Test–Retest Reliability, Parallel Test Reliability, and Internal Consistency of Balance Assessments in Young Healthy Adults
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Balance Tests
2.3.1. Y-Balance Test
2.3.2. Single-Leg Landing Test
2.3.3. Single-Leg Squat Test
2.4. Statistical Analysis
3. Results
3.1. Test–Retest Reliability
3.2. Internal Consistency
3.2.1. Y-Balance Test
3.2.2. Single-Leg Landing Test
3.2.3. Single-Leg Squat Test
3.3. Parallel Tests Reliability
4. Discussion
4.1. Y-Balance Test
4.2. Single-Leg Landing Test
4.3. Single-Leg Squat Test
5. Conclusions
6. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devasahayam, A.J.; Farwell, K.; Lim, B.; Morton, A.; Fleming, N.; Jagroop, D.; Aryan, R.; Saumur, T.M.; Mansfield, A. The Effect of Reactive Balance Training on Falls in Daily Life: An Updated Systematic Review and Meta-Analysis. Phys. Ther. 2022, 103, pzac154. [Google Scholar] [CrossRef] [PubMed]
- Hrysomallis, C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance ability and athletic performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Lesch, K.J.; Tuomisto, S.; Tikkanen, H.O.; Venojärvi, M. Validity and Reliability of Dynamic and Functional Balance Tests in People Aged 19-54, A Systematic Review. Int. J. Sports Phys. Ther. 2024, 19, 381–393. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Frank, J.S. Assessment of balance control in humans. Med. Prog. Technol. 1990, 16, 31–51. [Google Scholar] [PubMed]
- Browne, J.E.; O’Hare, N.J. Review of the different methods for assessing standing balance. Physiotherapy 2001, 87, 489–495. [Google Scholar] [CrossRef]
- Bruyneel, A.V.; Dubé, F. Best Quantitative Tools for Assessing Static and Dynamic Standing Balance after Stroke: A Systematic Review. Physiother. Can. 2021, 73, 329–340. [Google Scholar] [CrossRef]
- Ringhof, S.; Stein, T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018, 58, 140–147. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Besemer, C.; Wehrle, A.; Gollhofer, A.; Granacher, U. Relationship between strength, balance and mobility in children aged 7-10 years. Gait Posture 2013, 37, 108–112. [Google Scholar] [CrossRef]
- Kiss, R.; Schedler, S.; Muehlbauer, T. Associations Between Types of Balance Performance in Healthy Individuals Across the Lifespan: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1366. [Google Scholar] [CrossRef]
- Rubega, M.; Formaggio, E.; Di Marco, R.; Bertuccelli, M.; Tortora, S.; Menegatti, E.; Cattelan, M.; Bonato, P.; Masiero, S.; Del Felice, A. Cortical correlates in upright dynamic and static balance in the elderly. Sci. Rep. 2021, 11, 14132. [Google Scholar] [CrossRef]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar] [PubMed]
- Veldema, J.; Steingräber, T.; von Grönheim, L.; Wienecke, J.; Regel, R.; Schack, T.; Schütz, C. Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial. Bioengineering 2024, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Lynall, R.C.; Campbell, K.R.; Mauntel, T.C.; Blackburn, J.T.; Mihalik, J.P. Single-Legged Hop and Single-Legged Squat Balance Performance in Recreational Athletes With a History of Concussion. J. Athl. Train. 2020, 55, 488–493. [Google Scholar] [CrossRef]
- Kinzey, S.; Armstrong, C. The reliability of the star-excursion test in assessing dynamic balance. J. Orthop. Sports Phys. Ther. 1998, 27, 356–360. [Google Scholar] [CrossRef]
- Melendez, R.A.R.; Thompson, L.A. Investigating the Effects of Center of Gravity (CoG) Shift Due to a Simulated Exploration Extravehicular Mobility Unit (xEMU) Suit on Balance. Appl. Sci. 2024, 14, 4032. [Google Scholar] [CrossRef]
- Schneiders, A.G.; Sullivan, S.J.; O’Malley, K.J.; Clarke, S.V.; Knappstein, S.A.; Taylor, L.J. A valid and reliable clinical determination of footedness. PM R 2010, 2, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Talarico, M.K.; Lynall, R.C.; Mauntel, T.C.; Weinhold, P.S.; Padua, D.A.; Mihalik, J.P. Static and dynamic single leg postural control performance during dual-task paradigms. J. Sports Sci. 2017, 35, 1118–1124. [Google Scholar] [CrossRef]
- Ross, S.E.; Guskiewicz, K.M. Time to Stabilization: A Method for Analyzing Dynamic Postural Stability. Athl. Ther. Today 2003, 8, 37–39. [Google Scholar] [CrossRef]
- KoKoo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Streiner, D.L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. J. Pers. Assess. 2003, 80, 99–103. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Powden, C.J.; Dodds, T.K.; Gabriel, E.H. The Reliability of the Star Excursion Balance Test and Lower Quarter Y-Balance Test in Healthy Adults: A Systematic Review. Int. J. Sports Phys. Ther. 2019, 14, 683–694. [Google Scholar] [CrossRef]
- Nelson, S.; Wilson, C.S.; Becker, J. Kinematic and Kinetic Predictors of Y-Balance Test Performance. Int. J. Sports Phys. Ther. 2021, 16, 371–380. [Google Scholar] [CrossRef]
- Rafagnin, C.Z.; Ferreira, A.S.; Telles, G.F.; Lemos de Carvalho, T.; Alexandre, D.J.A.; Nogueira, L.A.C. Anterior component of Y-Balance test is correlated to ankle dorsiflexion range of motion in futsal players: A cross-sectional study. Physiother. Res. Int. 2023, 28, e2028. [Google Scholar] [CrossRef] [PubMed]
- Fullam, K.; Caulfield, B.; Coughlan, G.F.; Delahunt, E. Kinematic analysis of selected reach directions of the Star Excursion Balance Test compared with the Y-Balance Test. J. Sport. Rehabil. 2014, 23, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.; Gribble, P. Kinematic predictors of performance on the Star Excursion Balance Test. J. Sport. Rehabil. 2008, 17, 347–357. [Google Scholar] [CrossRef]
- Kang, M.H.; Kim, G.M.; Kwon, O.Y.; Weon, J.H.; Oh, J.S.; An, D.H. Relationship Between the Kinematics of the Trunk and Lower Extremity and Performance on the Y-Balance Test. PM R 2015, 7, 1152–1158. [Google Scholar] [CrossRef]
- Coughlan, G.F.; Fullam, K.; Delahunt, E.; Gissane, C.; Caulfield, B.M. A comparison between performance on selected directions of the star excursion balance test and the Y balance test. J. Athl. Train. 2012, 47, 366–371. [Google Scholar] [CrossRef]
- Troester, J.C.; Jasmin, J.G.; Duffield, R. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue. J. Sports Sci. Med. 2018, 17, 174–180. [Google Scholar]
- Byrne, A.; Lodge, C.; Wallace, J. Test-Retest Reliability of Single-Leg Time to Stabilization Following a Drop-Landing Task in Healthy Individuals. J. Sport. Rehabil. 2021, 30, 1242–1245. [Google Scholar] [CrossRef]
- Şimşek, E.; Arslan, H. The examination of relationship between balance performances and some anthropometric characteristics of athletes in different branches. Int. J. Appl. Exerc. Physiol. 2019, 8, 88–94. [Google Scholar]
- Seyedahmadi, M.; Khalaghi, K.; Hazrati, S.; Keavanloo, F. Effect of Medial Longitudinal Arch Height of the Foot on Static and Dynamic Balance in 7-10-Year-Old Boy Gymnasts. Arch. Bone Jt. Surg. 2024, 12, 846–853. [Google Scholar]
- Surgent, O.J.; Dadalko, O.I.; Pickett, K.A.; Travers, B.G. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture 2019, 71, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Legrand, T.; Mongold, S.J.; Muller, L.; Naeije, G.; Ghinst, M.V.; Bourguignon, M. Cortical tracking of postural sways during standing balance. Sci. Rep. 2024, 14, 30110. [Google Scholar] [CrossRef]
- Tse, Y.Y.; Petrofsky, J.S.; Berk, L.; Daher, N.; Lohman, E.; Laymon, M.S.; Cavalcanti, P. Postural sway and rhythmic electroencephalography analysis of cortical activation during eight balance training tasks. Med. Sci. Monit. 2013, 19, 175–186. [Google Scholar]
- Diijkstra, B.W.; Bekkers, E.M.J.; Gilat, M.; de Rond, V.; Hardwick, R.M.; Nieuwboer, A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci. Biobehav. Rev. 2020, 115, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Steingräber, T.; Grönheim, L.V.; Klemm, M.; Straub, J.; Sasse, L.; Veldema, J. High-Definition Trans-Spinal Current Stimulation Improves Balance and Somatosensory Control: A Randomised, Placebo-Controlled Trial. Biomedicines 2024, 12, 2379. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.M.; Dalton, B.H.; Blouin, J.S.; Inglis, J.T. Precise coding of ankle angle and velocity by human calf muscle spindles. Neuroscience 2017, 349, 98–105. [Google Scholar] [CrossRef]
- Murray, A.J.; Croce, K.; Belton, T.; Akay, T.; Jessell, T.M. Balance Control Mediated by Vestibular Circuits Directing Limb Extension or Antagonist Muscle Co-activation. Cell Rep. 2018, 22, 1325–1338. [Google Scholar] [CrossRef] [PubMed]

| Test (Means and SD) | Retest (Means and SD) | Test–Retest Reliability (ICC) | 95% Confidence Interval | Significance | ||
|---|---|---|---|---|---|---|
| Lower Limit | Upper Limit | |||||
| Y-Balance Test total (cm) | 521.88 ± 41.66 | 523.82 ± 5.15 | 0.947 | 0.900 | 0.972 | <0.001 |
| Anterior direction (cm) | 113.42 ± 9.99 | 114.38 ± 15.14 | 0.745 | 0.518 | 0.865 | <0.001 |
| Left leg (cm) | 56.73 ± 4.87 | 57.15 ± 6.29 | 0.908 | 0.825 | 0.952 | <0.001 |
| Right leg (cm) | 56.48 ± 5.37 | 56.97 ± 7.10 | 0.852 | 0.721 | 0.922 | <0.001 |
| Posterolateral direction (cm) | 208.93 ± 19.93 | 210.28 ± 23.85 | 0.905 | 0.824 | 0.949 | <0.001 |
| Left leg (cm) | 104.02 ± 10.05 | 104.68 ± 11.92 | 0.894 | 0.803 | 0.943 | <0.001 |
| Right leg (cm) | 104.91 ± 10.72 | 105.77 ± 12.64 | 0.890 | 0.796 | 0.941 | <0.001 |
| Posteromedial direction (cm) | 202.44 ± 22.19 | 204.15 ± 25.58 | 0.944 | 0.895 | 0.970 | <0.001 |
| Left leg (cm) | 102.00 ± 12.52 | 102.28 ± 12.89 | 0.931 | 0.871 | 0.963 | <0.001 |
| Right leg (cm) | 101.23 ± 11.33 | 101.27 ± 12.96 | 0.946 | 0.898 | 0.971 | <0.001 |
| Single-Leg Landing Test | ||||||
| COP movement trajectory area size (mm2) | 3542 ± 831 | 3444 ± 747 | 0.848 | 0.707 | 0.921 | <0.001 |
| Left leg (mm2) | 1720 ± 412 | 1724 ± 355 | 0.833 | 0.681 | 0.912 | <0.001 |
| Right leg (mm2) | 1818 ± 464 | 1722 ± 458 | 0.778 | 0.572 | 0.884 | <0.001 |
| COP movement trajectory length (mm) | 2340 ± 387 | 2263 ± 392 | 0.904 | 0.817 | 0.950 | <0.001 |
| Left leg (mm) | 1151 ± 193 | 1127 ± 195 | 0.900 | 0.812 | 0.947 | <0.001 |
| Right leg (mm) | 1180 ± 230 | 1140 ± 218 | 0.852 | 0.720 | 0.922 | <0.001 |
| Time to stabilisation (ms) | 2.454 ± 0.318 | 2.435 ± 0.325 | 0.913 | 0.836 | 0.953 | <0.001 |
| Left leg (ms) | 1.260 ± 0.166 | 1.236 ± 0.164 | 0.839 | 0.698 | 0.914 | <0.001 |
| Right leg (ms) | 1.194 ± 0.171 | 1.199 ± 0.183 | 0.912 | 0.836 | 0.953 | <0.001 |
| Single-Leg Squat Test | ||||||
| COP movement trajectory area size (mm2) | 6609 ± 1618 | 6408 ± 2225 | 0.428 | −0.082 | 0.697 | 0.043 |
| Left leg (mm2) | 3327 ± 1111 | 3209 ± 1230 | 0.462 | −0.009 | 0.713 | 0.027 |
| Right leg (mm2) | 3245 ± 917 | 3198 ± 1266 | 0.334 | −0.248 | 0.645 | 0.101 |
| COP movement trajectory length (mm) | 1979 ± 363 | 2029 ± 524 | 0.865 | 0.743 | 0.929 | <0.001 |
| Left leg (mm) | 1015 ± 223 | 1054 ± 312 | 0.785 | 0.598 | 0.886 | <0.001 |
| Right leg (mm) | 980 ± 187 | 998 ± 257 | 0.816 | 0.649 | 0.903 | <0.001 |
| Total (cm) | Anterior Direction (cm) | Left Leg (cm) | Right Leg (cm) | Posterolateral Direction (cm) | Left Leg (cm) | Right Leg (cm) | Posteromedial Direction (cm) | Left Leg (cm) | |
|---|---|---|---|---|---|---|---|---|---|
| Anterior direction (cm) | 0.318 | ||||||||
| Left leg (cm) | 0.172 | 0.972 | |||||||
| Right leg (cm) | 0.187 | 0.896 | 0.954 | ||||||
| Posterolateral direction (cm) | 0.826 | 0.326 | 0.301 | 0.223 | |||||
| Left leg (cm) | 0.559 | 0.337 | 0.302 | 0.270 | 0.872 | ||||
| Right leg (cm) | 0.590 | 0.397 | 0.283 | 0.373 | 0.893 | 0.939 | |||
| Posteromedial direction (cm) | 0.854 | 0.146 | 0.086 | 0.088 | 0.889 | 0.720 | 0.754 | ||
| Left leg (cm) | 0.618 | 0.229 | 0.175 | 0.178 | 0.842 | 0.859 | 0.886 | 0.888 | |
| Right leg (cm) | 0.609 | 0.131 | 0.099 | 0.103 | 0.818 | 0.859 | 0.875 | 0.882 | 0.961 |
| COP Movement Trajectory Area Size (mm2) | Left Leg (mm2) | Right Leg (mm2) | COP Movement Trajectory Length (mm) | Left Leg (mm) | Right Leg (mm) | Time to Stabilisation (ms) | Left Leg (ms) | |
|---|---|---|---|---|---|---|---|---|
| COP movement trajectory area size (mm2) | ||||||||
| Left leg (mm2) | 0.853 | |||||||
| Right leg (mm2) | 0.894 | 0.850 | ||||||
| COP movement trajectory length (mm) | 0.617 | 0.617 | 0.679 | |||||
| Left leg (mm) | 0.389 | 0.579 | 0.493 | 0.853 | ||||
| Right leg (mm) | 0.438 | 0.553 | 0.605 | 0.897 | 0.870 | |||
| Time to stabilisation (ms) | 0.000 | −0.001 | 0.000 | 0.000 | 0.000 | |||
| Left leg (ms) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.871 | |
| Right leg (ms) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.882 | 0.872 |
| COP Movement Trajectory Area Size (mm2) | Left Leg (mm2) | Right Leg (mm2) | COP Movement Trajectory Length (mm) | Left Leg (mm) | |
|---|---|---|---|---|---|
| COP movement trajectory area size (mm2) | |||||
| Left leg (mm2) | 0.880 | ||||
| Right leg (mm2) | 0.830 | 0.659 | |||
| COP movement trajectory length (mm) | −0.042 | 0.086 | −0.117 | ||
| Left leg (mm) | 0.022 | 0.106 | −0.011 | 0.884 | |
| Right leg (mm) | −0.059 | −0.035 | −0.059 | 0.849 | 0.777 |
| Y-Balance Test (cm) | Single-Leg Landing Test | COP Movement Trajectory Area Size (mm2) | GOP Movement Trajectory Length (mm) | Time to Stabilisation (ms) | Single Leg-Squat Test | COP Movement Trajectory Area Size (mm2) | |
|---|---|---|---|---|---|---|---|
| Single-Leg Landing Test | |||||||
| COP movement trajectory area size (mm2) | 0.017 | ||||||
| GOP movement trajectory length (mm) | 0.021 | 0.618 | |||||
| Time to stabilisation (ms) | −0.008 | 0.000 | −0.046 | ||||
| Single-Leg Squat Test | |||||||
| COP movement trajectory area size (mm2) | 0.014 | 0.215 | −0.116 | 0.000 | |||
| COP movement trajectory length (mm) | −0.007 | 0.291 | 0.646 | 0.000 | −0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steingräber, T.; von Grönheim, L.; Wienecke, J.; Regel, R.; Schütz, C.; Schack, T.; Veldema, J. Test–Retest Reliability, Parallel Test Reliability, and Internal Consistency of Balance Assessments in Young Healthy Adults. J. Funct. Morphol. Kinesiol. 2025, 10, 455. https://doi.org/10.3390/jfmk10040455
Steingräber T, von Grönheim L, Wienecke J, Regel R, Schütz C, Schack T, Veldema J. Test–Retest Reliability, Parallel Test Reliability, and Internal Consistency of Balance Assessments in Young Healthy Adults. Journal of Functional Morphology and Kinesiology. 2025; 10(4):455. https://doi.org/10.3390/jfmk10040455
Chicago/Turabian StyleSteingräber, Teni, Leon von Grönheim, Jana Wienecke, Rieke Regel, Christoph Schütz, Thomas Schack, and Jitka Veldema. 2025. "Test–Retest Reliability, Parallel Test Reliability, and Internal Consistency of Balance Assessments in Young Healthy Adults" Journal of Functional Morphology and Kinesiology 10, no. 4: 455. https://doi.org/10.3390/jfmk10040455
APA StyleSteingräber, T., von Grönheim, L., Wienecke, J., Regel, R., Schütz, C., Schack, T., & Veldema, J. (2025). Test–Retest Reliability, Parallel Test Reliability, and Internal Consistency of Balance Assessments in Young Healthy Adults. Journal of Functional Morphology and Kinesiology, 10(4), 455. https://doi.org/10.3390/jfmk10040455

