Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors
Abstract
:1. Introduction
- How consistent and repeatable is the sensor-to-leg registration process? This question is applied to the two components of the leg registration process:
- How consistent are the goniometer measurements made by the clinician?
- How consistent is the static pose taken by the subject during the sensor-to-leg registration process?
- How accurate are the sensor angles through a wide range of motion? This will be tested by comparing sensor angle measurements with goniometer angles, as well as angles from a markerless optical motion capture system.
2. Materials and Methods
2.1. MotionSense Platform
2.2. Clinical Design
2.3. Video Motion Capture Measurements
3. Results
3.1. Repeatability of Goniometer Measurements on Box
3.2. Repeatability of Patient Pose on Box
3.3. Linearity of Sensor Reading through Range of Motion
3.4. Correction of Bias Non-Linearity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Simulated Knee Angle | Bias [degree] | ||
---|---|---|---|
Mean | Mean Absolute Error | SD | |
0° | 0.18 | 0.02 | 0.02 |
30° | 30.21 | 0.05 | 0.05 |
60° | 60.41 | 0.09 | 0.10 |
90° | 90.30 | 0.05 | 0.07 |
120° | 120.80 | 0.02 | 0.02 |
Appendix B
Exercise | Duration [sec] | Bias [degree] | ||
---|---|---|---|---|
Mean | Mean Absolute Error | SD | ||
Standing knee flexion | 8.24 | 2.64 | 1.78 | 2.28 |
Treadmill walk | 17.65 | −1.62 | 3.41 | 4.27 |
References
- Ayers, D. Implementation of Patient-reported Outcome Measures in Total Knee Arthroplasty. J. Am. Acad. Orthop. Surg. 2017, 25, S48–S50. [Google Scholar] [CrossRef] [PubMed]
- de Beer, J.; Petruccelli, D.; Adili, A.; Piccirillo, L.; Wismer, D.; Winemaker, M. Patient Perspective Survey of Total Hip vs Total Knee Arthroplasty Surgery. J. Arthroplast. 2012, 27, 865–869.e5. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.; Fineman, R.; Stirling, L. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors. Sensors 2018, 18, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, P.G.; Herbenick, M.A.; Anloague, P.A.; Markert, R.J.; Rubino, L.J. Knee Range of Motion: Reliability and Agreement of 3 Measurement Methods. Am. J. Orthop. 2011, 40, E249–E252. [Google Scholar] [PubMed]
- Bennett, D.; Hanratty, B.; Thompson, N.; Beverland, D. Measurement of knee joint motion using digital imaging. Int. Orthop. 2009, 33, 1627–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follis, S.; Chen, Z.; Mishra, S.; Howe, C.L.; Toosizadeh, N.; Dohm, M. Comparison of wearable sensor to traditional methods in functional outcome measures: A systematic review. J. Orthop. Res. 2020. [Google Scholar] [CrossRef]
- Jette, D.U.; Hunter, S.J.; Burkett, L.; Langham, B.; Logerstedt, D.S.; Piuzzi, N.S.; Poirier, N.M.; Radach, L.J.L.; E Ritter, J.; A Scalzitti, D.; et al. Physical Therapist Management of Total Knee Arthroplasty. Phys. Ther. 2020, 100, 1603–1631. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.; Aissaoui, R.; Aminian, K. Ambulatory measurement of 3D knee joint angle. J. Biomech. 2008, 41, 1029–1035. [Google Scholar] [CrossRef]
- Mutsuzaki, H.; Takeuchi, R.; Mataki, Y.; Wadano, Y. Target range of motion for rehabilitation after total knee arthroplasty. J. Rural. Med. 2017, 12, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Ajdaroski, M.; Tadakala, R.; Nichols, L.; Esquivel, A. Validation of a Device to Measure Knee Joint Angles for a Dynamic Movement. Sensors 2020, 20, 1747. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.-E.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Kato, T.; Ogino, Y.; Yamagata, M.; Ichihashi, N. Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait Posture 2019, 80, 62–67. [Google Scholar] [CrossRef]
- The Pandas Development Team. Pandas-dev/Pandas: Pandas Version 0.25.1; Zenodo: Meyrin, Switzerland, 2020. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://jmlr.org/papers/v12/pedregosa11a.html (accessed on 15 December 2020).
- Jekel, C.F.; Venter, G. pwlf: A Python Library for Fitting 1D Continuous Piecewise Linear Functions. Available online: https://www.researchgate.net/deref/https%3A%2F%2Fgithub.com%2Fcjekel%2Fpiecewise_linear_fit_py (accessed on 15 December 2020).
- Myles, C.M.; Rowe, P.J.; Walker, C.R.; Nutton, R.W. Knee joint functional range of movement prior to and following total knee arthroplasty measured using flexible electrogoniometry. Gait Posture 2002, 16, 46–54. [Google Scholar] [CrossRef]
- Castrodad, I.M.D.; Recai, T.M.; Abraham, M.M.; Etcheson, J.I.; Mohamed, N.S.; Edalatpour, A.; Delanois, R.E. Rehabilitation protocols following total knee arthroplasty: A review of study designs and outcome measures. Ann. Transl. Med. 2019, 7, S255. [Google Scholar] [CrossRef]
- Edwards, J.Z.; Greene, K.A.; Davis, R.S.; Kovacik, M.W.; Noe, D.A.; Askew, M.J. Measuring flexion in knee arthroplasty patients. J. Arthroplast. 2004, 19, 369–372. [Google Scholar] [CrossRef]
- Versteyhe, M.; De Vroey, H.; DeBrouwere, F.; Hallez, H.; Claeys, K. A Novel Method to Estimate the Full Knee Joint Kinematics Using Low Cost IMU Sensors for Easy to Implement Low Cost Diagnostics. Sensors 2020, 20, 1683. [Google Scholar] [CrossRef] [Green Version]
- Teufl, W.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS ONE 2019, 14, e0213064. [Google Scholar] [CrossRef] [Green Version]
- Mauro, C.S.; Irrgang, J.J.; Williams, B.A.; Harner, C.D. Loss of Extension Following Anterior Cruciate Ligament Reconstruction: Analysis of Incidence and Etiology Using IKDC Criteria. Arthrosc. J. Arthrosc. Relat. Surg. 2008, 24, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.C.; Carr, J.B.; Wiggins, J.C.; Gwathmey, F.W.; Browne, J.A. Manipulation Under Anesthesia After Total Knee Arthroplasty is Associated with An Increased Incidence of Subsequent Revision Surgery. J. Arthroplast. 2015, 30, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Weig, T.G.; Plitz, W. Arthrofibrosis following ACL reconstruction? reasons and outcome. Arch. Orthop. Trauma Surg. 2004, 124, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Small, S.R.; Bullock, G.S.; Khalid, S.; Barker, K.; Trivella, M.; Price, A.J. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: A scoping review. BMJ Open 2019, 9, e033832. [Google Scholar] [CrossRef] [Green Version]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [Green Version]
- Fregly, B.J.; Besier, T.; Lloyd, D.G.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 2012, 30, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Arnold, E.M.; Ward, S.R.; Lieber, R.; Delp, S.L. A Model of the Lower Limb for Analysis of Human Movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef] [Green Version]
# | Gender | Age (year) | Weight (kg) | Height (cm) | BMI (kg/m2) | Days Since Surgery at Onboarding | Video Analysis |
---|---|---|---|---|---|---|---|
1 | Female | 66 | 65 | 165 | 23.9 | 42 | N |
2 | Female | 61 | 93 | 163 | 35.0 | 21 | N |
3 | Male | 58 | 116 | 193 | 31.1 | 42 | Y |
4 | Male | 56 | 104 | 175 | 34.0 | 23 | Y |
5 | Female | 67 | 64 | 155 | 26.6 | 21 | Y |
6 | Male | 68 | 102 | 182 | 30.8 | 21 | Y |
7 | Female | 62 | 72 | 163 | 27.1 | 21 | Y |
8 | Female | 67 | 70 | 159 | 27.7 | 26 | N |
Patient # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Goniometer Angle Initial Visit [degree] | 60 | 65 | 60 | 58 | 59 | 60 | 74 | 60 |
Goniometer Angle Final Visit [degree] | 62 | 63 | 62 | 50 | 56 | 56 | 74 | 60 |
Patient # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | All |
---|---|---|---|---|---|---|---|---|---|
Number of Repeats (n) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 39 |
Mean Absolute Variability (degree) | 0.6 | 2.0 | 2.3 | 0.7 | 3.2 | 0.5 | 2.9 | 0.3 | 1.6 |
Max Variability (degree) | 1.4 | 3.5 | 5.2 | 1.4 | 5.5 | 0.7 | 4.8 | 0.5 | 5.5 |
Patient | Visit 1: First 2: Final | Exercise | Duration [sec] | Bias [degree] | ||
---|---|---|---|---|---|---|
Mean | Mae | Std | ||||
3 | 2 | Long Arc Quads | 57.17 | 1.80 | 1.26 | 1.91 |
2 | Long Arc Quads | 42.48 | 0.41 | 1.14 | 1.91 | |
2 | Standing Knee Bends | 133.37 | 0.16 | 2.57 | 3.01 | |
2 | Standing Knee Bends | 72.96 | −0.99 | 1.93 | 2.40 | |
2 | Standing Knee Bends | 96.13 | 1.58 | 2.40 | 2.87 | |
2 | Standing Knee Bends | 92.78 | −1.43 | 1.68 | 2.29 | |
4 | 2 | Long Arc Quads | 117.15 | 1.56 | 1.86 | 2.75 |
2 | Standing Knee Bends | 80.73 | −3.55 | 3.46 | 4.15 | |
2 | Standing Knee Bends | 64.36 | −3.50 | 2.96 | 3.62 | |
2 | Standing Knee Bends | 87.10 | −3.04 | 3.98 | 4.65 | |
2 | Standing Knee Bends | 106.99 | −4.73 | 2.96 | 3.70 | |
1 | Standing Knee Bends | 64.18 | −1.98 | 3.22 | 3.85 | |
5 | 2 | Long Arc Quads | 108.17 | 1.49 | 1.39 | 1.87 |
2 | Standing Knee Bends | 111.28 | −0.97 | 3.40 | 3.87 | |
1 | Standing Knee Bends | 29.25 | −0.87 | 2.40 | 3.22 | |
1 | Standing Knee Bends | 132.82 | −0.79 | 1.82 | 2.27 | |
6 | 2 | Standing Knee Bends | 150.40 | −0.48 | 4.41 | 4.91 |
2 | Standing Knee Bends | 174.92 | −0.37 | 3.33 | 4.07 | |
2 | Standing Knee Bends | 185.19 | −0.05 | 2.29 | 2.84 | |
7 | 1 | Standing Knee Bends | 157.39 | 0.75 | 2.35 | 2.79 |
Knee Flexion (degree) | Uncorrected Bias | Linear Piecewise Corrected Bias | ||||
---|---|---|---|---|---|---|
Mean | Mae | Std | Mean | Mae | Std | |
0–5 | 3.98 | 4.95 | 1.61 | 0.74 | 1.29 | 1.61 |
5–10 | 2.45 | 1.78 | 1.45 | 0.12 | 1.27 | 1.57 |
10–15 | 2.51 | 2.80 | 2.65 | 1.90 | 2.40 | 2.64 |
15–20 | 0.84 | 2.17 | 3.01 | 0.67 | 2.28 | 3.03 |
20–25 | 0.34 | 2.43 | 3.23 | −0.06 | 2.51 | 3.22 |
25–30 | 1.12 | 2.91 | 3.30 | 0.54 | 2.61 | 3.31 |
30–35 | 0.48 | 2.61 | 2.87 | 0.03 | 2.21 | 2.87 |
35–40 | 0.21 | 2.58 | 2.97 | 0.02 | 2.23 | 2.97 |
40–45 | 0.00 | 2.55 | 2.99 | 0.07 | 2.24 | 3.00 |
45–50 | −0.16 | 2.58 | 3.08 | 0.17 | 2.24 | 3.08 |
50–55 | −0.21 | 2.48 | 3.09 | 0.39 | 2.29 | 3.09 |
55–60 | −0.31 | 2.20 | 2.71 | 0.54 | 2.00 | 2.71 |
60–65 | −0.42 | 2.13 | 2.97 | 0.68 | 2.21 | 2.97 |
65–70 | −0.61 | 1.90 | 2.68 | 0.76 | 2.03 | 2.68 |
70–75 | −1.44 | 2.11 | 2.55 | 0.18 | 1.92 | 2.55 |
75–80 | −2.03 | 2.52 | 2.76 | −0.14 | 2.15 | 2.76 |
80–85 | −3.75 | 3.74 | 2.74 | −1.58 | 2.64 | 2.72 |
85–90 | −3.20 | 3.14 | 2.72 | −0.83 | 2.35 | 2.74 |
90–95 | −2.49 | 2.49 | 2.99 | 0.14 | 2.29 | 2.97 |
95–100 | −2.73 | 2.61 | 3.39 | 0.19 | 2.75 | 3.41 |
100–105 | −2.07 | 2.28 | 3.79 | 1.12 | 3.25 | 3.81 |
105–110 | −3.95 | 3.12 | 4.10 | −0.55 | 3.29 | 4.08 |
Overall Mean | −0.52 | 2.64 | 0.23 | 2.29 |
Sensor Knee Angle Range | Intercept | Slope |
---|---|---|
0°–15° | 4.43 | −0.23 |
15°–47° | 0.51 | −0.01 |
47°–105° | 2.71 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, R.; Jacob, P.; Meyer, A.; Conditt, M.A.; Roche, M.W.; Verstraete, M.A. Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors. J. Funct. Morphol. Kinesiol. 2021, 6, 60. https://doi.org/10.3390/jfmk6030060
Antunes R, Jacob P, Meyer A, Conditt MA, Roche MW, Verstraete MA. Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors. Journal of Functional Morphology and Kinesiology. 2021; 6(3):60. https://doi.org/10.3390/jfmk6030060
Chicago/Turabian StyleAntunes, Ricardo, Paul Jacob, Andrew Meyer, Michael A. Conditt, Martin W. Roche, and Matthias A. Verstraete. 2021. "Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors" Journal of Functional Morphology and Kinesiology 6, no. 3: 60. https://doi.org/10.3390/jfmk6030060
APA StyleAntunes, R., Jacob, P., Meyer, A., Conditt, M. A., Roche, M. W., & Verstraete, M. A. (2021). Accuracy of Measuring Knee Flexion after TKA through Wearable IMU Sensors. Journal of Functional Morphology and Kinesiology, 6(3), 60. https://doi.org/10.3390/jfmk6030060