The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Experiment 1: Ankle Range of Motion
2.2.1. Participants
2.2.2. Experimental Procedure
2.2.3. Data Acquisition and Analysis
- ankle angle (θank): the angle formed by the shank (i.e., the line defined by the lateral epicondyle of the femur and the posterior surface of the calcaneus) and the foot (i.e., the line defined by the tuberosity of the 5th metatarsal and the lateral malleolus), where θank = 90° meant that the shank was perpendicular to the foot. Ankle dorsiflexion was noted when θank < 90° and ankle plantar flexion when θank > 90°;
- knee angle (θknee): the angle formed from the shank and the thigh (i.e., the line defined by the lateral epicondyle of the femur and the greater trochanter).
2.2.4. Statistical Analysis
2.3. Experiment 2: Vertical Squat Jump Performance
2.3.1. Participants
2.3.2. Experimental Procedure
2.3.3. Data Acquisition and Analysis
2.3.4. Statistical Analysis
3. Results
3.1. Experiment 1: Ankle Range of Motion
3.2. Experiment 2: Vertical Squat Jump Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ziv, G.; Lidor, R. Vertical jump in female and male volleyball players: A review of observational and experimental studies. Scand. J. Med. Sci. Sports 2010, 20, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, K.; Ben Saad, H.; Ali Hammami, M.; Latiri, I. Relationships of the 5-jump test (5JT) performance of youth players with volleyball specific laboratory tests for explosive power. Am. J. Mens. Health 2020, 14, 1557988320977686. [Google Scholar] [CrossRef] [PubMed]
- Sattler, T.; Sekulic, D.; Hadzic, V.; Uljevic, O.; Dervisevic, E. Vertical jumping tests in volleyball: Reliability, validity, and playing-position specifics. J. Strength Cond. Res. 2012, 26, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Newton, R.U. Long-term training adaptations in elite male volleyball players. J. Strength Cond. Res. 2012, 26, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Berriel, G.P.; Schons, P.; Costa, R.R.; Oses, V.H.S.; Fischer, G.; Pantoja, P.D.; Kruel, L.F.M.; Peyre-Tartaruga, L.A. Correlations between jump performance in block and attack and the performance in official games, squat jumps, and countermovement jumps of professional volleyball players. J. Strength Cond. Res. 2012. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Fusco, A.; Bell, J.W.; von Duvillard, S.P.; Cortis, C.; Wagner, H. Movement characteristics of volleyball spike jump performance in females. J. Sci. Med. Sport 2019, 22, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.S.; Bohm, H.; Butterfield, M.M.; Santhosam, J. Gender bias in the effects of arms and countermovement on jumping performance. J. Strength Cond. Res. 2007, 21, 362–366. [Google Scholar] [PubMed]
- Blache, Y.; Monteil, K. Effect of arm swing on effective energy during vertical jumping: Experimental and simulation study. Scand. J. Med. Sci. Sports 2013, 23, e121–e129. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Shibayama, A.; Takeshita, D.; Fukashiro, S. The effect of arm swing on lower extremities in vertical jumping. J. Biomech. 2006, 39, 2503–2511. [Google Scholar] [CrossRef]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M. The effects of arms and countermovement on vertical jumping. Med. Sci. Sports Exerc. 1990, 22, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Prilutsky, B.I.; Zatsiorsky, V.M. Tendon action of two-joint muscles: Transfer of mechanical energy between joints during jumping, landing, and running. J. Biomech. 1994, 27, 25–34. [Google Scholar] [CrossRef]
- Luhtanen, P.; Komi, P.V. Segmental contribution to forces in vertical jump. Eur. J. Appl. Physiol. 1978, 38, 181–188. [Google Scholar] [CrossRef]
- Hubley, C.L.; Wells, R.P. A work energy approach to determine individual joint contributions to vertical jump performance. Eur. J. Appl. Physiol. 1983, 50, 247–254. [Google Scholar] [CrossRef]
- Bobbert, M.F.; van Zandwijk, J.P. Sensitivity of vertical jumping performance to changes in muscle stimulation onset times: A simulation study. Biol. Cybern. 1999, 81, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Papaiakovou, G. Kinematic and kinetic differences in the execution of vertical jumps between people with good and poor ankle joint dorsiflexion. J. Sports Sci. 2013, 31, 1789–1796. [Google Scholar] [CrossRef]
- Yun, S.J.; Kim, M.H.; Weon, J.H.; Kim, Y.; Jung, S.H.; Kwon, O.Y. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump. J. Phys. Ther. Sci. 2016, 28, 2241–2244. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Rogel, P.; San Emeterio, C.; Marín, P.J. Associations between ankle dorsiflexion range of motion and foot and ankle strength in young adults. J. Phys. Ther. Sci. 2017, 29, 1363–1367. [Google Scholar] [CrossRef] [Green Version]
- Kilic, O.; Maas, M.; Verhagen, E.; Zwerver, J.; Gouttebarge, V. Incidence, aetiology and prevention of musculoskeletal injuries in volleyball: A systematic review of the literature. Eur. J. Sport Sci. 2017, 17, 765–793. [Google Scholar] [CrossRef] [Green Version]
- McGuine, T.A.; Post, E.; Biese, K.; Kliethermes, S.; Bell, D.; Watson, A.; Brooks, A.; Lang, P. The incidence and risk factors for injuries in girls volleyball: A prospective study of 2072 players. J. Athl. Train. 2020. [Google Scholar] [CrossRef]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; De Ste Croix, M.; Santonja-Medina, F. Assessment of the range of movement of the lower limb in sport: Advantages of the ROM-SPORT I Battery. Int. J. Environ. Res. Public Health 2020, 17, 7606. [Google Scholar] [CrossRef]
- McNeal, J.R.; Sands, W.A. Stretching for performance enhancement. Cur. Sports Med. Rep. 2006, 5, 141–146. [Google Scholar] [CrossRef]
- Roberts, J.M.; Wilson, K. Effect of stretching duration on active and passive range of motion in the lower extremity. Br. J. Sports Med. 1999, 33, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W.; Tiberio, D.; Zito, M. Selected measures of ankle dorsiflexion range of motion: Differences and intercorrelations. Foot Ankle Int. 1989, 10, 99–103. [Google Scholar] [CrossRef]
- Bradley, P.; Portas, M. The relationship between preseason range of motion and muscle strain injury in elite soccer players. J. Strength Cond. Res. 2007, 21, 1155–1159. [Google Scholar]
- Bozic, P.; Pazin, N.; Berjan, B.; Planic, N.; Cux, I. Evaluation of the field tests of flexibility of the lower extremity: Reliability and the concurrent and factorial validity. J. Strength Cond. Res. 2010, 24, 2523–2531. [Google Scholar] [CrossRef]
- Fourchet, F.; Materne, O.; Horobeanu, C.; Hudacek, T.; Buchheit, M. Reliability of a novel procedure to monitor the flexibility of lower limb muscle groups in highly-trained adolescent athletes. Phys. Ther. Sport 2013, 14, 28–34. [Google Scholar] [CrossRef]
- Lyrtzis, C.; Papadopoulos, C.; Natsis, K.; Noussios, G. The effect of diclofenac sodium and paracetamol on active and passive range of ankle motion after sprains. J. Hum. Sport Exerc. 2011, 6, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Papaiakovou, G.; Tyros, G.; Natsis, K.; Panoutsakopoulos, V.; Kollias, I. Male soccer players’ ankle joint range of motion in different knee joint angles. Iatriki 2005, 87, 61–66. [Google Scholar]
- Selfe, J. Validity and reliability of measurements taken by the Peak 5 motion analysis system. J. Med. Eng. Technol. 1998, 22, 220–225. [Google Scholar] [CrossRef]
- Wagner, H.; Tilp, M.; Von Duvillard, S.P.; Muller, E. Kinematic analysis of volleyball spike jump. Int. J. Sports Med. 2009, 30, 760–765. [Google Scholar] [CrossRef]
- Forthomme, B.; Croisier, J.L.; Ciccarone, G.; Crielaard, J.M.; Cloes, M. Factors correlated with volleyball spike velocity. Am. J. Sports Med. 2005, 33, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Etnyre, B.R.; Poindexter, H.B.; Sokol, D.L.; Toon, T.J. Flexibility characteristics of elite female and male volleyball players. J. Sports Med. Phys. Fit. 1989, 29, 49–51. [Google Scholar]
- Greco, G.; Patti, A.; Cataldi, S.; Iovane, A.; Messina, G.; Fischetti, F. Changes in physical fitness in young female volleyball players after an 8-week in-season pilates training program. Acta Med. Mediterr. 2019, 35, 3375–3381. [Google Scholar]
- Manshouri, M.; Rahnama, N.; Khorzoghi, M.B. Effects of pilates exercises on flexibility and volleyball serve skill in female college students. Sport Sci. Pract. Asp. 2014, 11, 19–25. [Google Scholar]
- Lidor, R.; Ziv, G. Physical and physiological attributes of female volleyball players: A review. J. Strength Cond. Res. 2010, 24, 1963–1973. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech. 2019. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Katsikas, F.; Nikodelis, T.; Panoutsakopoulos, V.; Kollias, I. Influence of the ankle joint dorsiflexion on the execution of vertical jumps. In Proceedings of the XXIV International Symposium on Biomechanics in Sports, Salzburg, Austria, 14–18 July 2006; Schwameder, H., Strutzenberger, G., Fastenbauer, V., Lindinger, S., Muller, E., Eds.; University of Salzburg: Salzburg, Austria, 2006; Volume 1, pp. 448–451. [Google Scholar]
- Tanner, J.M. Normal growth and techniques of growth assessment. Clin. Endocrinol. Metab. 1986, 15, 411–451. [Google Scholar] [CrossRef]
- Kollias, I. Sources of error and their elimination in the use of DLT with the basic recording tools for the analysis of human body in motion. Exerc. Soc. 2002, 18, 9–26. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Panoutsakopoulos, V.; Papachatzis, N.; Kollias, I.A. Sport specificity background affects the principal component structure of vertical squat jump performance of young adult female athletes. J. Sport Health Sci. 2014, 3, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited: An overview of some recommended measures of effect size. Trends. Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Kotzamanidou, M.C.; Panoutsakopoulos, V.; Manavis, K. Ankle joint range of motion of female handball players in different knee joint flexion angles. Gynaika Athlisi 2013, 9, 15–21. [Google Scholar]
- Boone, D.C.; Azen, S.P. Normal range of motion of joints in male subjects. J. Bone Jt. Surg. Am. 1979, 61, 756–759. [Google Scholar] [CrossRef]
- Mitchell, B.; Bressel, E.; McNair, P.J.; Bressel, M.E. Effect of pelvic, hip, and knee position on ankle joint range of motion. Phys. Ther. Sport 2008, 9, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Baggett, B.D.; Young, G. Ankle joint dorsiflexion. Establishment of a normal range. J. Am. Podiatr. Med. Assoc. 1993, 83, 251–254. [Google Scholar] [CrossRef] [PubMed]
- De Monte, G.; Arampatzis, A.; Stogiannari, C.; Karamanidis, K. In vivo motion transmission in the inactive gastrocnemius medialis muscle–tendon unit during ankle and knee joint rotation. J. Electromyogr. Kinesiol. 2006, 16, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, T.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Effects of knee joint angle on the fascicle behavior of the gastrocnemius muscle during eccentric plantar flexions. J. Electromyogr. Kinesiol. 2009, 19, 980–987. [Google Scholar] [CrossRef]
- Wakahara, T.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Fascicle behavior of medial gastrocnemius muscle in extended and flexed knee positions. J. Biomech. 2007, 40, 2291–2298. [Google Scholar] [CrossRef]
- Visser, J.J.; Hoogkamer, J.E.; Bobbert, M.F.; Huijing, P.A. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur. J. Appl. Physiol. 1990, 61, 453–460. [Google Scholar] [CrossRef]
- Kapandji, I.A. The Physiology of the Joints. Volume 2: The Lower Limb; Churchill Livingstone: New York, NY, USA, 1987. [Google Scholar]
- Dominguez-Diez, M.; Castillo, D.; Raya-Gonzalez, J.; Sanchez-Diaz, S.; Soto-Celix, M.; Rendo-Urteaga, T.; Lago-Rondriguez, A. Comparison of multidirectional jump performance and lower limb passive range of motion profile between soccer and basketball young players. PLoS ONE 2021, 16, e0245277. [Google Scholar] [CrossRef]
- Kozinc, Z.; Sarabon, N. Inter-limb asymmetries in volleyball players: Differences between testing approaches and association with performance. J. Sports Sci. Med. 2020, 19, 745–752. [Google Scholar]
- Vizard, L.J.; Peden, G.; Wdowsk, M.M. Do lower-limb kinematic and kinetic asymmetries transfer across sprint running and countermovement jumps in university rugby union players? Int. J. Athl. Ther. Train. 2020, 25, 258–262. [Google Scholar] [CrossRef]
- Arakawa, H.; Nagano, A.; Hay, D.C.; Kanehisa, H. The effects of ankle restriction on the multijoint coordination of vertical jumping. J. Appl. Biomech. 2013, 29, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaiakovou, G.; Kollias, I.; Siatras, T.; Panoutsakopoulos, V. The ankle joint and its influence upon dynamic and kinematic characteristics in a standing vertical jump. Exerc. Soc. 2002, 32, 30–40. [Google Scholar]
- Bobbert, M.F.; van Soest, A.J. Why do people jump the way they do? Exerc. Sport Sci. Rev. 2001, 29, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godinho, I.; Pinheiro, B.N.; Junior, L.D.S.; Lucas, G.C.; Cavalcante, J.F.; Monteiro, G.M.; Uchoa, P.A.G. Effect of reduced ankle mobility on jumping performance in young athletes. Motricidade 2019, 15, 46–51. [Google Scholar]
- Knudson, D.V. Correcting the use of the term “power” in the strength and conditioning literature. J. Strength Cond. Res. 2009, 23, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.B.; Etnyre, B.R. Contribution of arm movement to the force components of a maximum vertical jump. J. Orthop. Sports Phys. Ther. 1989, 11, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.B. Optimal force-velocity profile in ballistic movements-altius: Citius of fortius. Med. Sci. Sports Exerc. 2012, 44, 313–322. [Google Scholar] [CrossRef]
- Hornsby, T.M.; Nicholson, G.G.; Gossman, M.R.; Culpepper, M. Effect of inherent muscle length on isometric plantar flexion torque in healthy women. Phys. Τher. 1987, 67, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Huijing, P.A.; Yaman, A.; Ozturk, C.; Yucesoy, C.A. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surg. Radiol. Anat. 2011, 33, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Wakahara, Τ.; Ushiyama, J.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Effects of passive ankle and knee joint motions on the length of fascicle and tendon of the medial gastrocnemius muscle. Int. J. Sport Health Sci. 2005, 3, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, A.; Karamanidis, K.; Stafilidis, S.; Morey-Klapsing, G.; De Monte, G.; Bruggemann, G.P. Effect of different ankle and knee joint positions on gastrocnemius medialis fascicle length and EMG-activity during isometric plantar flexion. J. Biomech. 2006, 39, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Cresswell, A.G.; Loscher, W.N.; Thorstensson, A. Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man. Exp. Brain. Res. 1995, 105, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Guissard, N.; Duchateau, J.; Hainaut, K. EMG and mechanical changes during sprint starts at different front block obliquities. Med. Sci. Sports Exerc. 1992, 24, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.; Sale, D.; McComas, A.J.; Quinlan, J. Influence of joint position on ankle dorsiflexion in humans. J. Appl. Physiol. 1981, 51, 160–167. [Google Scholar] [CrossRef]
- Matthijsse, P.C.; Hendrich, K.M.M.; Rijnsburger, W.H.; Woittiez, R.D.; Huijing, P.A. Ankle angle effects on endurance time, median frequency and mean power of gastrocnemius EMG power spectrum: A comparison between individual and group analysis. Ergonomics 1987, 30, 1149–1159. [Google Scholar] [CrossRef]
- Vander Linden, D.W.; Kukulka, C.G.; Soderberg, G.L. The effect of muscle length on motor unit discharge characteristics in human tibialis anterior muscle. Exp. Brain. Res. 1991, 84, 210–218. [Google Scholar] [CrossRef]
- Bobbert, M.F.; van Ingen Schenau, G.J. Isokinetic plantar flexion: Experimental results and model calculations. J. Biomech. 1990, 23, 105–109. [Google Scholar] [CrossRef]
- Dalton, B.H.; Power, G.A.; Allen, M.D.; Vandervoort, A.A.; Rice, C.L. The genu effect on plantar flexor power. Eur. J. Appl. Physiol. 2013, 113, 1431–1439. [Google Scholar] [CrossRef]
- Hunter, D.G.; Spriggs, J. Investigation into the relationship between the passive flexibility and active stiffness of the ankle plantar-flexor muscles. Clin. Biomech. 2000, 15, 600–606. [Google Scholar] [CrossRef]
- Kagaya, H.; Sharma, M.; Kobetic, R.; Marsolais, E.B. Ankle, knee, and hip moments during standing with and without joint contractures: Simulation study for functional electrical stimulation. Am. J. Phys. Med. Rehabil. 1998, 77, 49–54. [Google Scholar] [CrossRef]
- Kitaivand, T.A.; Sale, D.G. Specificity of joint angle in isometric training. Eur. J. Appl. Physiol. 1989, 58, 744–748. [Google Scholar]
- Orishimo, K.F.; Burstein, G.; Mullaney, M.J.; Kremenic, I.J.; Nesse, M.; McHugh, M.P.; Lee, S.J. Effect of knee flexion angle on achilles tendon force and ankle joint plantarflexion moment during passive dorsiflexion. J. Foot Ankle Surg. 2008, 47, 34–39. [Google Scholar] [CrossRef]
- Simoneau, E.; Martin, A.; Van Hoecke, J. Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J. Electromyogr. Kinesiol. 2007, 17, 307–316. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Nikodelis, T.; Panoutsakopoulos, V.; Kollias, I. Effects of initial posture upon vertical squat jump dynamic and kinematic characteristics of subjects with limited ankle joint dorsi flexion. J. Hum. Mov. Stud. 2003, 44, 311–322. [Google Scholar]
- Bobbert, M.F.; Casius, L.J.; Sijpkens, I.W.; Jaspers, R.T. Humans adjust control to initial squat depth in vertical squat jumping. J. Appl. Physiol. 2008, 105, 1428–1440. [Google Scholar] [CrossRef]
- Selbie, W.S.; Caldwell, G.E. A simulation study of vertical jumping from different starting postures. J. Biomech. 1996, 29, 1137–1146. [Google Scholar] [CrossRef]
- Malliaras, P.; Cook, J.L.; Kent, P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J. Sci. Med. Sport 2006, 9, 304–309. [Google Scholar] [CrossRef]
- Hadzic, V.; Sattler, T.; Topole, E.; Jarnovic, Z.; Burger, H.; Dervisevic, E. Risk factors for ankle sprain in volleyball players: A preliminary analysis. Isokinet. Exerc. Sci. 2009, 17, 155–160. [Google Scholar] [CrossRef]
θknee = 90° | θknee = 140° | θknee = 180° | |
---|---|---|---|
ROM Measurement | Mean ± SD | Mean ± SD | Mean ± SD |
Right leg | |||
ACT (deg) | 74.4 ± 9.5 | 67.7 ± 9.5 a | 62.9 ± 9.7 a,b |
PAS (deg) | 87.1 ± 9.5 * | 79.8 ± 7.9 *,a | 75.7 ± 7.8 *,a,b |
Left leg | |||
ACT (deg) | 67.8 ± 10.8 | 66.9 ± 11.5 | 61.3 ± 11.1 a,b |
PAS (deg) | 90.9 ± 9.7 * | 85.1 ± 9.2 *,a | 78.0 ± 8.1 *,a,b |
Parameter | SQJ | FLG (n = 10) | IFG (n = 8) | Flexibility | Arm Swing | Interaction | |||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p | ηp2 | p | ηp2 | p | ηp2 | ||
Hjump | NAS | 22.3 ± 3.6 | 19.3 ± 2.1 | 0.006 f | 0.216 | 0.672 | 0.006 | 0.696 | 0.005 |
(cm) | AS | 23.2 ± 4.5 | 19.4 ± 2.4 * | ||||||
FZmax | NAS | 1.8 ± 0.4 | 2.0 ± 0.2 | 0.202 | 0.05 | 0.001 s | 0.278 | 0.325 | 0.03 |
(N/kg) | AS | 2.2 ± 0.2 # | 2.3 ± 0.2 | ||||||
RFDmax | NAS | 6.0 ± 1.8 | 6.4 ± 2.9 | 0.682 | 0.005 | 0.011 s | 0.185 | 0.993 | <0.001 |
(kN/sec) | AS | 8.8 ± 3.8 | 9.2 ± 3.4 | ||||||
Pmax | NAS | 21.3 ± 2.8 | 18.9 ± 2.0 | 0.018 f | 0.163 | 0.011 s | 0.184 | 0.787 | 0.002 |
(W/kg) | AS | 24.4 ± 4.2 # | 21.5 ± 3.0 | ||||||
Wmax | NAS | 2.3 ± 0.6 | 1.9 ± 0.4 | 0.017 f | 0.164 | 0.009 s | 0.193 | 0.967 | <0.001 |
(J/kg) | AS | 1.9 ± 0.5 | 1.5 ± 0.4 | ||||||
Sto | NAS | 52.3 ± 6.0 | 48.6 ± 6.5 | 0.051 | 0.114 | 0.019 s | 0.161 | 0.851 | 0.001 |
(cm) | AS | 47.7 ± 6.2 | 43.2 ± 5.0 | ||||||
tC | NAS | 788 ± 125 | 720 ± 173 | 0.281 | 0.036 | 0.825 | 0.002 | 0.758 | 0.003 |
(ms) | AS | 762 ± 139 | 724 ± 144 | ||||||
tFz | NAS | 631 ± 129 | 523 ± 165 | 0.038 f | 0.128 | 0.469 | 0.017 | 0.747 | 0.003 |
(ms) | AS | 585 ± 122 | 505 ± 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsakopoulos, V.; Kotzamanidou, M.C.; Papaiakovou, G.; Kollias, I.A. The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players. J. Funct. Morphol. Kinesiol. 2021, 6, 14. https://doi.org/10.3390/jfmk6010014
Panoutsakopoulos V, Kotzamanidou MC, Papaiakovou G, Kollias IA. The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players. Journal of Functional Morphology and Kinesiology. 2021; 6(1):14. https://doi.org/10.3390/jfmk6010014
Chicago/Turabian StylePanoutsakopoulos, Vassilios, Mariana C. Kotzamanidou, Georgios Papaiakovou, and Iraklis A. Kollias. 2021. "The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players" Journal of Functional Morphology and Kinesiology 6, no. 1: 14. https://doi.org/10.3390/jfmk6010014
APA StylePanoutsakopoulos, V., Kotzamanidou, M. C., Papaiakovou, G., & Kollias, I. A. (2021). The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players. Journal of Functional Morphology and Kinesiology, 6(1), 14. https://doi.org/10.3390/jfmk6010014