Muscle Synergies Reliability in the Power Clean Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach
2.3. Data Collection and Materials
2.4. Data Processing
2.5. Extraction of Muscle Synergies
2.6. Statistical Analysis
3. Results
3.1. Intra-Day Reliability
3.2. Inter-Day Reliability
4. Discussion
4.1. Intra-Day Reliability
4.2. Inter-Day Reliability
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernstein, N. The Co-Ordination and Regulation of Movements; Pergamon: Oxford, UK, 1967. [Google Scholar]
- Hirashima, M.; Oya, T. How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses. Neurosci. Res. 2016, 104, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Tresch, M.C.; Jarc, A. The case for and against muscle synergies. Curr. Opin. Neurobiol. 2009, 19, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safavynia, S.A.; Torres-Oviedo, G.; Ting, L.H. Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement. Top. Spin. Cord Inj. Rehabil. 2011, 17, 16–24. [Google Scholar] [CrossRef] [Green Version]
- d’Avella, A.; Saltiel, P.; Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 2003, 6, 300–308. [Google Scholar] [CrossRef]
- Bizzi, E.; Cheung, V.C.K. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Bruton, M.; O’Dwyer, N. Synergies in coordination: A comprehensive overview of neural, computational, and behavioral approaches. J. Neurophysiol. 2018, 120, 2761–2774. [Google Scholar] [CrossRef] [Green Version]
- Mussa-Ivaldi, F.A.; Giszter, S.F.; Bizzi, E. Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. USA 1994, 91, 7534–7538. [Google Scholar] [CrossRef] [Green Version]
- Saltiel, P.; Wyler-Duda, K.; D’Avella, A.; Tresch, M.C.; Bizzi, E. Muscle synergies encoded within the spinal cord: Evidence from focal intraspinal NMDA iontophoresis in the frog. J. Neurophysiol. 2001, 85, 605–619. [Google Scholar] [CrossRef]
- Hart, C.B.; Giszter, S.F. A neural basis for motor primitives in the spinal cord. J. Neurosci. 2010, 30, 1322–1336. [Google Scholar] [CrossRef] [Green Version]
- Takei, T.; Confais, J.; Tomatsu, S.; Oya, T.; Seki, K. Neural basis for hand muscle synergies in the primate spinal cord. Proc. Natl. Acad. Sci. USA 2017, 114, 8643–8648. [Google Scholar] [CrossRef] [Green Version]
- Desrochers, E.; Harnie, J.; Doelman, A.; Hurteau, M.F.; Frigon, A. Spinal control of muscle synergies for adult mammalian locomotion. J. Physiol. 2019, 597, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutch, J.J.; Valero-Cuevas, F.J. Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 2012, 8, e1002434. [Google Scholar] [CrossRef]
- Hug, F. Can muscle coordination be precisely studied by surface electromyography? J. Electromyogr. Kinesiol. 2011, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.E.; Iqbal, K.; White, G.; Hutchinson, T.E. A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Appl. Bionics Biomech. 2018, 2018, 3615368. [Google Scholar] [CrossRef] [Green Version]
- Taborri, J.; Agostini, V.; Artemiadis, P.K.; Ghislieri, M.; Jacobs, D.A.; Roh, J.; Rossi, S. Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl. Bionics Biomech. 2018, 2018, 1–19. [Google Scholar] [CrossRef]
- Chen, X.; Niu, X.; Wu, D.; Yu, Y.; Zhang, X. Investigation of the Intra- and Inter-Limb Muscle Coordination of Hands-and-Knees Crawling in Human Adults by Means of Muscle Synergy Analysis. Entropy 2017, 19, 229. [Google Scholar] [CrossRef]
- Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Patterns in Human Walking and Running. J. Neurophysiol. 2006, 95, 3426–3437. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, Y.; Kim, H.; Yoon, B. Specific muscle synergies in national elite female ice hockey players in response to unexpected external perturbation. J. Sports Sci. 2018, 36, 319–325. [Google Scholar] [CrossRef]
- Hug, F.; Turpin, N.A.; Guével, A.; Dorel, S. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J. Appl. Physiol. 2010, 108, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Hug, F.; Turpin, N.A.; Couturier, A.; Dorel, S. Consistency of muscle synergies during pedaling across different mechanical constraints. J. Neurophysiol. 2011, 106, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Turpin, N.A.; Guével, A.; Durand, S.; Hug, F. No evidence of expertise-related changes in muscle synergies during rowing. J. Electromyogr. Kinesiol. 2011, 21, 1030–1040. [Google Scholar] [CrossRef]
- Frère, J.; Hug, F. Between-subject variability of muscle synergies during a complex motor skill. Front. Comput. Neurosci. 2012, 6, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, J.R.; Olstad, B.H.; Cabri, J.; Kjendlie, P.-L.; Pezarat-Correia, P.; Hug, F. Muscle coordination during breaststroke swimming: Comparison between elite swimmers and beginners. J. Sports Sci. 2016, 34, 1941–1948. [Google Scholar] [CrossRef] [Green Version]
- Kristiansen, M.; Madeleine, P.; Hansen, E.A.; Samani, A. Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals. Scand. J. Med. Sci. Sports 2015, 25, 89–97. [Google Scholar] [CrossRef]
- Silva, P.B.; Oliveira, A.S.; Mrachacz-Kersting, N.; Kersting, U.G. Effects of wobble board training on single-leg landing neuromechanics. Scand. J. Med. Sci. Sports 2018, 28, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, M.; Samani, A.; Madeleine, P.; Hansen, E.A. Effects of 5 Weeks of Bench Press Training on Muscle Synergies: A Randomized Controlled Study. J. Strength Cond. Res. 2016, 30, 1948–1959. [Google Scholar] [CrossRef]
- Kristiansen, M.; Samani, A.; Madeleine, P.; Hansen, E.A. Muscle synergies during bench press are reliable across days. J. Electromyogr. Kinesiol. 2016, 30, 81–88. [Google Scholar] [CrossRef]
- Taborri, J.; Palermo, E.; Del Prete, Z.; Rossi, S. On the Reliability and Repeatability of Surface Electromyography Factorization by Muscle Synergies in Daily Life Activities. Appl. Bionics Biomech. 2018, 2018, 5852307. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon, J.J. Reliability of Maximal Back Squat and Power Clean Performances in Inexperienced Athletes. J. Strength Cond. Res. 2015, 29, 3089–3096. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Zipp, P. Recommendations for the standardization of lead positions in surface electromyography. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 41–54. [Google Scholar] [CrossRef]
- de Sèze, M.P.; Cazalets, J.-R. Anatomical optimization of skin electrode placement to record electromyographic activity of erector spinae muscles. Surg. Radiol. Anat. 2008, 30, 137–143. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 13; Leen, T.K., Dietterich, T.G., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2001; pp. 556–562. [Google Scholar]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hug, F.; Turpin, N.A.; Dorel, S.; Guével, A. Smoothing of electromyographic signals can influence the number of extracted muscle synergies. Clin. Neurophysiol. 2012, 123, 1895–1896. [Google Scholar] [CrossRef]
- Marshall, P.; Murphy, B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement. J. Electromyogr. Kinesiol. 2003, 13, 477–489. [Google Scholar] [CrossRef]
- Gail, S.; Künzell, S. Reliability of a 5-Repetition Maximum Strength Test in Recreational Athletes. Dtsch. Z. Sportmed. 2014, 2014, 314–317. [Google Scholar] [CrossRef]
- Taylor, J.D.; Fletcher, J.P. Reliability of the 8-repetition maximum test in men and women. J. Sci. Med. Sport 2012, 15, 69–73. [Google Scholar] [CrossRef]
- Ginn, K.A.; Halaki, M. Do surface electrode recordings validly represent latissimus dorsi activation patterns during shoulder tasks? J. Electromyogr. Kinesiol. 2015, 25, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Leijnse, J.N.A.L.; Carter, S.; Gupta, A.; McCabe, S. Anatomic basis for individuated surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis. J. Neurophysiol. 2008, 100, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, C.J.; Kuznetsov, M.; Gilmore, L.D.; Roy, S.H. Inter-electrode spacing of surface EMG sensors: Reduction of crosstalk contamination during voluntary contractions. J. Biomech. 2012, 45, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Scholz, J.P.; Schöner, G. Toward a New Theory of Motor Synergies. Motor Control 2007, 11, 276–308. [Google Scholar] [CrossRef] [Green Version]
- Carroll, T.J.; Riek, S.; Carson, R.G. Neural adaptations to resistance training: Implications for movement control. Sports Med. 2001, 31, 829–840. [Google Scholar] [CrossRef]
- Carson, R.G. Changes in muscle coordination with training. J. Appl. Physiol. 2006, 101, 1506–1513. [Google Scholar] [CrossRef]
- Stronska, K.; Gołaś, A.; Wilk, M.; Zajac, A.; Maszczyk, A.; Stastny, P. The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns. Sports Biomech. 2020, 1–15. [Google Scholar] [CrossRef]
- Stastny, P.; Gołaś, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zając, A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [Green Version]
- Gołaś, A.; Maszczyk, A.; Pietraszewski, P.; Stastny, P.; Tufano, J.J.; Zając, A. Effects of Pre-exhaustion on the Patterns of Muscular Activity in the Flat Bench Press. J. Strength Cond. Res. 2017, 31, 1919–1924. [Google Scholar] [CrossRef]
- Lambert-Shirzad, N.; Van der Loos, H.F.M. On identifying kinematic and muscle synergies: A comparison of matrix factorization methods using experimental data from the healthy population. J. Neurophysiol. 2017, 117, 290–302. [Google Scholar] [CrossRef]
VAF | VAF Muscle | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | TS | PM | BB | TB | FDS | EDC | LD | ES | RA | TA | Gmax | VL | BF | ST | GL | OE | ||
Intra-day 1 | ICC (3,4) | 0.95 | 0.94 | 0.92 | 0.92 | 0.91 | 0.82 | 0.89 | 0.91 | 0.97 | 0.94 | 0.80 | 0.89 | 0.84 | 0.97 | 0.84 | 0.94 | 0.89 | 0.92 | 0.65 |
SEM | 0.02 | 0.01 | 0.01 | 0.03 | 0.08 | 0.03 | 0.05 | 0.05 | 0.03 | 0.07 | 0.06 | 0.14 | 0.09 | 0.03 | 0.10 | 0.03 | 0.04 | 0.05 | 0.10 | |
CI (95%) | 0.87 0.98 | 0.84 0.98 | 0.81 0.97 | 0.82 0.98 | 0.78 0.97 | 0.56 0.94 | 0.74 0.97 | 0.77 0.97 | 0.91 0.99 | 0.87 0.98 | 0.52 0.94 | 0.70 0.97 | 0.60 0.95 | 0.92 0.99 | 0.60 0.95 | 0.85 0.98 | 0.72 0.97 | 0.82 0.98 | 0.13 0.90 | |
Intra-day 2 | ICC (3,4) | 0.98 | 0.97 | 0.92 | 0.98 | 0.97 | 0.94 | 0.97 | 0.95 | 0.97 | 0.95 | 0.94 | 0.92 | 0.93 | 0.95 | 0.88 | 0.88 | 0.81 | 0.95 | 0.89 |
SEM | 0.01 | 0.01 | 0.00 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.05 | 0.06 | 0.03 | 0.07 | 0.07 | 0.03 | 0.04 | 0.02 | 0.05 | 0.04 | 0.05 | |
CI (95%) | 0.95 0.99 | 0.93 0.99 | 0.81 0.98 | 0.95 0.99 | 0.91 0.99 | 0.84 0.94 | 0.92 0.99 | 0.88 0.99 | 0.91 0.99 | 0.87 0.99 | 0.84 0.98 | 0.76 0.98 | 0.81 0.98 | 0.87 0.98 | 0.70 0.96 | 0.69 0.96 | 0.52 0.94 | 0.87 0.99 | 0.70 0.97 | |
Inter-day | ICC (3,1) | 0.66 | 0.62 | 0.54 | 0.09 | 0.43 | 0.48 | 0.83 | 0.24 | 0.13 | 0 | 0.09 | 0.42 | 0.30 | 0.63 | 0.29 | 0 | 0.26 | 0.38 | 0.19 |
SEM | 0.03 | 0.02 | 0.01 | 0.07 | 0.10 | 0.03 | 0.04 | 0.09 | 0.15 | 0.20 | 0.08 | 0.18 | 0.11 | 0.06 | 0.08 | 0.07 | 0.07 | 0.09 | 0.09 | |
CI (95%) | 0.14 0.90 | 0.07 0.88 | 0.06 0.85 | −0.52 0.63 | −0.19 0.81 | −0.13 0.83 | 0.49 0.95 | −0.39 0.72 | −0.51 0.68 | −0.69 0.44 | −0.51 0.64 | −0.24 0.82 | −0.34 0.75 | 0.08 0.88 | −0.34 0.74 | −0.72 0.38 | −0.37 0.73 | −0.25 0.79 | −0.43 0.69 |
Intra-Day | Day 1 | Intra-Day | Day 2 | Inter-Day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% lag | p | d | rmax | % lag | p | d | rmax | % lag | p | d | rmax | |
Individual EMG Profiles | ||||||||||||
TS | −0.22 ± 0.46 | 0.05 | −0.58 | 0.98 ± 0.01 | −0.33 ± 0.47 | 0.04 | −0.61 | 0.98 ± 0.01 | −0.22 ± 0.64 | 0.30 | −0.33 | 0.94 ± 0.02 |
PM | −0.19 ± 0.33 | 0.03 | −0.63 | 0.96 ± 0.03 | −0.21 ± 0.30 | 0.04 | −0.61 | 0.98 ± 0.01 | −0.21 ± 0.63 | 0.21 | −0.38 | 0.90 ± 0.08 |
BB | −0.30 ± 0.45 | 0.05 | −0.63 | 0.98 ± 0.00 | −0.37 ± 0.40 | 0.02 | −0.88 | 0.99 ± 0.01 | 0.09 ± 0.61 | 0.65 | 0.14 | 0.95 ± 0.04 |
TB | −0.18 ± 0.48 | 0.24 | −0.36 | 0.98 ± 0.01 | −0.22 ± 0.42 | 0.13 | −0.50 | 0.98 ± 0.01 | 0.29 ± 0.76 | 0.26 | 0.36 | 0.95 ± 0.02 |
FDS | −0.18 ± 0.45 | 0.21 | −0.39 | 0.98 ± 0.01 | −0.33 ± 0.60 | 0.12 | −0.52 | 0.98 ± 0.02 | −0.59 ± 1.65 | 0.44 | −0.23 | 0.93 ± 0.05 |
EDC | −0.19 ± 0.38 | 0.21 | −0.40 | 0.98 ± 0.01 | −0.07 ± 0.30 | 0.53 | −0.20 | 0.97 ± 0.02 | 4.43 ± 9.05 | 0.05 | 0.58 | 0.92 ± 0.04 |
LD | −0.01 ± 0.02 | 0.32 | −0.29 | 0.96 ± 0.02 | −0.06 ± 0.15 | 0.18 | −0.40 | 0.96 ± 0.02 | 1.86 ± 5.05 | 0.14 | 0.45 | 0.89 ± 0.08 |
ES | 0.00 ± 0.00 | 1.00 | 0.00 | 0.98 ± 0.01 | 0.00 ± 0.00 | 1.00 | 0.00 | 0.98 ± 0.01 | 5.43 ± 17.16 | 0.32 | 0.30 | 0.96 ± 0.03 |
RA | −0.30 ± 0.53 | 0.13 | −0.49 | 0.95 ± 0.02 | −0.02 ± 0.23 | 0.84 | −0.06 | 0.96 ± 0.02 | 7.30 ± 17.72 | 0.11 | 0.48 | 0.92 ± 0.04 |
TA | −0.15 ± 0.76 | 0.54 | −0.18 | 0.97 ± 0.01 | −0.20 ± 040 | 0.15 | −0.47 | 0.96 ± 0.01 | 0.88 ± 1.74 | 0.14 | 0.48 | 0.93 ± 0.03 |
Gmax | −0.06 ± 0.35 | 0.56 | −0.17 | 0.98 ± 0.01 | −0.08 ± 0.29 | 0.67 | −0.13 | 0.98 ± 0.01 | 0.05 ± 0.83 | 0.84 | 0.06 | 0.94 ± 0.05 |
VL | −0.03 ± 0.17 | 0.71 | −0.11 | 0.99 ± 0.00 | −0.07 ± 0.13 | 0.11 | −0.48 | 0.99 ± 0.00 | 2.63 ± 8.67 | 0.89 | −0.04 | 0.97 ± 0.01 |
BF | −6.87 ± 3.27 | <0.001 | −2.01 | 0.92 ± 0.03 | −8.80 ± 3.48 | <0.001 | −0.86 | 0.93 ± 0.02 | −0.12 ± 0.48 | 0.44 | −0.24 | 0.96 ± 0.02 |
ST | −0.77 ± 0.94 | 0.03 | −0.75 | 0.94 ± 0.02 | −0.62 ± 0.71 | 0.02 | −0.83 | 0.94 ± 0.03 | 1.87 ± 5.74 | 0.80 | 0.08 | 0.95 ± 0.04 |
GL | −6.45 ± 8.81 | 0.03 | −0.61 | 0.89 ± 0.01 | −5.16 ± 8.01 | 0.07 | −0.61 | 0.89 ± 0.02 | 1.22 ± 2.80 | 0.20 | 0.39 | 0.93 ± 0.05 |
OE | −0.15 ± 0.43 | 0.29 | −0.32 | 0.97 ± 0.01 | −0.06 ± 0.21 | 0.42 | −0.26 | 0.97 ± 0.01 | 4.82 ± 14.15 | 0.12 | 0.47 | 0.93 ± 0.04 |
Synergy Activation Coefficients | ||||||||||||
#1 | −0.30 ± 0.85 | 0.11 | −0.46 | 0.97 ± 0.03 | 0.28 ± 1.45 | 0.71 | −0.11 | 0.95 ± 0.05 | 0.07 ± 1.12 | 0.69 | −0.12 | 0.87 ± 0.08 |
#2 | 0.74 ± 4.35 | 0.05 | −0.58 | 0.97 ± 0.02 | −0.37 ± 0.78 | 0.17 | −0.45 | 0.97 ± 0.02 | −0.92 ± 2.26 | 0.07 | −0.54 | 0.90 ± 0.06 |
#3 | −1.53 ± 4.76 | 0.37 | −0.26 | 0.93 ± 0.05 | −1.56 ± 3.26 | 0.08 | −0.54 | 0.96 ± 0.04 | −1.32 ± 16.92 | 0.14 | −0.45 | 0.87 ± 0.08 |
Intra-Day | Inter-Day | ||
---|---|---|---|
Day 1 | Day 2 | ||
Muscle Synergy Vectors | |||
#1 | 0.84 ± 0.19 | 0.83 ± 0.24 | 0.56 ± 0.27 |
#2 | 0.85 ± 0.20 | 0.87 ± 0.13 | 0.59 ± 0.25 |
#3 | 0.74 ± 0.24 | 0.86 ± 0.20 | 0.50 ± 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.D.G.; Vaz, J.R.; Correia, P.F.; Valamatos, M.J.; Veloso, A.P.; Pezarat-Correia, P. Muscle Synergies Reliability in the Power Clean Exercise. J. Funct. Morphol. Kinesiol. 2020, 5, 75. https://doi.org/10.3390/jfmk5040075
Santos PDG, Vaz JR, Correia PF, Valamatos MJ, Veloso AP, Pezarat-Correia P. Muscle Synergies Reliability in the Power Clean Exercise. Journal of Functional Morphology and Kinesiology. 2020; 5(4):75. https://doi.org/10.3390/jfmk5040075
Chicago/Turabian StyleSantos, Paulo D. G., João R. Vaz, Paulo F. Correia, Maria J. Valamatos, António P. Veloso, and Pedro Pezarat-Correia. 2020. "Muscle Synergies Reliability in the Power Clean Exercise" Journal of Functional Morphology and Kinesiology 5, no. 4: 75. https://doi.org/10.3390/jfmk5040075
APA StyleSantos, P. D. G., Vaz, J. R., Correia, P. F., Valamatos, M. J., Veloso, A. P., & Pezarat-Correia, P. (2020). Muscle Synergies Reliability in the Power Clean Exercise. Journal of Functional Morphology and Kinesiology, 5(4), 75. https://doi.org/10.3390/jfmk5040075