Test–Retest Reliability and Sex-Dependent Responses for Physiological and Perceptual Variables at Sub-Maximal Thresholds
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Experimental Procedures
2.3.1. Graded Exercise Test
2.3.2. Determination of the GET and RCP
2.3.3. Determination of the PO, HR, and RPE Associated with the GET and RCP
2.4. Statistical Analyses
3. Results
3.1. Peak Values
3.2. Gas Exchange Threshold
3.3. Respiratory Compensation Point
3.4. Heart Rate (HR) at the GET and RCP
3.5. Rating of Perceived Exertion (RPE) at the GET and RCP
4. Discussion
4.1. Reliability of Fatigue Thresholds
4.2. Sex Differences in Fatigue Thresholds
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GET | gas exchange threshold |
| RCP | respiratory compensation point |
| O2 | volume of oxygen consumption |
| GXT | graded exercise test |
| PO | power output |
| HR | heart rate |
| RPE | rating of perceived exertion |
| ICC | intraclass correlation coefficient |
| MD | minimal difference |
| SEM | standard error of the measurement |
| CV | coefficient of variation |
| % O2max | percentage of maximum oxygen consumption |
| VT1 | first ventilatory threshold |
| VT2 | second ventilatory threshold |
| CP | critical power |
| CO2 | volume of carbon dioxide expiration |
| E | ventilatory equivalents |
| PPO | peak power output |
| O2peak | peak oxygen consumption |
| HRpeak | heart rate peak |
| RPEpeak | rating of perceived exertion peak |
| PCO2 | partial pressure of carbon dioxide |
| POGET | power output at the gas exchange threshold |
| PORCP | power output at the respiratory compensation point |
| HRGET | heart rate at the gas exchange threshold |
| HRRCP | heart rate at the respiratory compensation point |
| RPEGET | rating of perceived exertion at the gas exchange threshold |
| RPERCP | rating of perceived exertion at the respiratory compensation point |
| HR NORM GET | heart rate normalized to the gas exchange threshold |
| HR NORMM RCP | heart rate normalized to the respiratory compensation point |
| RPE NORM GET | rating of perceived exertion normalized to the gas exchange threshold |
| RPE NORM GET | rating of perceived exertion normalized to the respiratory compensation point |
| T1 | test one |
| T2 | test two |
| GET %PPO | gas exchange threshold expressed as a percentage of peak power output |
| RCP %PPO | respiratory compensation point expressed as a percentage of peak power output |
| CI | confidence interval |
| SD | standard deviation |
| % of O2peak | percentage of peak oxygen consumption |
| GET % HRpeak | gas exchange threshold expressed as a percentage of peak heart rate |
| RCP % HRpeak | respiratory compensation point expressed as a percentage of peak heart rate |
| GET % RPEpeak | gas exchange threshold expressed as a percentage of peak rating of perceived exertion |
| RCP % RPEpeak | respiratory compensation point expressed as a percentage of peak rating of perceived exertion |
References
- Ozemek, C. ACSM’s Guidelines for Exercise Testing and Prescription, 12th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2025; ISBN 978-1-9752-1921-5. [Google Scholar]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of Prescribing Relative Exercise Intensity: Physiological and Practical Considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef]
- Wagner, L.L.; Housh, T.J. A Proposed Test for Determining Physical Working Capacity at the Heart Rate Threshold. Res. Q. Exerc. Sport 1993, 64, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.; Housh, T.J.; Malek, M.H.; Beck, T.W.; Schmidt, R.J.; Johnson, G.O. The Development of Rating of Perceived Exertion-Based Tests of Physical Working Capacity. J. Strength Cond. Res. 2008, 22, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. (1985) 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- MONOD, H.; SCHERRER, J. The Work Capacity of a Synergic Muscular Group. Ergonomics 1965, 8, 329–338. [Google Scholar] [CrossRef]
- Jamnick, N.A.; Pettitt, R.W.; Granata, C.; Pyne, D.B.; Bishop, D.J. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020, 50, 1729–1756. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Poole, D.C. The Slow Component of Oxygen Uptake Kinetics in Humans. Exerc. Sport Sci. Rev. 1996, 24, 35–71. [Google Scholar] [CrossRef]
- Poole, D.C.; Burnley, M.; Vanhatalo, A.; Rossiter, H.B.; Jones, A.M. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med. Sci. Sports Exerc. 2016, 48, 2320–2334. [Google Scholar] [CrossRef]
- Keir, D.A.; Pogliaghi, S.; Murias, J.M. The Respiratory Compensation Point and the Deoxygenation Break Point Are Valid Surrogates for Critical Power and Maximum Lactate Steady State. Med. Sci. Sports Exerc. 2018, 50, 2375. [Google Scholar] [CrossRef]
- Broxterman, R.M.; Craig, J.C.; Richardson, R.S. The Respiratory Compensation Point and the Deoxygenation Break Point Are Not Valid Surrogates for Critical Power and Maximum Lactate Steady State. Med. Sci. Sports Exerc. 2018, 50, 2379. [Google Scholar] [CrossRef]
- Leo, J.A.; Sabapathy, S.; Simmonds, M.J.; Cross, T.J. The Respiratory Compensation Point Is Not a Valid Surrogate for Critical Power. Med. Sci. Sports Exerc. 2017, 49, 1452. [Google Scholar] [CrossRef] [PubMed]
- Caen, K.; Pogliaghi, S.; Lievens, M.; Vermeire, K.; Bourgois, J.G.; Boone, J. Ramp vs. Step Tests: Valid Alternatives to Determine the Maximal Lactate Steady-State Intensity? Eur. J. Appl. Physiol. 2021, 121, 1899–1907. [Google Scholar] [CrossRef]
- Prud’Homme, D.; Bouchard, C.; Leblance, C.; Landry, F.; Lortie, G.; Boulay, M.R. Reliability of Assessments of Ventilatory Thresholds. J. Sports Sci. 1984, 2, 13–24. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Morán-Navarro, R.; Ortega, J.F.; Fernández-Elías, V.E.; Mora-Rodriguez, R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS ONE 2016, 11, e0163389. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Courel-Ibáñez, J.; Morán-Navarro, R.; Martínez-Cava, A.; Pallarés, J.G. The Relationship Between Lactate and Ventilatory Thresholds in Runners: Validity and Reliability of Exercise Test Performance Parameters. Front. Physiol. 2018, 9, 1320. [Google Scholar] [CrossRef]
- O’Malley, C.A.; Fullerton, C.L.; Mauger, A.R. Test–Retest Reliability of a 30-Min Fixed Perceived Effort Cycling Exercise. Eur. J. Appl. Physiol. 2023, 123, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Weston, S.B.; Gabbett, T.J. Reproducibility of Ventilation of Thresholds in Trained Cyclists during Ramp Cycle Exercise. J. Sci. Med. Sport 2001, 4, 357–366. [Google Scholar] [CrossRef]
- van der Zwaard, S.; Jaspers, R.T.; Blokland, I.J.; Achterberg, C.; Visser, J.M.; den Uil, A.R.; Hofmijster, M.J.; Levels, K.; Noordhof, D.A.; de Haan, A.; et al. Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PLoS ONE 2016, 11, e0162914. [Google Scholar] [CrossRef]
- Wheatley, C.M.; Snyder, E.M.; Johnson, B.D.; Olson, T.P. Sex Differences in Cardiovascular Function during Submaximal Exercise in Humans. SpringerPlus 2014, 3, 445. [Google Scholar] [CrossRef] [PubMed]
- Solleiro Pons, M.; Bernert, L.; Hume, E.; Hughes, L.; Williams, Z.J.; Burnley, M.; Ansdell, P. No Sex Differences in Oxygen Uptake or Extraction Kinetics in the Moderate or Heavy Exercise Intensity Domains. J. Appl. Physiol. 2024, 136, 472–481. [Google Scholar] [CrossRef]
- Rodríguez-Barbero, S.; Alda-Blanco, A.; Salinero, J.J.; González-Mohíno, F. Sex-Based Differences at Ventilatory Thresholds in Trained Runners. Appl. Sci. 2025, 15, 8843. [Google Scholar] [CrossRef]
- Murphy, W.G. The Sex Difference in Haemoglobin Levels in Adults—Mechanisms, Causes, and Consequences. Blood Rev. 2014, 28, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Bhattachar, S.; Chawla, A.; Sikri, G.; Patrikar, S. Body Fat Content Correlates with Maximum Aerobic Capacity in Healthy Sedentary Indian Males. Med. J. Armed Forces India 2023, 79, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Więcek, M.; Szymura, J.; Szyguła, Z.; Wiecha, S.; Cempla, J. The Influence of Increased Body Fat or Lean Body Mass on Aerobic Performance. PLoS ONE 2014, 9, e95797. [Google Scholar] [CrossRef]
- Robertson, R.J.; Moyna, N.M.; Sward, K.L.; Millich, N.B.; Goss, F.L.; Thompson, P.D. Gender Comparison of RPE at Absolute and Relative Physiological Criteria. Med. Sci. Sports Exerc. 2000, 32, 2120–2129. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, D.R.; Barton, G.P.; François, C.J.; Aggarwal, N.; Roldán-Alzate, A. Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers. Radiol. Cardiothorac. Imaging 2020, 2, e190058. [Google Scholar] [CrossRef]
- Tran, D.L.; Kamaladasa, Y.; Munoz, P.A.; Kotchetkova, I.; D’Souza, M.; Celermajer, D.S.; Maiorana, A.; Cordina, R. Estimating Exercise Intensity Using Heart Rate in Adolescents and Adults with Congenital Heart Disease: Are Established Methods Valid? Int. J. Cardiol. Congenit. Heart Dis. 2022, 8, 100362. [Google Scholar] [CrossRef]
- Borg, G. Perceived Exertion as an Indicator of Somatic Stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [CrossRef]
- Faulkner, J.; Parfitt, G.; Eston, R. Prediction of Maximal Oxygen Uptake from the Ratings of Perceived Exertion and Heart Rate during a Perceptually-Regulated Sub-Maximal Exercise Test in Active and Sedentary Participants. Eur. J. Appl. Physiol. 2007, 101, 397–407. [Google Scholar] [CrossRef]
- Tucker, R.; Marle, T.; Lambert, E.V.; Noakes, T.D. The Rate of Heat Storage Mediates an Anticipatory Reduction in Exercise Intensity during Cycling at a Fixed Rating of Perceived Exertion. J. Physiol. 2006, 574, 905–915. [Google Scholar] [CrossRef]
- Cochrane-Snyman, K.C.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Jenkins, N.D.M.; Schmidt, R.J.; Johnson, G.O. Inter-Individual Variability in the Patterns of Responses for Electromyography and Mechanomyography during Cycle Ergometry Using an RPE-Clamp Model. Eur. J. Appl. Physiol. 2016, 116, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Sempere-Ruiz, N.; Sarabia, J.M.; Baladzhaeva, S.; Moya-Ramón, M. Reliability and Validity of a Non-Linear Index of Heart Rate Variability to Determine Intensity Thresholds. Front. Physiol. 2024, 15, 1329360. [Google Scholar] [CrossRef]
- Aunola, S.; Rusko, H. Reproducibility of Aerobic and Anaerobic Thresholds in 20–50 Year Old Men. Eur. J. Appl. Physiol. 1984, 53, 260–266. [Google Scholar] [CrossRef]
- Succi, P.J.; Benitez, B.; Kwak, M.; Bergstrom, H.C. Analysis of Individual <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --><math><mrow><mover accent="true"><mrow><mtext>V</mtext></mrow><mo mathvariant="normal">˙</mo></mover></mrow></math><!-- MathType@End@5@5@ -->O2max Responses during a Cardiopulmonary Exercise Test and the Verification Phase in Physically Active Women. J. Funct. Morphol. Kinesiol. 2023, 8, 124. [Google Scholar] [CrossRef]
- Succi, P.J.; Benitez, B.; Kwak, M.; Bergstrom, H.C. The Minimal Difference as an Individual Threshold to Examine the Utility of a Verification Bout in Determining V̇O2max. Med. Sci. Sports Exerc. 2023, 55, 1063–1068. [Google Scholar] [CrossRef]
- Succi, P.J.; Benitez, B.; Kwak, M.; Bergstrom, H.C. Methodological Considerations for the Determination of VO2max in Healthy Men. Eur. J. Appl. Physiol. 2023, 123, 191–199. [Google Scholar] [CrossRef]
- Succi, P.J.; Benitez, B.; Kwak, M.; Bergstrom, H.C. VO2max Is Reliably Measured from a Stand-Alone Graded Exercise Test in Healthy Women. J. Exerc. Physiol. Online 2022, 25, 14–25. [Google Scholar]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef]
- Pettitt, R.W.; Clark, I.E.; Ebner, S.M.; Sedgeman, D.T.; Murray, S.R. Gas Exchange Threshold and VO2max Testing for Athletes: An Update. J. Strength Cond. Res. 2013, 27, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.W.; Hannah, R.; Pain, T.G.; Folland, J.P. Reliability of Neuromuscular Measurements during Explosive Isometric Contractions, with Special Reference to Electromyography Normalization Techniques. Muscle Nerve 2012, 46, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Wasserman, K.; McIlroy, M.B. Detecting the Threshold of Anaerobic Metabolism in Cardiac Patients during Exercise. Am. J. Cardiol. 1964, 14, 844–852. [Google Scholar] [CrossRef]
- Bergstrom, H.C.; Housh, T.J.; Zuniga, J.M.; Traylor, D.A.; Camic, C.L.; Lewis Jr., R. W.; Schmidt, R.J.; Johnson, G.O. The Relationships Among Critical Power Determined from a 3-min All-Out Test, Respiratory Compensation Point, Gas Exchange Threshold, and Ventilatory Threshold. Res. Q. Exerc. Sport 2013, 84, 232–238. [Google Scholar] [CrossRef]
- Succi, P.J.; Dinyer, T.K.; Byrd, M.T.; Bergstrom, H.C. Comparisons of the Metabolic Intensities at Heart Rate, Gas Exchange, and Ventilatory Thresholds. Int. J. Exerc. Sci. 2020, 13, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Vodak, P.; Wilmore, J.H.; Vodak, J.; Kurtz, P. Anaerobic Threshold and Maximal Aerobic Power for Three Modes of Exercise. J. Appl. Physiol. 1976, 41, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yu, B.; Guan, G.; Wang, Y.; He, H. Effects of Sleep Deprivation on Sports Performance and Perceived Exertion in Athletes and Non-Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2025, 16, 1544286. [Google Scholar] [CrossRef] [PubMed]
- Pivarnik, J.M.; Marichal, C.J.; Spillman, T.; Morrow, J.R. Menstrual Cycle Phase Affects Temperature Regulation during Endurance Exercise. J. Appl. Physiol. 1992, 72, 543–548. [Google Scholar] [CrossRef]
- Webb, H.E.; Weldy, M.L.; Fabianke-Kadue, E.C.; Orndorff, G.R.; Kamimori, G.H.; Acevedo, E.O. Psychological Stress during Exercise: Cardiorespiratory and Hormonal Responses. Eur. J. Appl. Physiol. 2008, 104, 973–981. [Google Scholar] [CrossRef]
- Marcora, S.M.; Bosio, A.; de Morree, H.M. Locomotor Muscle Fatigue Increases Cardiorespiratory Responses and Reduces Performance during Intense Cycling Exercise Independently from Metabolic Stress. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 294, R874–R883. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Amann, M.; Romer, L.M.; Miller, J.D. Respiratory System Determinants of Peripheral Fatigue and Endurance Performance. Med. Sci. Sports Exerc. 2008, 40, 457. [Google Scholar] [CrossRef]
- Amann, M.; Dempsey, J.A. Locomotor Muscle Fatigue Modifies Central Motor Drive in Healthy Humans and Imposes a Limitation to Exercise Performance. J. Physiol. 2008, 586, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Keir, D.A.; Pogliaghi, S.; Inglis, E.C.; Murias, J.M.; Iannetta, D. The Respiratory Compensation Point: Mechanisms and Relation to the Maximal Metabolic Steady State. Sports Med. 2024, 54, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef]
- Borg, G.; Borg, E. A New Generation of Scaling Methods: Level-Anchored Ratio Scaling. Psychologica 2001, 28, 15–45. [Google Scholar]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, X. Is There Really a Proportional Relationship between VO2max and Body Weight? A Review Article. PLoS ONE 2021, 16, e0261519. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, C.; Thiele, M.; Hillig, T.; Pilegaard, H.; Richter, E.A.; Wojtaszewski, J.F.P.; Kiens, B. Higher Skeletal Muscle α2AMPK Activation and Lower Energy Charge and Fat Oxidation in Men than in Women during Submaximal Exercise. J. Physiol. 2006, 574, 125–138. [Google Scholar] [CrossRef]
- Ramaekers, D.; Ector, H.; Aubert, A.E.; Rubens, A.; Van de Werf, F. Heart Rate Variability and Heart Rate in Healthy Volunteers. Is the Female Autonomic Nervous System Cardioprotective? Eur. Heart J. 1998, 19, 1334–1341. [Google Scholar] [CrossRef]
- Cardinale, D.A.; Larsen, F.J.; Schiffer, T.A.; Morales-Alamo, D.; Ekblom, B.; Calbet, J.A.L.; Holmberg, H.-C.; Boushel, R. Superior Intrinsic Mitochondrial Respiration in Women Than in Men. Front. Physiol. 2018, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Power–Duration Relationship: Physiology, Fatigue, and the Limits of Human Performance. Eur. J. Sport Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
| Males | Females | |||
|---|---|---|---|---|
| T1 | T2 | T1 | T2 | |
| O2peak (L·min−1) | 3.56 ± 0.60 | 3.55 ± 0.71 | 2.27 ± 0.25 | 2.18 ± 0.26 |
| O2peak (mL·kg−1·min−1) | 44.77 ± 7.69 | 44.69 ± 8.89 | 39.59 ± 7.66 | 38.15 ± 8.33 |
| PPO (W) | 287 ± 57 | 283 ± 56 | 203 ± 23 | 202 ± 22 |
| HRpeak (b·min−1) | 178 ± 8 | 179 ± 4 | 182 ± 6 | 179 ± 10 |
| RPEpeak (Borg’s 6-20) | 19 ± 1 | 19 ± 1 | 19 ± 1 | 19 ± 1 |
| Subject | T1 (POGET) | T2 (POGET) | T1 (GET %PPO) | T2 (GET %PPO) | T1 (PORCP) | T2 (PORCP) | T1 (RCP %PPO) | T2 (RCP %PPO) |
|---|---|---|---|---|---|---|---|---|
| M1 | 174 | 142 + | 67 | 55 + | 224 | 229 | 86 | 88 |
| M2 | 100 | 105 | 50 | 53 | 173 | 173 | 87 | 86 |
| M3 | 97 | 89 | 42 | 39 | 193 | 178 | 84 | 78 |
| M4 | 165 | 170 | 63 | 65 | 203 | 223 | 78 | 86 |
| M5 | 297 | 297 | 78 | 78 | 329 | 332 | 87 | 87 |
| M6 | 228 | 227 | 71 | 71 | 266 | 284 | 83 | 89 |
| M7 | 201 | 186 | 58 | 58 | 299 | 291 | 85 | 91 |
| M8 | 204 | 216 | 70 | 67 | 241 | 271 | 83 | 85 |
| M9 | 194 | 189 | 67 | 73 | 256 | 236 | 88 | 91 |
| Mean ± SD | 185 ± 62 | 180 ± 64 | 63 ± 11 | 62 ± 12 | 243 ± 51 | 246 ± 53 | 85 ± 3 | 86 ± 4 |
| ICC | 0.978 | 0.913 | 0.951 | 0.236 | ||||
| [95% CI] | [0.915–0.995] | [0.669–0.980] | [0.809–0.989] | [−0.335–0.736] | ||||
| SEM | 9 W | 4% | 12 W | 3% | ||||
| MD | 26 W | 10% | 33 W | 8% | ||||
| CV | 5.0% | 6.1% | 4.8% | 3.5% | ||||
| Mean ± SD | 182 ± 61 W * | 63 ± 11% | 246 ± 50 W * | 86 ± 4% | ||||
| Bias (SD) | 4.53 (12.21) | 0.94 (4.78) | −3.63 (15.64) | −2.12 (3.86) | ||||
| [LOA] | [−19.40–28.45] | [−8.43–10.32] | [−34.29–27.02] | [−9.68–5.45] | ||||
| F1 | 133 | 142 | 67 | 71 | 179 | 191 | 89 | 95 |
| F2 | 90 | 73 | 53 | 43 | 139 | 144 | 82 | 85 |
| F3 | 134 | 147 | 58 | 64 | 196 | 199 | 85 | 87 |
| F4 | 80 | 86 | 40 | 43 | 171 | 167 | 86 | 84 |
| F5 | 125 | 98 | 62 | 49 | 178 | 168 | 89 | 84 |
| F6 | 78 | 82 | 46 | 48 | 163 | 159 | 96 | 93 |
| F7 | 169 | 165 | 73 | 72 | 201 | 205 | 87 | 89 |
| F8 | 109 | 130 | 54 | 65 | 167 | 178 | 84 | 89 |
| F9 | 137 | 140 | 60 | 70 | 215 | 185 + | 93 | 92 |
| Mean ± SD | 117 ± 30 | 118 ± 34 | 63 ± 10 | 57 ± 12 | 179 ± 23 | 177 ± 20 | 88 ± 4 | 89 ± 4 |
| ICC | 0.902 | 0.753 | 0.832 | 0.628 | ||||
| [95% CI] | [0.623–0.977] | [0.226–0.939] | [0.414–0.960] | [−0.014–0.902] | ||||
| SEM | 11 W | 6% | 9 W | 3% | ||||
| MD | 29 W | 16% | 25 W | 7% | ||||
| CV | 8.9% | 10.0% | 5.1% | 3.0% | ||||
| Mean ± SD | 118 ± 31 W | 58 ± 11% | 178 ± 21 W | 88 ± 4% | ||||
| Bias (SD) | −1.00 (13.99) | −1.30 (7.79) | 1.50 (12.07) | −0.76 (3.44) | ||||
| [LOA] | [−28.42–26.42] | [−16.56–13.96] | [−22.16–25.16] | [−7.50–5.98] | ||||
| Subject | T1 GET (L·min−1) | T2 GET (L·min−1) | T1 GET (mL·kg−1·min−1) | T2 GET (mL·kg−1·min−1) | T1 GET (O2peak) | T2 GET (O2peak) |
|---|---|---|---|---|---|---|
| M1 | 2.20 | 1.81 + | 29.04 | 23.92 + | 68 | 62 |
| M2 | 1.44 | 1.42 | 20.71 | 20.48 | 55 | 59 |
| M3 | 1.53 | 1.45 | 15.30 | 14.45 | 47 | 47 |
| M4 | 2.08 | 2.20 | 27.02 | 28.67 | 67 | 66 |
| M5 | 3.77 | 3.81 | 43.82 | 44.33 | 82 | 79 |
| M6 | 2.99 | 2.91 | 41.03 | 39.89 | 72 | 70 |
| M7 | 2.49 | 2.31 | 29.34 | 27.17 | 65 | 61 |
| M8 | 2.67 | 2.65 | 33.65 | 33.37 | 75 | 72 |
| M9 | 2.44 | 2.48 | 32.70 | 33.17 | 67 | 67 |
| Mean ± SD | 2.40 ± 0.72 | 2.34 ± 0.75 | 30.29 ± 8.98 | 29.49 ± 9.36 | 66 ± 10 | 65 ± 9 |
| ICC | 0.978 | 0.976 | 0.941 | |||
| [95% CI] | [0.911–0.995] | [0.905–0.994] | [0.746–0.986] | |||
| SEM | 0.10 L·min−1 | 1.38 mL·kg−1·min−1 | 2% | |||
| MD | 0.29 L·min−1 | 3.83 mL·kg−1·min−1 | 6% | |||
| CV | 4.4% | 4.6% | 3.3% | |||
| Mean ± SD | 2.37 ± 0.72 L·min−1 * | 29.89 ± 9.91 mL·kg−1·min−1 | 65 ± 9% | |||
| Bias (SD) | 0.06 (0.14) | 0.80 (1.84) | 1.78 (2.86) | |||
| [LOA] | [−0.22–0.34] | [−2.82–4.41] | [−3.81–7.38] | |||
| F1 | 1.67 | 1.74 | 31.26 | 32.55 | 69 | 76 |
| F2 | 1.21 | 1.10 | 18.54 | 16.91 | 60 | 55 |
| F3 | 1.76 | 1.77 | 28.95 | 29.16 | 71 | 74 |
| F4 | 1.10 | 1.13 | 21.94 | 22.41 | 54 | 56 |
| F5 | 1.69 | 1.44 | 25.16 | 21.34 + | 72 | 65 |
| F6 | 1.03 | 1.07 | 19.21 | 20.06 | 54 | 59 |
| F7 | 2.06 | 1.99 | 43.88 | 42.54 | 78 | 74 |
| F8 | 1.43 | 1.62 | 22.31 | 25.18 | 66 | 75 |
| F9 | 1.60 | 1.56 | 25.42 | 24.77 | 67 | 76 |
| Mean ± SD | 1.51 ± 0.34 | 1.49 ± 0.33 | 26.30 ± 7.81 | 26.10 ± 7.75 | 66 ± 8 | 68 ± 9 |
| ICC | 0.938 | 0.972 | 0.769 | |||
| [95% CI] | [0.753–0.986] | [0.883–0.994] | [0.307–0.942] | |||
| SEM | 0.10 L·min−1 | 1.37 mL·kg−1·min−1 | 4% | |||
| MD | 0.25 L·min−1 | 3.80 mL·kg−1·min−1 | 11% | |||
| CV | 6.0% | 5.2% | 6.1% | |||
| Mean ± SD | 1.50 ± 0.32 L·min−1 | 26.20 ± 7.55 mL·kg−1·min−1 | 67 ± 8% | |||
| Bias (SD) | −0.07 (0.12) | 0.19 (1.83) | −2.16 (5.45) | |||
| [LOA] | [−0.21–0.24] | [−3.39–3.77] | [−12.83–8.51] | |||
| Subject | T1 RCP (L·min−1) | T2 RCP (L·min−1) | T1 RCP (mL·kg−1·min−1) | T2 RCP (mL·kg−1·min−1) | T1 RCP O2peak) | T2 RCP O2peak) |
|---|---|---|---|---|---|---|
| M1 | 2.78 | 2.77 | 36.66 | 36.63 | 86 | 94 + |
| M2 | 2.28 | 2.17 | 32.85 | 31.26 | 87 | 90 |
| M3 | 2.69 | 2.61 | 26.89 | 26.06 | 83 | 84 |
| M4 | 2.52 | 2.83 + | 32.72 | 36.78 + | 81 | 85 |
| M5 | 4.16 | 4.25 | 48.31 | 49.43 | 90 | 88 |
| M6 | 3.50 | 3.64 | 48.01 | 50.01 | 84 | 88 |
| M7 | 3.44 | 3.49 | 40.49 | 41.08 | 90 | 92 |
| M8 | 3.10 | 3.20 | 39.16 | 40.31 | 87 | 87 |
| M9 | 3.23 | 3.14 | 43.20 | 42.08 | 89 | 85 |
| Mean ± SD | 3.08 ± 0.58 | 3.12 ± 0.62 | 38.70 ± 7.21 | 39.29 ± 7.77 | 86 ± 3 | 88 ± 3 |
| ICC | 0.975 | 0.972 | 0.375 | |||
| [95% CI] | [0.900–0.994] | [0.892–0.994] | [−0.229–0.804] | |||
| SEM | 0.09 L·min−1 | 1.24 mL·kg−1·min−1 | 3% | |||
| MD | 0.26 L·min−1 | 3.44 mL·kg−1·min−1 | 7% | |||
| CV | 3.1% | 3.2% | 2.9% | |||
| Mean ± SD | 3.10 ± 0.58 L·min−1 * | 39.00 ± 7.28 mL·kg−1·min−1 | 87 ± 3% | |||
| Bias (SD) | −0.05 (0.13) | −0.59 (1.66) | −1.73 (3.47) | |||
| [LOA] | [−0.30–0.20] | [−3.84–2.65] | [−8.52–5.06] | |||
| F1 | 2.16 | 2.23 | 40.37 | 41.67 | 89 | 97 + |
| F2 | 1.69 | 1.76 | 25.93 | 26.95 | 84 | 88 |
| F3 | 2.33 | 2.25 | 38.47 | 37.15 | 95 | 94 |
| F4 | 1.91 | 1.87 | 37.86 | 37.16 | 93 | 93 |
| F5 | 2.23 | 2.09 | 33.15 | 31.07 | 95 | 95 |
| F6 | 1.82 | 1.71 | 33.99 | 32.05 | 96 | 94 |
| F7 | 2.41 | 2.43 | 51.48 | 51.88 | 91 | 90 |
| F8 | 1.99 | 2.08 | 30.99 | 32.34 | 92 | 96 |
| F9 | 2.33 | 1.95 + | 37.01 | 30.86 + | 98 | 95 |
| Mean ± SD | 2.10 ± 0.26 | 2.04 ± 0.24 | 36.58 ± 7.11 | 35.68 ± 7.48 | 92 ± 4 | 94 ± 3 |
| ICC | 0.816 | 0.945 | 0.519 | |||
| [95% CI] | [0.416–0.954] | [0.792–0.987] | [−0.157–0.866] | |||
| SEM | 0.11 L·min−1 | 1.69 mL·kg−1·min−1 | 3% | |||
| MD | 0.29 L·min−1 | 4.68 mL·kg−1·min−1 | 7% | |||
| CV | 5.1% | 4.7% | 2.7% | |||
| Mean ± SD | 2.07 ± 0.24 L·min−1 | 36.13 ± 7.10 mL·kg−1·min−1 | 93 ± 4% # | |||
| Bias (SD) | 0.06 (0.14) | 0.90 (2.25) | −1.25 (3.42) | |||
| [LOA] | [−0.22–0.33] | [−3.51–5.31] | [−7.96–5.47] | |||
| Subject | T1 (HRGET) | T2 (HRGET) | T1 (GET %HR peak) | T2 (GET %HR peak) | T1 (HRRCP) | T2 (HRRCP) | T1 (RCP %HRpeak) | T2 (RCP %HR peak) |
|---|---|---|---|---|---|---|---|---|
| M1 | 127 | 134 | 74 | 74 | 152 | 171 | 89 | 95 |
| M2 | 147 | 135 | 79 | 74 | 180 | 173 | 97 | 94 |
| M3 | 121 | 117 | 64 | 65 | 171 | 160 | 91 | 89 |
| M4 | 145 | 141 | 86 | 79 | 163 | 165 | 96 | 92 |
| M5 | 168 | 166 | 90 | 90 | 178 | 175 | 95 | 95 |
| M6 | 139 | 134 | 80 | 79 | 155 | 157 | 89 | 92 |
| M7 | 143 | 137 | 79 | 76 | 170 | 171 | 95 | 95 |
| M8 | 139 | 151 | 82 | 85 | 152 | 170 | 89 | 96 |
| M9 | 144 | 150 | 78 | 83 | 172 | 170 | 94 | 95 |
| Mean ± SD | 141 ± 13 | 141 ± 13 | 79 ± 7 | 79 ± 7 | 166 ± 11 | 168 ± 6 | 93 ± 3 | 94 ± 2 |
| ICC | 0.855 | 0.866 | 0.321 | 0.073 | ||||
| [95% CI] | [0.481–0.965] | [0.523–0.968] | [−0.440–0.979] | [−0.643–0.684] | ||||
| SEM | 5 b·min−1 | 3% | 7 b·min−1 | 3% | ||||
| MD | 15 b·min−1 | 8% | 20 b·min−1 | 7% | ||||
| CV | 3.8% | 3.6% | 4.4% | 2.9% | ||||
| Mean ± SD | 141 ± 13 b·min−1 | 79 ± 7% | 167 ± 9 b·min−1 | 93 ± 2% | ||||
| Bias (SD) | 0.85 (7.06) | 0.74 (3.90) | −2.02 (9.84) | −0.94 (3.53) | ||||
| [LOA] | [−12.99–14.70] | [−6.91–8.38] | [−21.29–17.26] | [−7.68–5.98] | ||||
| F1 | 156 | 162 | 84 | 87 | 178 | 185 | 96 | 100 |
| F2 | 134 | 121 | 78 | 73 | 156 | 157 | 91 | 94 |
| F3 | 148 | 167 | 79 | 87 | 176 | 188 | 94 | 99 |
| F4 | 134 | 134 | 75 | 74 | 174 | 173 | 97 | 96 |
| F5 | 156 | 139 | 86 | 79 | 177 | 169 | 98 | 96 |
| F6 | 145 | 137 | 79 | 76 | 182 | 180 | 99 | 100 |
| F7 | 169 | 166 | 91 | 90 | 183 | 182 | 99 | 98 |
| F8 | 157 | 160 | 84 | 87 | 182 | 180 | 98 | 98 |
| F9 | 143 | 139 | 83 | 88 | 175 | 158+ | 101 | 99 |
| Mean ± SD | 149 ± 11 | 148 ± 16 | 82 ± 5 | 82 ± 7 | 176 ± 8 | 175 ± 12 | 97 ± 3 | 98 ± 2 |
| ICC | 0.737 | 0.679 | 0.670 | 0.480 | ||||
| [95% CI] | [0.192–0.934] | [0.043–0.919] | [0.046–0.916] | [−0.203–0.852] | ||||
| SEM | 8 b·min−1 | 3% | 6 b·min−1 | 2% | ||||
| MD | 21 b·min−1 | 10% | 16 b·min−1 | 5% | ||||
| CV | 5.1% | 4.2% | 3.3% | 1.9% | ||||
| Mean ± SD | 148 ± 14 b·min−1 * | 82 ± 6% | 175 ± 10 b·min−1 * | 97 ± 2% # | ||||
| Bias (SD) | 1.78 (9.86) | −0.28 (4.68) | 1.36 (8.04) | −0.78 (2.26) | ||||
| [LOA] | [−17.56–21.11] | [−9.45–8.88] | [−14.39–17.11] | [−5.21–3.64] | ||||
| Subject | T1 (RPEGET) | T2 (RPEGET) | T1 (GET %RPE peak) | T2 (GET %RPE peak) | T1 (RPERCP) | T2 (RPERCP) | T1 (RCP %RPE peak) | T2 (RCP %RPE peak) |
|---|---|---|---|---|---|---|---|---|
| M1 | 15 | 17 | 71 | 65 | 15 | 17 | 86 | 92 |
| M2 | 13 | 14 | 53 | 61 | 13 | 14 | 81 | 89 |
| M3 | 19 | 17 | 64 | 60 | 19 | 17 | 93 | 86 |
| M4 | 17 | 18 | 72 | 73 | 17 | 18 | 83 | 88 |
| M5 | 17 | 18 | 79 | 78 | 17 | 18 | 85 | 88 |
| M6 | 16 | 17 | 69 | 68 | 16 | 17 | 81 | 87 |
| M7 | 15 | 16 | 59 | 58 | 15 | 16 | 81 | 82 |
| M8 | 16 | 17 | 74 | 78 | 16 | 17 | 83 | 91 |
| M9 | 18 | 17 | 66 | 64 | 18 | 17 | 88 | 83 |
| Mean ± SD | 13 ± 2 | 13 ± 2 | 67 ± 8 | 67 ± 8 | 16 ± 2 | 17 ± 1 | 85 ± 4 | 87 ± 3 |
| ICC | 0.886 | 0.869 | 0.651 | −0.093 | ||||
| [95% CI] | [0.604–0.973] | [0.516–0.969] | [0.094–0.906] | [−0.572–0.535] | ||||
| SEM | 1 | 3% | 1 | 4% | ||||
| MD | 2 | 8% | 2 | 11% | ||||
| CV | 5.46% | 4.38% | 5.31% | 4.50% | ||||
| Mean ± SD | 13 ± 2 | 67 ± 8% | 16 ± 1 | 86 ± 4% | ||||
| Bias (SD) | 0.01 (0.71) | 0.23 (3.97) | −0.55 (1.01) | −2.60 (5.20) | ||||
| [LOA] | [−1.39–1.40] | [−7.55–8.01] | [−2.53–1.42] | [12.80–7.60] | ||||
| F10 | 12 | 14 | 68 | 72 | 15 | 17 | 84 | 92 |
| F11 | 12 | 11 | 62 | 55 | 15 | 17 | 81 | 89 |
| F12 | 14 | 14 | 68 | 71 | 18 | 18 | 92 | 91 |
| F13 | 12 | 12 | 64 | 62 | 18 | 17 | 97 | 88 |
| F14 | 14 | 13 | 74 | 66 | 18 | 18 | 93 | 91 |
| F15 | 11 | 13 | 58 | 70 | 18 | 19 | 97 | 99 |
| F16 | 15 | 16 | 77 | 78 | 19 | 18 | 93 | 92 |
| F17 | 13 | 14 | 66 | 72 | 17 | 18 | 91 | 94 |
| F18 | 13 | 15 | 65 | 78 | 18 | 18 | 92 | 95 |
| Mean ± SD | 13 ± 1 | 13 ± 2 | 67 ± 6 | 69 ± 7 | 17 ± 1 | 18 ± 1 | 91 ± 5 | 92 ± 3 |
| ICC | 0.573 | 0.382 | 0.467 | 0.312 | ||||
| [95% CI] | [−0.008–0.880] | [−0.303–0.815] | [−0.176–0.844] | [−0.432–0.792] | ||||
| SEM | 1 | 5% | 1 | 4% | ||||
| MD | 2 | 15% | 2 | 10% | ||||
| CV | 6.60% | 7.7% | 4.53% | 4.08% | ||||
| Mean ± SD | 13 ± 1 | 68 ± 7 | 18 ± 1 | 92 ± 4% * | ||||
| Bias (SD) | −0.63 (1.11) | −2.52 (6.91) | −0.47 (0.94) | −1.42 (5.03) | ||||
| [LOA] | [−2.81–1.54] | [−16.06–11.02] | [−2.32–1.38] | [−11.28–8.43] | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snell, E.R.; Succi, P.J.; Mitchinson, C.J.; Benitez, B.; Kwak, M.; Kuhn, A.N.; Bergstrom, H.C. Test–Retest Reliability and Sex-Dependent Responses for Physiological and Perceptual Variables at Sub-Maximal Thresholds. J. Funct. Morphol. Kinesiol. 2025, 10, 448. https://doi.org/10.3390/jfmk10040448
Snell ER, Succi PJ, Mitchinson CJ, Benitez B, Kwak M, Kuhn AN, Bergstrom HC. Test–Retest Reliability and Sex-Dependent Responses for Physiological and Perceptual Variables at Sub-Maximal Thresholds. Journal of Functional Morphology and Kinesiology. 2025; 10(4):448. https://doi.org/10.3390/jfmk10040448
Chicago/Turabian StyleSnell, Erik R., Pasquale J. Succi, Clara J. Mitchinson, Brian Benitez, Minyoung Kwak, Alaina N. Kuhn, and Haley C. Bergstrom. 2025. "Test–Retest Reliability and Sex-Dependent Responses for Physiological and Perceptual Variables at Sub-Maximal Thresholds" Journal of Functional Morphology and Kinesiology 10, no. 4: 448. https://doi.org/10.3390/jfmk10040448
APA StyleSnell, E. R., Succi, P. J., Mitchinson, C. J., Benitez, B., Kwak, M., Kuhn, A. N., & Bergstrom, H. C. (2025). Test–Retest Reliability and Sex-Dependent Responses for Physiological and Perceptual Variables at Sub-Maximal Thresholds. Journal of Functional Morphology and Kinesiology, 10(4), 448. https://doi.org/10.3390/jfmk10040448
