The Use of Vibration as Physical Exercise and Therapy
Abstract
:1. Introduction
2. Anatomy of the Muscle (Short Overview)
3. Adaptive Responses of Skeletal Muscle to Vibration Exposure
4. Anatomy of the Bone and Cartilage (Short Overview)
5. Adaptive Responses of Bone and Cartilage to Vibration Exposure
6. Memory of Prof. Carmelo Bosco
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Bosco, C. Adaptive responses of human skeletal muscle to simulated hypergravity condition. Acta Physiol. Scand. 1985, 124, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Loreto, C.; Leonardi, R.; Castorina, S.; Giunta, S.; Carnazza, M.L.; Trovato, F.M.; Pichler, K.; Weinberg, A.M. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J. Bone Miner. Metab. 2013, 31, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Belli, A.; Astrua, M.; Tihanyi, J.; Pozzo, R.; Kellis, S.; Tsarpela, O.; Foti, C.; Manno, R.; Tran-Quilli, C. Dynamometer for evaluation of dynamic muscle work. Eur. J. Appl. Physiol. 1995, 70, 379–386. [Google Scholar] [CrossRef]
- Bosco, C.; Cardinale, M.; Colli, R.; Tihanyi, J.; von Duvillard, S.P.; Viru, A. The influence of whole body vibration on jumping ability. Biol. Sport 1998, 15, 157–164. [Google Scholar]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Trovato, F.M.; Imbesi, R.; Conway, N.; Castrogiovanni, P. Morphological and functional aspects of human skeletal muscle. J. Funct. Morphol. Kinesiol. 2016, 1, 289–302. [Google Scholar] [CrossRef]
- Musumeci, G.; Castrogiovanni, P.; Coleman, R.; Szychlinska, M.A.; Salvatorelli, L.; Parenti, R.; Magro, G.; Imbesi, R. Somitogenesis: From somite to skeletal muscle. Acta Histochem. 2015, 117, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, R.; D’Agata, V.; Musumeci, G.; Castrogiovanni, P. Skeletal muscle: From development to function. Clin. Ter. 2014, 165, 47–56. [Google Scholar] [PubMed]
- Duchateau, J.; Enoka, R.M. Neural adaptations with chronic activity patterns in able-bodied humans. Am. J. Phys. Med. Rehab. 2002, 81, 17–27. [Google Scholar] [CrossRef]
- Issurin, V.B.; Tenenbaum, G. Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J. Sports Sci. 1999, 17, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Iacovelli, M.; Tsarpela, O.; Cardinale, M.; Bonifazi, M.; Tihanyi, J.; Viru, M.; de Lorenzo, A.; Viru, A. Hormonal responses to whole body vibrations in man. Eur. J. Appl. Physiol. 2000, 81, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Colli, R.; Introini, E.; Cardinale, M.; Tsarpela, O.; Madella, A.; Tihanyi, J.; von Duvillard, S.P.; Viru, A. Adaptive responses of human skeletal muscle to vibration exposure. Clin. Physiol. 1999, 19, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Hagbarth, K.E.; Eklund, G. Motor effects of vibratory stimuli in man. In Muscular Afferent and Motor Control; Granit, R., Ed.; Almqvist and Wiksell: Stockholm, Sweden, 1965; pp. 177–186. [Google Scholar]
- Bosco, C.; Cardinale, M.; Tsarpela, O. The influence of vibration on arm flexors mechanical power and EMG activity of Biceps brachii. Eur. J. Appl. Physiol. 1999, 79, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Ribot-Ciscar, E.; Vedel, J.P.; Roll, J.P. Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neurosci. Lett. 1989, 104, 130–135. [Google Scholar] [CrossRef]
- Musumeci, G.; Loreto, C.; Clementi, G.; Fiore, C.E.; Martinez, G. An in vivo experimental study on osteopenia in diabetic rats. Acta Histochem. 2011, 113, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Pichler, K.; Musumeci, G.; Vielgut, I.; Martinelli, E.; Sadoghi, P.; Loreto, C.; Weinberg, A.M. Towards a better understanding of bone bridge formation in the growth plate—An immunohistochemical approach. Connect. Tissue Res. 2013, 54, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Pichler, K.; Kraus, T.; Martinelli, E.; Sadoghi, P.; Musumeci, G.; Uggowitzer, P.J.; Weinberg, A.M. Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int. Orthop. 2014, 38, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Vico, L.; Collet, P.; Guignandon, A.; Lafage-Proust, M.H.; Thomas, T.; Rehaillia, M.; Alexandre, C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000, 355, 1607–1611. [Google Scholar] [CrossRef]
- Smith, S.M.; Heer, M.A.; Shackelford, L.C.; Sibonga, J.D.; Ploutz-Snyder, L.; Zwart, S.R. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J. Bone Miner. Res. 2012, 27, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Genc, K.O.; Gopalakrishnan, R.; Kuklis, M.M.; Maender, C.C.; Rice, A.J. Foot forces during typical days on the international space station. J. Biomech. 2010, 43, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the international space station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Michel, E.; Rummel, J.; Sawin, C. Skylab experiment M-171 “metabolic activity”—Results of the first manned mission. Acta Astronaut. 1975, 2, 351–365. [Google Scholar] [CrossRef]
- Rummel, J.A.; Michel, E.L.; Sawin, C.F.; Buderer, M.C. Medical experiment M-171: Results from the second manned Skylab mission. Aviat. Space Environ. Med. 1976, 47, 1056–1060. [Google Scholar] [PubMed]
- Lane, H.W.; Feeback, D.L. Water and energy dietary requirements and endocrinology of human space flight. Nutrition 2002, 18, 820–828. [Google Scholar] [CrossRef]
- Yang, P.; Jia, B.; Ding, C.; Wang, Z.; Qian, A.; Shang, P. Whole-body vibration effects on bone before and after hind-limb unloading in rats. Aviat. Space Environ. Med. 2009, 80, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.A.; Brodt, M.D.; Silva, M.J. Skeletal effects of whole-body vibration in adult and aged mice. J. Orthop. Res. 2010, 28, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Prisby, R.D.; Lafage-Proust, M.H.; Malaval, L.; Belli, A.; Vico, L. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: What we know and what we need to know. Ageing Res. Rev. 2008, 7, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Jacobson, J.M.; Choi, E.S.; Busa, B.; Donahue, L.R.; Miller, L.M.; Rubin, C.T.; Judex, S. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006, 39, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Sonza, A.; Völkel, N.; Zaro, M.A.; Achaval, M.; Hennig, E.M. A whole body vibration perception map and associated acceleration loads at the lower leg, hip and head. Med. Eng. Phys. 2015, 37, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.W.; Luan, H.Q.; Huang, Y.F.; Wang, Y.; Fan, Y.B. Effects of local vibration on bone loss in -tail-suspended rats. Int. J. Sports Med. 2014, 35, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.H.; Reilly, G.C. Vibration stimuli and the differentiation of musculoskeletal progenitor cells: Review of results in vitro and in vivo. World. J. Stem Cells 2015, 7, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, J.; Ehrig, J.; Just, K.; Mutschelknauss, M.; Kirsch, K.A.; Felsenberg, D. Oxygen uptake in whole-body vibration exercise: Influence of vibration frequency, amplitude, and external load. Int. J. Sports Med. 2002, 23, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Fratini, A.; Bonci, T.; Bull, A.M. Whole body vibration treatments in postmenopausal women can improve bone mineral density: Results of a stimulus focussed meta-analysis. PLoS ONE 2016, 11, e0166774. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G. Effects of exercise on physical limitations and fatigue in rheumatic diseases. World J. Orthop. 2015, 6, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.D.; Ioannidis, G.; Pickard, L.; Berger, C.; Prior, J.C.; Joseph, L.; Hanley, D.A.; Olszynski, W.P.; Murray, T.M.; Anastassiades, T.; et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos. Int. 2003, 14, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Musumeci, G. Which is the best physical treatment for osteoarthritis? J. Funct. Morphol. Kinesiol. 2016, 1, 54–68. [Google Scholar] [CrossRef]
- Musumeci, G.; Loreto, C.; Imbesi, R.; Trovato, F.M.; di Giunta, A.; Lombardo, C.; Castorina, S.; Castrogiovanni, P. Advantages of exercise in rehabilitation, treatment and prevention of altered morphological features in knee osteoarthritis. A narrative review. Histol. Histopathol. 2014, 29, 707–719. [Google Scholar] [PubMed]
- Castrogiovanni, P.; Trovato, F.M.; Szychlinska, M.A.; Nsir, H.; Imbesi, R.; Musumeci, G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016, 31, 1183–1194. [Google Scholar] [PubMed]
- Dionello, C.F.; Sá-Caputo, D.; Pereira, H.V.; Sousa-Gonçalves, C.R.; Maiworm, A.I.; Morel, D.S.; Moreira-Marconi, E.; Paineiras-Domingos, L.L.; Bemben, D.; Bernardo-Filho, M. Effects of whole body vibration exercises on bone mineral density of women with postmenopausal osteoporosis without medications: Novel findings and literature review. J. Musculoskelet. Neuronal Interact. 2016, 16, 193–203. [Google Scholar] [PubMed]
- Pichler, K.; Loreto, C.; Leonardi, R.; Reuber, T.; Weinberg, A.M.; Musumeci, G. RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol. Histopathol. 2013, 28, 1185–1196. [Google Scholar] [PubMed]
- Cerciello, S.; Rossi, S.; Visonà, E.; Corona, K.; Oliva, F. Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J. 2016, 6, 147–156. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.R.; Yeung, C.; Pest, M.A.; Ratneswaran, A.; Pollmann, S.I.; Holdsworth, D.W.; Beier, F.; Dixon, S.J.; Séguin, C.A. Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone. Osteoarthr. Cartil. 2016, 25, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G. The effect of mechanical loading on articular cartilage. J. Funct. Morphol. Kinesiol. 2016, 1, 154–161. [Google Scholar] [CrossRef]
- Aiello, F.C.; Trovato, F.M.; Szychlinska, M.A.; Imbesi, R.; Castrogiovanni, P.; Loreto, C.; Musumeci, G. Molecular links between diabetes and osteoarthritis: The role of physical activity. Curr. Diabetes Rev. 2017, 13, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Aiello, F.C.; Szychlinska, M.A.; di Rosa, M.; Castrogiovanni, P.; Mobasheri, A. Osteoarthritis in the XXIst century: Risk factors and behaviours that influence disease onset and progression. Int. J. Mol. Sci. 2015, 16, 6093–6112. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M. Dynamic whole-body vibration training: A unique upstream treatment from the muscle to the arterial system and central hemodynamics. Hypertens. Res. 2017, 40, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Savage, R.; Billing, D.; Furnell, A.; Netto, K.; Aisbett, B. Whole-body vibration and occupational physical performance: A review. Int. Arch. Occup. Environ. Health 2016, 89, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Kiiski, J.; Heinonen, A.; Järvinen, T.L.; Kannus, P.; Sievänen, H. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 2008, 23, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musumeci, G. The Use of Vibration as Physical Exercise and Therapy. J. Funct. Morphol. Kinesiol. 2017, 2, 17. https://doi.org/10.3390/jfmk2020017
Musumeci G. The Use of Vibration as Physical Exercise and Therapy. Journal of Functional Morphology and Kinesiology. 2017; 2(2):17. https://doi.org/10.3390/jfmk2020017
Chicago/Turabian StyleMusumeci, Giuseppe. 2017. "The Use of Vibration as Physical Exercise and Therapy" Journal of Functional Morphology and Kinesiology 2, no. 2: 17. https://doi.org/10.3390/jfmk2020017
APA StyleMusumeci, G. (2017). The Use of Vibration as Physical Exercise and Therapy. Journal of Functional Morphology and Kinesiology, 2(2), 17. https://doi.org/10.3390/jfmk2020017