty. J. Arthroplast. 2016, 31, 2181–2187. [Google Scholar] [CrossRef]
- Milner, C.E. Is gait normal after total knee arthroplasty? Systematic review of the literature. J. Orthop. Sci. 2009, 14, 114–120. [Google Scholar] [CrossRef]
- Nicolet-Petersen, S.J.; Howell, S.M.; Hull, M. Force and Contact Location Measurement Errors of the VERASENSE. J. Biomech. Eng. 2018, 140, 1–6. [Google Scholar] [CrossRef]
- Nodzo, S.R.; Franceschini, V.; Gonzalez Della Valle, A. Intraoperative Load- Sensing Variability During Cemented, Posterior-Stabilized Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ramappa, M. Midflexion instability in primary total knee replacement: A review. SICOT-J. 2015, 1, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, P.O.; Della Croce, U.; Kerrigan, D.C. Effect of age on lower extremity joint moment contributions to gait speed. Gait Posture 2001, 14, 264–270. [Google Scholar] [CrossRef]
- Risitano, S.; Karamian, B.; Indelli, P.F. Intraoperative load-sensing drives the level of constraint in primary total knee arthroplasty: Surgical technique and review of the literature. J. Clin. Orthop. Trauma 2017, 8, 265–269. [Google Scholar] [CrossRef]
- Rivière, C.; Lazic, S.; Boughton, O.; Wiart, Y.; Vïllet, L.; Cobb, J. Current concepts for aligning knee implants: Patient-specific or systematic? EFORT Open Rev. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Song, S.J.; Kang, S.G.; Lee, Y.J.; Kim, K.I.; Park, C.H. An intraoperative load sensor did not improve the early postoperative results of posterior-stabilized TKA for osteoarthritis with varus deformities. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1671–1679. [Google Scholar] [CrossRef]
- Song, S.J.; Lee, H.W.; Kim, K.I.; Park, C.H. Load imbalances existed as determined by a sensor after conventional gap balancing with a tensiometer in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2019, 28, 1158–1167. [Google Scholar] [CrossRef]
- Stan, G.; Orban, H. Human gait and postural control after unilateral total knee arthroplasty. Maedica J. Clin. Med. 2014, 9, 356–360. [Google Scholar]
- Victor, J.; Luyckx, T. Mid Flexion Instability after Total Knee Arthroplasty. In Insall & Scott, Surgery of the Knee, 6th ed.; Elsevier: Philadelphia, PA, USA, 2018; Volume 1, pp. 1740–1749. [Google Scholar]
- Walker, P.S.; Meere, P.A.; Bell, C.P. Effects of surgical variables in balancing of total knee replacements using an instrumented tibial trial. Knee 2014, 21, 156–161. [Google Scholar] [CrossRef]
Demographic Parameters | Group A (Mean ± SD) | Group B (Mean ± SD) |
---|---|---|
Age (y.o.) | 70.6 ± 4.68 | 71.5 ± 4.74 |
Post-Surgical FU (months) | 9.86 ± 2.5 | 9.88 ± 3.15 |
Medial Mechanical FemoralTibial Angle (mFTA) | Preoperative (Mean ± SD) | Postoperative (Mean ± SD) |
---|---|---|
Group A (degree) | 171.5 ± 4.15 | 178.9 ± 0.99 |
Group B (degree) | 173.2 ± 3.84 | 179 ± 1.06 |
Clinical Score | WOMAC | KSS (KS/FS) | FJS-12 | ||
---|---|---|---|---|---|
Preoperative | Last FU | Preoperative | Last FU | Last FU | |
Group A (mean ± SD) | 52.26 ± 11.47 | 10.53 ± 10.71 | 41.37 ± 10.2/ 38.6 ±12.2 | 94.24 ± 12.1/ 92.5 ±13.88 | 74.40 ± 21.15 |
Group B (mean ± SD) | 45 ± 9.64 | 14.77 ± 10 | 49.5 ± 13.45/ 44.65 ± 9.46 | 92 ± 11.44/ 87.77 ±17.15 | 67.15 ± 26.12 |
Space–Time Variables | Group A (Mean ± SD) | Group B (Mean ± SD) |
---|---|---|
Cycle Duration (s) | 1.27 ± 0.08 | 1.25 ± 0.06 |
Stance Duration (s) | 0.84 ± 0.05 | 0.83 ± 0.04 |
Swing Duration (s) | 0.43 ± 0.04 | 0.43 ± 0.03 |
Stance Phase (%) | 66 ± 1.18 | 66.04 ± 1.67 |
Swing Phase (%) | 34.01 ± 1.45 | 34.27 ± 1.32 |
Single Support Phase (%) | 34 ± 2.00 | 34.19 ± 1.03 |
Double Support Phase (%) | 15.43 ± 1.75 | 16.18 ± 1.35 |
Average Speed (m/s) | 0.78 ± 0.15 | 0.75 ± 0.13 |
Average Speed (%height/s) | 44.62 ± 6.94 | 46.29 ± 8.73 |
Cadence (step/min) | 94.65 ± 5.37 | 95.51 ± 4.43 |
Cycle Length (m) | 0.99 ± 0.23 | 0.90 ± 0.10 |
Cycle Length (%height) | 57.14 ± 1.13 | 57.6 5± 8.62 |
Step Length | 0.49 ± 0.14 | 0.45 ± 0.05 |
Step Width | 0.09 ± 0.04 | 0.09 ± 0.08 |
Group A (Mean ± SD) | Group B (Mean ± SD) | N.V. | Test—T | Test—U (Mann–Whitney) | |
---|---|---|---|---|---|
Gait Profile Score (GPS) | 9.57 ± 1.72 | 9.27 ± 0.85 | <7 | NS | NS |
Gait Deviation Index (GDI) | 82.04 ± 7.41 | 81.59 ± 3.48 | >100 | NS | NS |
Kinematic Angles (Degrees) | Group A (Mean ± SD) | Group B (Mean ± SD) | Test—T | Test—U (Mann-Whitney) |
---|---|---|---|---|
Knee Flex-Ext LR | 10.42 ± 4.23 | 15.85 ± 7.71 | NS | NS |
Knee Intra-Extra LR | 3.07 ± 10.56 | −5.8 ± 12.86 | NS | NS |
Hip Intra-Extra LR | −7.72 ± 8.82 | −12.75 ± 5.04 | NS | NS |
Knee Flex-Ext MS | 9.15 ± 4.16 | 17.65 ± 6.23 | p < 0.05 | NS |
Knee Intra-Extra MS | 3.5 ± 11.31 | −5.1 ± 11.52 | NS | NS |
Hip Intra-Extra MS | −17.47 ± 5.05 | −10.97 ± 5.19 | p = 0.07 | NS |
Knee Flexion Peak | 67.72 ± 1.47 | 64.02 ± 4.85 | NS | NS |
Kinetic Parameters (Nm/Kg) | Group A (Mean ± SD) | Group B (Mean ± SD) | Test—T | Test—U (Mann-Whitney) |
---|---|---|---|---|
Peak KAM2 Abd/Add | 0.45 ± 0.18 | 0.3 ± 0.07 | p = 0.13 | NS |
Mid-Stance KEM | 0.01 ± 0.09 | 0.23 ± 0.06 | p < 0.05 | NS |
Peak KFM LR | −0.46 ± 0.09 | −0.16 ± 0.05 | p < 0.05 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuntoli, M.; Scaglione, M.; Bonicoli, E.; Piolanti, N.; Puccioni, G.; Zepeda, K.; Giannini, E.; Marchetti, S.; Indelli, P.F. Intraoperative Load Sensing in Total Knee Arthroplasty Leads to a Functional but Not Clinical Difference: A Comparative, Gait Analysis Evaluation. J. Funct. Morphol. Kinesiol. 2022, 7, 23. https://doi.org/10.3390/jfmk7010023
Giuntoli M, Scaglione M, Bonicoli E, Piolanti N, Puccioni G, Zepeda K, Giannini E, Marchetti S, Indelli PF. Intraoperative Load Sensing in Total Knee Arthroplasty Leads to a Functional but Not Clinical Difference: A Comparative, Gait Analysis Evaluation. Journal of Functional Morphology and Kinesiology. 2022; 7(1):23. https://doi.org/10.3390/jfmk7010023
Chicago/Turabian StyleGiuntoli, Michele, Michelangelo Scaglione, Enrico Bonicoli, Nicola Piolanti, Gianmarco Puccioni, Karlos Zepeda, Emanuele Giannini, Stefano Marchetti, and Pier Francesco Indelli. 2022. "Intraoperative Load Sensing in Total Knee Arthroplasty Leads to a Functional but Not Clinical Difference: A Comparative, Gait Analysis Evaluation" Journal of Functional Morphology and Kinesiology 7, no. 1: 23. https://doi.org/10.3390/jfmk7010023
APA StyleGiuntoli, M., Scaglione, M., Bonicoli, E., Piolanti, N., Puccioni, G., Zepeda, K., Giannini, E., Marchetti, S., & Indelli, P. F. (2022). Intraoperative Load Sensing in Total Knee Arthroplasty Leads to a Functional but Not Clinical Difference: A Comparative, Gait Analysis Evaluation. Journal of Functional Morphology and Kinesiology, 7(1), 23. https://doi.org/10.3390/jfmk7010023