Gait and Stability Analysis of People After Osteoporotic Spinal Fractures Treated with Minimally Invasive Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group Characteristics
2.2. Description of Biomechanical Test Methods
2.2.1. Stability Analysis
2.2.2. Gait Analysis
2.3. Statistical Analysis
3. Results
3.1. Stability Analysis—Protocol 1
3.2. Stability Analysis—Protocol 2
3.3. Gait Analysis
- Spatio-temporal parameters
- Kinematic and kinetic parameters
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bober, T.; Dziuba, A.; Kobel-Buys, K.; Kulig, K. Gait characteristics following Achilles tendon elongation: The foot rocker perspective. Acta Bioeng. Biomech. 2008, 10, 37–42. [Google Scholar]
- Błaszczyk, J.W.; Plewa, M.; Cieślińska-Świder, J.; Bacik, B.; Zahorska-Markiewicz, B.; Markiewicz, A. Impact of excess body weight on walking at the preferred speed. Acta Neurobiol. Exp. 2011, 71, 528–540. [Google Scholar] [CrossRef]
- Ballane, G.; Cauley, J.A.; Luckey, M.M.; El-Hajj Fuleihan, G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017, 28, 1531–1542. [Google Scholar] [CrossRef]
- Jang, H.D.; Kim, E.H.; Lee, J.C.; Choi, S.W.; Kim, K.; Shin, B.J. Current concepts in the management of osteoporotic vertebral fractures: A narrative review. Asian Spine J. 2020, 14, 898–909. [Google Scholar] [CrossRef]
- Prost, S.; Pesenti, S.; Fuentes, S.; Tropiano, P.; Blondel, B. Treatment of osteoporotic vertebral fractures. Orthop. Traumatol. Surg. Res. 2021, 107, 102779. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M. Dynamic principles of gait and their clinical implications. Phys. Ther. 2010, 90, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; Senden, R.; McCrum, C.; van Rhijn, L.W.; Meijer, K.; Willems, P.C. Effect of a semirigid thoracolumbar orthosis on gait and sagittal alignment in patients with an osteoporotic vertebral compression fracture. Clin. Interv. Aging 2019, 14, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; McCrum, C.; Senden, R.; van Rhijn, L.W.; Meijer, K.; Willems, P.C. Gait in patients with symptomatic osteoporotic vertebral compression fractures over 6 months of recovery. Aging Clin. Exp. Res. 2020, 32, 239–246. [Google Scholar] [CrossRef] [PubMed]
- de Groot, M.H.; van der Jagt-Willems, H.C.; van Campen, J.P.; Lems, W.F.; Beijnen, J.H.; Lamoth, C.J. A flexed posture in elderly patients is associated with impairments in postural control during walking. Gait Posture 2014, 39, 767–772. [Google Scholar] [CrossRef]
- Diogo, C.C.; da Costa, L.M.; Pereira, J.E.; Filipe, V.; Couto, P.A.; Geuna, S.; Armada-da-Silva, P.A.; Maurício, A.C.; Varejão, A.S.P. Kinematic and kinetic gait analysis to evaluate functional recovery in thoracic spinal cord injured rats. Neurosci. Biobehav. Rev. 2019, 98, 18–28. [Google Scholar] [CrossRef]
- Gazzeri, R.; Panagiotopoulos, K.; Galarza, M.; Bolognini, A.; Callovini, G. Minimally invasive spinal fixation in an aging population with osteoporosis: Clinical and radiological outcomes and safety of expandable screws versus fenestrated screws augmented with polymethylmethacrylate. Neurosurg. Focus 2020, 49, E14. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Lin, Y.H.; Chuang, H.Y.; Lee, H.C.; Chen, D.C.; Chu, Y.T.; Cho, D.Y.; Chen, C.H. Cortical bone trajectory instrumentation with vertebroplasty for osteoporotic thoracolumbar compression fracture. Medicina 2020, 56, 82. [Google Scholar] [CrossRef]
- Zuo, X.H.; Zhu, X.P.; Bao, H.G.; Xu, C.J.; Chen, H.; Gao, X.Z.; Zhang, Q.X. Network meta-analysis of percutaneous vertebroplasty, percutaneous kyphoplasty, nerve block, and conservative treatment for non-surgery options of acute/subacute and chronic osteoporotic vertebral compression fractures (OVCFs): Short-term and long-term effects. Medicine 2018, 97, e11544. [Google Scholar]
- Yuan, W.H.; Hsu, H.C.; Lai, K.L. Vertebroplasty and balloon kyphoplasty versus conservative treatment for osteoporotic vertebral compression fractures: A meta-analysis. Medicine 2016, 95, e4491. [Google Scholar] [CrossRef]
- van der Jagt-Willems, H.C.; de Groot, M.H.; van Campen, J.P.; Lamoth, C.J.; Lems, W.F. Associations between vertebral fractures, increased thoracic kyphosis, a flexed posture and falls in older adults: A prospective cohort study. BMC Geriatr. 2015, 15, 34. [Google Scholar] [CrossRef]
- Song, D.; Meng, B.; Gan, M.; Niu, J.; Li, S.; Chen, H.; Yuan, C.; Yang, H. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: A systematic review and meta-analysis. Acta Radiol. 2015, 56, 970–979. [Google Scholar] [CrossRef]
- Ge, C.; Chen, Z.; Cao, P. Efficacy of percutaneous kyphoplasty on vertebral compression fractures with different bone mineral densities: A retrospective study. BMC Musculoskelet. Disord. 2023, 24, 276. [Google Scholar] [CrossRef]
- Jin, Y.Z.; Lee, J.H.; Xu, B.; Cho, M. Effect of medications on prevention of secondary osteoporotic vertebral compression fracture, non-vertebral fracture, and discontinuation due to adverse events: A meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 2019, 20, 399. [Google Scholar] [CrossRef] [PubMed]
- Musbahi, O.; Ali, A.M.; Hassany, H.; Mobasheri, R. Vertebral compression fractures. Br. J. Hosp. Med. 2018, 79, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Slavici, A.; Rauschmann, M.; Fleege, C. Conservative management of osteoporotic vertebral fractures: An update. Eur. J. Trauma Emerg. Surg. 2017, 43, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Li, R.; Fu, D.; Han, H.; Wu, Y.; Meng, B. Clinical efficacy and influencing factors of percutaneous kyphoplasty for osteoporotic vertebral compression fractures: A 10-year follow-up study. BMC Surg. 2024, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhan, J.; Chen, X.; Li, H.; Guo, W.; Liu, Z.; Huang, Q.; Cai, D. Development of a clinical predictive model for bone cement loosening after vertebral augmentation in OVCF patients. BMC Musculoskelet. Disord. 2024, 25, 1052. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, J.; Wu, S.; Yuan, L.; Qu, L.; Wang, Y.; Yang, H.; Yang, S.; Sun, C.; Zou, J. The clinical effect of different vertebral body height restoration rates after percutaneous kyphoplasty for OVCFs. BMC Musculoskelet. Disord. 2024, 25, 711. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, X.; Sun, X.; Shi, H.; Sun, L.; Ding, H. Bone cement distribution patterns in vertebral augmentation for OVCFs: Asystematic review. J. Orthop. Surg. Res. 2025, 20, 568. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, S.; Li, Y.; Zhang, C.; Xia, W.; Zhu, Z.; Wang, K. Analysis of risk factors for augmented vertebral refracture after percutaneous kyphoplasty in OVCFs. J. Clin. Med. 2025, 14, 329. [Google Scholar] [CrossRef]
- Lian, Y.S.; Chen, L.P.; Chen, J.Y. Risk factors for new vertebral fracture after percutaneous vertebroplasty or kyphoplasty for OVCFs—An updated systematic review and meta-analysis. Eur. Spine J. 2025, 34, 5116–5125. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczor, S.; Blazkiewicz, M.; Kowalska, M.; Hermanowicz, A.; Matuszczak, E.; Zielińska-Turek, J.; Hermanowicz, J. Gait and Stability Analysis of People After Osteoporotic Spinal Fractures Treated with Minimally Invasive Surgery. J. Funct. Morphol. Kinesiol. 2025, 10, 481. https://doi.org/10.3390/jfmk10040481
Kaczor S, Blazkiewicz M, Kowalska M, Hermanowicz A, Matuszczak E, Zielińska-Turek J, Hermanowicz J. Gait and Stability Analysis of People After Osteoporotic Spinal Fractures Treated with Minimally Invasive Surgery. Journal of Functional Morphology and Kinesiology. 2025; 10(4):481. https://doi.org/10.3390/jfmk10040481
Chicago/Turabian StyleKaczor, Szymon, Michalina Blazkiewicz, Malgorzata Kowalska, Adam Hermanowicz, Ewa Matuszczak, Justyna Zielińska-Turek, and Justyna Hermanowicz. 2025. "Gait and Stability Analysis of People After Osteoporotic Spinal Fractures Treated with Minimally Invasive Surgery" Journal of Functional Morphology and Kinesiology 10, no. 4: 481. https://doi.org/10.3390/jfmk10040481
APA StyleKaczor, S., Blazkiewicz, M., Kowalska, M., Hermanowicz, A., Matuszczak, E., Zielińska-Turek, J., & Hermanowicz, J. (2025). Gait and Stability Analysis of People After Osteoporotic Spinal Fractures Treated with Minimally Invasive Surgery. Journal of Functional Morphology and Kinesiology, 10(4), 481. https://doi.org/10.3390/jfmk10040481

